蓄电池组的均衡充电技术
串联蓄电池组的均衡充电技术研究

- VI-
上海交通大学硕士学位论文 摘要
charging circuit. The results of experiments convincingly prove the applicability of the proposed approach. KEYWORDS: dc power supply, battery, series-connected battery, buck/boost converter,charging equalization
ABSTRACT
This thesis introduces the modules of Control system of DC power Supply, compares and analyzes the charging equalization methods for series-connected Batteries, proposes a non-dissipative balance charging method. Addition, the hardware and the circuit are given, and an experiment has been done to test the feasibility of project. DC power Supply is mainly used in power plant, transformer substation and communication industry, which supplies power for relay protecting, the breaker action, communication and accident lighting. The core of DC power system is series-connected Batteries, whose performance determines the reliability and stability of the DC power Supply. The monitor and control system is used for DC power supply to monitor and control data acquisition and transmit and inquiry, which is widely used in field. A problem occurs: the cycle life of series-connected Batteries is shorter than the normal life. There are three factors which can affect the cycle life, one is the physical parameter of the battery; the second is the unreasonable charging system; the third is the different restored capacity in each battery, which is harmful for those overcharged and over discharged batteries. In order to extend battery cycle life, the charging module for the battery must have the ability of charging equalization. This thesis proposes a non-dissipative balance charging circuit based on buck/boost converter for a series-connected battery. Each battery in the battery bank is associated with a buck-boost converter. This sub-circuit can efficiently alleviate the unbalance of charge among batteries by taking off the charge from the affluently charged batteries and then allotting to those insufficient ones. A algorithm is proposed in the thesis. A battery bank with two series-connected simulated-batteries is used for illustrating the operating behavior and describing the operation modes of the balance
电池充电均衡器的均衡效果分析及其解决方案

电池充电均衡器的均衡效果分析及其解决方案周宝林由于蓄电池都存在内阻并且各不相同,才导致组成串联电池组后各块电池的电压都不相同,由此催生了各种电池均衡器技术的研发,目前,技术上比较多的是电池充电均衡器,那么电池充电均衡器是否能彻底解决电池电压不平衡的问题呢,答案是否定的。
电池充电均衡器仅在电池充电期间起作用,可以有效控制个别电池防止出现过充电,在电池放电时不起作用,无法提升低电压电池的电压,依然会出现明显不均衡问题。
例如,电池组中有一块电池出现了内阻增大的问题(以下简称问题电池),在充电过程中,“问题电池”的端电压上升速度最快,首先达到充电限制电压,在充电均衡器的控制下,充电器此后的输出电能大部分都充到了其它正常电池中,“问题电池”相比其它电池只充入了部分电能。
在放电过程中,放电电流都是一样的,经过一段时间放电,“问题电池”储存的电量首先消耗完,电压下降最快,最先达到放电终止电压,如果继续放电,则“问题电池”将造成严重亏电,形成过放电,甚至会造成容量无法恢复的伤害,此时,大部分电池仍处于电量较为充足的状态,有效电量没有释放出来。
一块“问题电池”就成了电池组的瓶颈,随着接下来的连续充放电,“问题电池”将变得更加严重,变成了一个“可变电阻”,导致整个电池组的放电电流急剧减小,输出电压严重不足,经过多次充放电循环后,“问题电池”的储电能力和放电能力严重下降,严重影响整个电池组性能的发挥,成了“木桶效应”中的最短板。
如果再继续放电,那么“问题电池”不仅无法再释放电能,反而成了负载,极性反转,开始从其它电池吸收电能,导致温度升高。
对于重要系统,后备时间严重不足的问题还会导致重要设备的损坏,后果非常严重。
通过以上分析可以知道,电池充电均衡器虽然解决了电池在充电期间的均衡问题,但却无法解决电池放电期间的均衡问题,无法从根本上解决电池组的均衡问题,仍然属于功能上受限的均衡器。
适合的电池均衡器,应该同时具有充电均衡和放电均衡功能,不仅能够对电池充电期间进行均衡,而且在电池放电期间同样可以进行均衡。
蓄电池容量均衡方法概述

[2]B. Lindemark, “Individual cell voltage equalizers (ICE) for reliable battery performance,” in Proc. 13th Annu. Int. Telecommun. Energy Conf., Kyoto, Japan, Nov. 1991, pp. 196–201. [3]Kimball, J.W. , Krein, P.T., “Analysis and design of switched capacitor converters”, Applied Power Electronics Conference and Exposition, 2005, vol. 3, pp. 1473-1477. [4]Kimball, J.W., Kuhn, B.T., Krein, P.T., “Increased Performance of Battery Packs by Active Equalization”, Vehicle Power and Propulsion Conference, 2007, pp. 323-327. [5] Baughman, A.C., Ferdowsi, M.,” Double-Tiered Switched-Capacitor Battery Charge Equalization Technique”, Industrial Electronics, IEEE Transactions on, June 2008, vol. 55, no. 5, pp. 2277-2285. [6] Pascual, C., Krein, P.T., ” Switched Capacitor System for Automatic Series Battery Equalization”, Applied Power Electronics Conference and Exposition, 1997, vol. 2, pp. 848-854. [7] Chin-Sien Moo, Kong-Soon Ng, Jin-Shin Hu, “Operation of Battery Power Modules with Series Output”, Industrial Technology, 2009, pp. 1-6. [8] Wei Hong, Kong-Soon Ng, Jin-Hsin Hu, Chin-Sien Moo,” Charge Equalization of Battery Power Modules in Series”, Power Electronics Conference (IPEC), 2010, vol. 2, pp. 1568-1572. [9] Moo, C.S., Ng, K.S., Hsieh, Y.C.,” Parallel Operation of Battery Power Modules”, Power Electronics and Drives Systems, 2005, vol. 2, pp.
