高考数学总复习专题课件9..ppt
2015届高考数学总复习第九章 第二节 基本算法语句课件 理

点评:套用公式求值问题是传统数学求值问题的一种, 它是一种典型的顺序结构,也就是说只通过输入、输出和赋 值语句就可以完成任务.解决这类问题的关键是先分析这种
问题的解法,即构造计算的过程,再写出算法步骤和程序框
图,再翻译成算法语句即可.
【例 2】
下列程序
INPUT a,b,c a =b b =c c=a PRINT a,b,c
若输入10,20,30,则输出结果是( A.10,20,30 B.20,30,20
)
C.20,20,30
D.30,20,10
解析 :先把 b 的值 20 赋给 a , ∴ a = 20. 再把 c 的值 30 赋给 b , ∴b=30.然后把a的值20赋给c,∴c=20.故选B.
答案:B
【例3】 交换两个变量A和B的值,并输出交换后的值. 思路点拨:引入一个中间变量X,将A的值赋予X,又将 B 的值赋予 A,再将X的值赋予B,从而达到交换 A,B的值( 比如 交换装满水的两个水桶里的水需要再找一个空桶).
点评:(1) 条件语句的主要功能是用来实现算法中的条件
结构,在使用计算机时,经常需要按照条件进行分析、比较、 判断,并且按照判断后的不同情况进行不同的操作和处理. 如
果是要解决像“判断一个数的正负”、“比较数之间的大
小”,“对一组数进行排序”、“求分段函数的函数值”等 很多问题,计算机就需要用到条件语句; (2) 条件语句的嵌套 可多于两层,可以表达算法步骤中的多重限制条件,在使用 条件语句的嵌套时要注意IF与ELSE的配对关系.
解析:程序的功能是求分段函数
2 x + 2 ,x<0,
即 y=(2-|x|)2 的函数值, 4,x=0, x-22,x>0,
2012届高考数学二轮复习课件:专题9 第一讲 函数与方程思想

若关于 x 的方程 9x+(4+a)·3x+4=0 有大于 1 的解, 则实数 a 的取值范围是( 25 A.a<- 3 13 C.a<- 3
[答案 A 答案] 答案
) B.a≤-8 D.a≤-4
[解析]
由原方程得
x
4 x 4+a=-3 +3x,
4 4 x 令 f(x)=3 + x,取 t=3 ,则 g(t)=t+ , 3 t ∵g(t)在(0,2)上递减,在(2,+∞)上递增, 13 而 x>1,∴t>3,∴g(t)>g(3)= , 3
[解析]
x2+px>4x+p-3 对于 0≤p≤4 恒成立可以
变形为 x2-4x+3+p(x-1)>0 对于 0≤p≤4 恒成立, 所以 一次函数 f(p)=(x-1)p+x2-4x+3 在区间[0,4]上的最小 值大于
x2-4x+3>0 0,即 2 x -1>0
,
所以 x 的取值范围是(-∞,-1)∪(3,+∞).
[解析]
1 1 ∵t∈[ 2,8],∴ ≤log2t≤3,∴ ≤m≤3. 2 2
解法一:不等式可化为:(2-x)m<x2-4x+4. 即(2-x)m<(2-x)2, ①当 x=2 时,上式不成立; ②当 x≠2 时,若 x<2,则 m<2-x ∴2-x>3 即 x<-1, 若 x>2,则 m>2-x,
1 3 ∴2-x< 即 x> ,又 x>2,∴x>2. 2 2 综上可得{x|x<-1,或 x>2}.
解法二:原不等式可化为(x-2)m+(x-2)2>0, 1 令 f(m)=(x-2)m+(x-2) ,m∈[2,3]时,
高考数学专题复习《两个基本计数原理、排列与组合》PPT课件