蓄电池充放电要求说明

蓄电池充放电要求说明
(1)初期充电
在电池储存和运输过程中电池有一些自放电,在运行过程中必须进行初期充电,其方法为:储存时间在6个月内,恒压2.35V/单体,充电8h;储存时间12个月内,恒压2.35V/单体,充电12h;储存时间24个月内,恒压2.35V/单体,充电24h;
(2)均衡充电
系列电池在下列情况下需要对电池组进行均衡充电:
①电池系统安装完毕后,对电池进行补充充电;
②电池组浮充运行3个月后,有单体电池电压低于2.18V、12V系列电池电压低于13.08V (2.18*6);
③电池搁置停用时间超过3个月;
④电池全浮充运行达3个月。
均衡充电的方法推荐采用 2.35V/单体充电24h。
注意上述充电时间是指温度范围在20-30度,如果环境温度下降,则充电时间应增加,反之亦然。
(3)电池充电
电池放电后应及时充电。
充电方法推荐为以0.1C10A的恒电流对电池组充电,到电池单体平均电压上升到2.35V,然后改用2.35/单体进行恒压充电,直到充电结束。
用上述方法进行充电,其充足电的标志可以用以下条件中任一条来判断。
①充电时间18-24h(非深放电时间可短,如20%的放电深度的电池充电时间可缩短为10h);
②电压恒定情况下,充电末期连续3h充电电流值不变。
在特殊情况下,电池组需尽快充足电可采用快速充电方法,即限流值小于等于0.15C10A,充电压为2.35V/单体。
蓄电池浮充和均充的区别

蓄电池的运行有充放电、半浮充和全浮充三种工作方式。
通信局(站)现在都采用全浮充工作方式,即整流器与蓄电池组并联向负载(通信设备等)供电,正常情况下蓄电池组始终同整流器和负载并联,充电时也不脱离负载。
1、浮充电压平时(交流电正常时)整流器的输出电压值为浮充电压。
此时整流器供给全部负载电流,并对蓄电池组进行补充充电,使蓄电池组保持电量充足。
为补充自放电损失的电量,使蓄电池保持电量充足的连续小电流充电称为浮充充电,所需的充电电压称为浮充电压。
浮充供电的整流器,应在自动稳压状态工作,现在高频开关整流器的稳压精度均应达到£±0.6%。
所谓自放电,是由于电池内杂质的存在,使正极和负极活性物质逐渐被消耗而造成电池容量减小的现象。
浮充电压值的选取直接影响阀控式密封铅酸蓄电池的使用寿命、供电性能和运行的经济性。
浮充电压偏低,则补充充电电流太小,不够补充蓄电池的自放电,将使蓄电池长期处于充电不足的状态,一旦遇到交流电源停电,需要蓄电池组放电供给负载电流时,就会因蓄电池储存的电量不足而影响正常供电,并容易使极板硫酸盐化,从而缩短蓄电池的使用寿命;浮充电压偏高,则补充充电电流偏大,将加剧正极板的腐蚀,并可能使蓄电池排气频繁、失水、温度高,甚至造成蓄电池热失控(浮充状态下蓄电池放热,热失控是电池的浮充电流与电池温度发生积累性相互增强而使电池温度急剧升高的现象,轻则使电池槽变形鼓胀,重则导致电池失效),也会缩短蓄电池的使用寿命。
因此,阀控式密封铅酸蓄电池必须严格按照蓄电池厂家的规定来确定浮充电压值。
我国通信行业标准YD/T799—2002《通信用阀控式密封铅酸蓄电池》中规定:"蓄电池浮充电单体电压为2.20~ 2.27V(25℃)"。
需要注意,这是指不同厂家生产的阀控式密封铅酸蓄电池允许进网的浮充电压范围,而不是一个蓄电池成品的浮充电压允许变化范围。
对于一种具体产品,其浮充电压在25℃条件下是个确定值。
12V铅蓄电池三段式智能充电原理详解

汽车蓄电池充电器原理详解现在市场上比较好的12V充电机一般都采用的是三段式智能充电模式,电路设计原理多常用开关恒流恒压电源的设计。
什么是三段式充电?让我们先来了解一些12V充电机的概念。
1、浮充:充电后的蓄电池,由于电解液及极板中存在杂质,会在极板上形成局部放电,因此为使电池在饱满的状态下处于备用状态,电池与12V充电机并联,接于直流母线上,12V充电机除担负经常的直流负荷外,还给电池适当的充电电流,这种方式叫做浮充电。
2、均充:均充就是均衡充电。
所谓均衡充电,就是均衡电池特性的充电,是指在电池的使用过程中,因为电池的个体差异、温度差异等原因造成电池端电压不平衡,为了避免这种不平衡趋势的恶化,需要提高电池组的充电电压,对电池进行活化充电。
均充电压一般为14.5V,均充时间不大于10小时。
一般是在下列情况下蓄电池需要均衡充电。
1、市电停电后电池释放的能量超过总容量的15%。
2、蓄电池长期处于浮充状态(电网稳定,长期不停电)。
3、电池组中,出现了落后电池,在浮充状态下单体电压低于2.2V,更换新电池后。
先充电的三个阶段:一、第一阶段-----恒流段,当电池电压较低时,为了避免充电电流过大损坏电池,应该限制充电电流不能过大,又为了缩短充电时间,应使用允许的最大电流充电,所以采用了恒流充电。
恒流充电过程中,12V充电机始终以恒定的电流(一般为0.18---3C,C为电池容量)自动调整输出电压对电池充电。
充电过程中电池电压会越充越高,直至升到2.45V每格。
然后转入下一阶段充电。
恒流充电阶段为主充电阶段,电池已经充入约85----90%的电量,恒流充电阶段,电池电压会超过析氢电压2.35V/格,这也就是电动车电池都会失水的原因。
蓄电池组在线均衡系统

在线活化
LBE300TM(系列)蓄电池组在线均衡系统
The Storage Battery Online Performance Balance System
三、 LBE300系列产品介绍-采集层
在线活化技术应用后电池前后对比图
使用前:硫酸盐结晶沉重地覆盖了电池 板(右图1铅酸晶体显微)。进行电池完 全放电试验时放电时间只持续了13分钟 多一点。 使用后:安装LBE300(系列)蓄电池组在线 均衡系统18天后,活化技术清除了硫酸盐结 晶,露出了蓄电池极板活化性物质(右图2活 性物质显微)。这次电池放电时间超过了33 分钟,这表明放电容量已250%。
在线活化,进行智能化维护管理,实现提高电池可靠性、延长使用寿命、
节能减排、节省人工维护等目的。
LBE300TM(系列)蓄电池组在线均衡系统
The Storage Battery Online Performance Balance System
三、 LBE300系列产品介绍-系统简介
LBE300(系列)蓄电池组在线均衡系统,是针对目前蓄电池的维护技术和蓄 电池的特性进行深入研究,对蓄电池组进行全方位的维护方案,从根本上解决蓄 电池组运行的安全性能问题。 该系统主要由主站 层、汇聚层、采集层组 成,通过三个层面上的 功能开发及集成,完成
LBE300TM(系列)蓄电池组在线均衡系统
The Storage Battery Online Performance Balance System
二、电力行业直流电源系统的重要性
因此,急需考虑如何有效保 证蓄电池安全运行,延长电池使 用寿命,以达到节约投资成本、 减少环境污染的目的。同时,维 持蓄电池组的稳定性,准确掌握 蓄电池实际内阻、容量,及时活 化落后电池,提高在线运行蓄电 池组的可靠性,可在突发事故时
关于蓄电池的均充和浮充

均充电流时电池容量的1/10H,例:300AH电池均充电流30A,充电电压系统自动控制,恒流30A充3小时自动转浮充。一般浮充电压取电池额定电压的1.125倍X电池节数;均充电压取电池额定电压的1.175倍X电池节数。比如48 V通信电源蓄电池组由24节蓄电池串联而成,浮充电压2.23X24=53.5v(略小于1.25倍),均充电压2.35×24=56.4v。一般的充放电实验,是以0.1C的容量来做的,譬如说300A.h的电池组,就是用30A的电流,放电10小时,理论上讲30X10=300Ah,刚好把充满电的电池所有容量放掉。放电时每个小时要记录一次电池电压,最后的2小时每半小时记录一次。要注意不能放到电池的允许电压以下,否则会造成永久性损坏!一般电池允许的最高、最低电压在电池外面都有标出来。譬如2V的电池的话不能放到1.8V以下(48V电池组不能低于43.2V)。充电的话,完全放电的电池一定要用0.1C恒流充电10小时以上,之后再转浮充。
蓄电池均充
一、均充的意义
一般密封铅酸蓄电池投入使用的日期距出厂日期时间较长,电池经过长期的自放电,容量必然大量损失,并且由于单体电池自放电大小的差异,致使电池的比重、端电压等出现不均衡,投入使用前应对电池进行一次均衡充电,否则,个别电池会进一步发展成落后电池并会导致整组电池不可用。另外,如果蓄电池长期不投入使用,闲置时间超过3个月后,应该对电池进行一次均衡充电。
四、如何判断蓄电池是否需要均充
根据《电信电源维护规程》规定,阀控铅酸蓄电池遇到下列情况之一时,应进行均衡充电:
1)2只以上单体电池的浮充电压低于2.18V;
2)放电深度超过20%,即蓄电池剩余电量不足80%时;
3)闲置不用的时间超过3个月;
4)全浮充时间超过3个月。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蓄电池组的均衡充电技术
2010年08月28日 11:49 本站整理作者:佚名用户评论(0)
关键字:蓄电池(115)均衡充电(1)
单个蓄电池的电压与容量有限,在很多场合下要组成串连蓄电池组来使用。
但蓄电池组的中的电池存在均衡性的问题。
如何提高蓄电池组的使用寿命,提高系统的稳定性和减少成本,是摆在我们面前的重要问题。
蓄电池的使用寿命是由多方面的因素所决定,其中最重要的是蓄电池本身的物理性能。
此外,电池管理技术的低下和不合理的充放电制度也是造成电池寿命缩短的重要原因。
对蓄电池组来说,除去上述原因,单体电池间的不一致性也是个重要因素。
针对蓄电池充放电过程中存在的单体电池不均衡的现象,笔者分析比较了目前的几种均充方法,结合实际提出了无损均充方法,并进行了试验验证。
现有的均衡充电方法
实现对串联蓄电池组的各单体电池进行均充,目前主要有以下几种方法。
1.在电池组的各单体电池上附加一个并联均衡电路,以达到分流的作用。
在这种模式下,当某个电池首先达到满充时,均衡装置能阻止其过充并将多余的能量转化成热能,继续对未充满的电池充电。
该方法简单,但会带来能量的损耗,不适合快充系统。
2.在充电前对每个单体逐一通过同一负载放电至同一水平,然后再进行恒流充电,以此保证各个单体之间较为准确的均衡状态。
但对蓄电池组,由于个体间的物理差异,各单体深度放电后难以达到完全一致的理想效果。
即使放电后达到同一效果,在充电过程中也会出现新的不均衡现象。
3.定时、定序、单独对蓄电池组中的单体蓄电池进行检测及均匀充电。
在对蓄电池组进行充电时,能保证蓄电池组中的每一个蓄电池不会发生过充电或过放电的情况,因而就保证了蓄电池组中的每个蓄电池均处于正常的工作状态。
4.运用分时原理,通过开关组件的控制和切换,使额外的电流流入电压相对较低的电池中以达到均衡充电的目的。
该方法效率比较高,但控制比较复杂。
图1 分时控制均充原理图
5.以各电池的电压参数为均衡对象,使各电池的电压恢复一致。
如图2所示,均衡充电时,电容通过控制开关交替地与相邻的两个电池连接,接受高电压电池的充电,再向低电压电池放电,直到两电池的电压趋于一致。
该种均衡方法较好的解决了电池组电压不平衡的问题,但该方法主要用在电池数量较少的场合。
图2 均衡电压充电原理示意图
6.整个系统由单片机控制,单体电池都有独立的一套模块。
模块根据设定程序,对各单体电池分别进行充电管理,充电完成后自动断开。
该方法比较简单,但在单体电池数多时会使成本大大增加,也不利于系统体积的减小。
无损均充电路
本文提出了一种无损均充电路。
均充模块启动后,过充的电池会将多余的电量转移到没有充满的电池中,实现动态均衡。
其效率高损失少,所有的电池电压都由均充模块全程
监控。
1 电路设计
N节电池串联组成的电池组,主回路电流是Ich。
各串联电池都接有一个均衡旁路,如图3所示。
图中BTi是单体电池,Si是MOSFET,电感Li是储能元件。
Si、Li、Di构成一个分流模块Mi。
在一个充电周期中,电路工作过程分为两个阶段:电压检测阶段(时间为Tv)和均充阶段(时间为Tc)。
在电压检测阶段,均衡旁路电路不工作,主电源对电池组充电,同时检测电池组中的单体电池电压,并根据控制算法计算MOSFET的占空比。
在均充阶段,旁路中被触发的MOSFET由计算所得的占空比来控制开关状态,对相应的电池进行均充处理。
在这个阶段中,流经各单体电池的电流是不断变化的,也是各不相同的。
图3 均充电路
除去连接在B1两端的M1,所有的旁路分流模块组成都是一样的。
在均充旁路中,由于二极管Di的单向导通作用,所有的分流模块都会将多余的电量从相应的电池转移到上游电池中,而M1则把多余的电量转移到下游的电池中。
2 开关管占空比的计算
充电时电池的荷电状态SOC(state of charge)可由下面的经验公式来得出,其中V 是电池的端电压。
SOC=-0.24V 2+7.218V- 53.088 (1)
SOC是电池当前容量与额定容量之比,SOC=Q/Q TOTAL×100%。
通过把电压检测阶段末期检测到的电池电压转化为荷电状态,而单节电池的储存容量Qest,n与SOC存在相应的关系,Qest,n可以被估算出来。
在充电平衡阶段,从主充器充入单节电池的电量是IchTcep。
其中,Tcep为一个充电周期内均充阶段的时间。
为使在均充阶段达到单节电池储存容量的平衡,均充的目标Q tar 应为:
(2)
但是,在被激发的旁路和其他电池之间的充电转换是相互影响的,单体电池经旁路输出给其他电池的电流和接收的充电电流很难用一个简单的公式进行计算。
不过,Gauss-Seidel迭代法可以解决这个问题。
期望的储存容量Q n可以用下式来计算:
(3)
其中,I dis,n是一个开关周期中的平均电流,I obt,n是从其他被触发的旁路中获得的电流。
Q tar是理想状态下电池经充电周期Ts达到均充时的电荷量,Q n是期望的储
存容量,取Q tar=Q n,即(2)、(3)相等。
通过相应换算,得到占空比的计算公式:
(4)
这里的函数f N只是一个示意函数,表示D n和D 2...D 3存在一定关系。
3 实验设计
为了验证本文的均衡充电方法,以两节单体电池组成的蓄电池组为例进行实验和分析,主要验证旁路中开关管对电压的调节作用。
控制流程见图4。
图4 控制流程
由于没有现成的蓄电池,需用替代电池来进行实验。
充电过程中蓄电池内阻和端电压都在不断变化,并且充电过程中电池蓄积能量,根据对蓄电池的物理性质的分析和相关资料,采用“电阻串联电容”来替代单体蓄电池来进行实验。
本实验中,选用两个小功率NPN管C1815(Q1、Q2)来替代开关管,用89C51芯片的P1.0和P1.1脚控制Q1、Q2的开关。
同时,蓄电池的端电压V1和V2由差动放大电路采集,经A/D转换送到CPU。
在整个过程中,电压每20ms采样一次,每隔1s上传上位机并保存并自动绘制曲线。
图5为试验电路图。
图5 实验电路原理图
图6为根据采样数值绘制的曲线。
图6 充电过程中蓄电池端电压曲线
实验结果与分析
通过实验结果可以看出,充电开始时电压相差为1.98V ,在经过充电140s后,电压相差值约为0.2V;在均充过程中,电池电压有趋向一致的趋势。
均充方法能根据单体电池的差异,缩短蓄电池组之间的不一致性,使蓄电池组的整体性能得到提高,寿命延长。
同时,从实验结果来看,该方法也有效果不理想的地方,那就是两节电池端电压差值较大。
究其原因,一是本实验中用“电阻串联电容”来替代蓄电池,这和真实的蓄电池存在差别,无法达到理想的模拟状态;二是本实验主要是检验开关管的开关对电压的均衡影响,在很多环节上进行了简化处理,忽略了一些次要因素,而这些因素也对实验结果有一定的影响。
但总的来说,本实验达到了预定的目的,证明了无损均充法的可行性。