5.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取
法的种数是
.
答案 6
解析 从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类:第1类,取出
的两数都是偶数,共有3种方法;第2类,取出的两数都是奇数,共有3种方法.
故由分类加法计数原理,不同的取法种数为N=3+3=6.
取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数
字不能取与这三个数字重复的数字.根据分步乘法计数原理,有
3×4×5×4=240(个)数.第2类,当千位数字为偶数且不为0时,即取2,4,6中的
任意一个时,个位数字可以取除首位数字外的任意一个偶数数字,百位数字
不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数
不同的方法
依据 能否独立完成整件事
种
完成这件事共有
N=
m1×m2×…×mn
法
能否逐步完成整件事
种不同的方
2.两个计数原理的区别与联系
名称
分类加法计数原理
分步乘法计数原理
相同点
都是用来计算完成一件事的不同方法种类的计数方法
针对“分类”问题,各种方法相互 针对“分步”问题,各个步骤中的
不同点
注意点
独立,每一类办法中的每一种方 方法互相依存,只有每一个步骤
(5)若组合式C = C ,则 x=m 成立.( × )
2.A24 + C73 =(
)
A.35
B.47
C.45
答案 B
解析
A24
+
C73
=
4!
7!
+
=12+35=47.
高考总复习一轮数学精品课件 第九章 平面解析几何 指点迷津(八)

(2)定义法:利用曲线的定义,判断曲线类型,再由曲线的定义直接写出曲线
方程;
(3)代入法(相关点法):题中有两个动点,一个为所求,设为(x,y),另一个在已
知曲线上运动,设为(x0,y0),利用已知条件找出两个动点坐标的关系,用所求
表示已知,即
0 = (,),
将 x0,y0 代入已知曲线即得所求曲线方程;
0 = (,),
= (),
(4)参数法:引入参数 t,求出动点(x,y)与参数 t 之间的关系
消去参数即
= (),
得所求轨迹方程;
(5)交轨法:引入参数表示两动曲线的方程,将参数消去,得到两动曲线交点
的轨迹方程.
一、直接法求轨迹方程
例1.已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过点P作圆C
=(x1-x,-y)=(0,-y).
因为=λ,所以(0,y-y1)=λ(0,-y),
所以 y-y1=-λy,即 y1=(1+λ)y.
因为点
2 2
P(x1,y1)在椭圆 4 +y =1
2
+(1+λ)2y2=1
4
21
上,所以 4
2
+ 12 =1,所以 4 +(1+λ)2y2=1,所以
第九章
指点迷津(八)
求曲线轨迹方程的方法
曲线C与方程F(x,y)=0满足两个条件:(1)曲线C上点的坐标都是方程
F(x,y)=0的解;(2)以方程F(x,y)=0的解为坐标的点都在曲线C上.则称曲线C
为方程F(x,y)=0的曲线,方程F(x,y)=0为曲线C的方程.求曲线方程的基本方
高考数学总复习 9.6棱柱、棱锥的概念和性质课件 人教

考点
考纲要求
考查角度
棱柱、棱 棱柱、棱 理解棱柱、棱锥的 棱柱、棱锥的截面
锥的概念 锥的概念 概念和性质;能正 特征;线面位置关
及性质 及性质; 确画出直棱柱、正 系的计算与证明;
直棱柱、 棱柱的直观图;会 有关棱柱、棱锥的
正棱柱的 解决棱柱的直截面 概念的判断及性质
积是S直棱柱侧=ch. ②斜棱柱的侧面积等于它的直截面(垂直于侧棱并与每条侧
棱都相交的的体积等于它的底面积S乘以高h,即V棱柱=Sh. ①一般地,V柱体=Sh,其中S是底面积,h是高. ②V长方体=abc,其中a、b、c是长方体的长、宽、高; V正方体=a3,其中a为棱长.
体; ④对角线相等的平行六面体是直平行六面体; ⑤底面是正方形的长方体是正四棱柱. 其中真命题的个数是( )
A.1
B.2
C.3
D.4
解析:命题①不正确,因为侧棱不一定垂直于底面;②不正 确,因为底面有可能是菱形;③不正确,因为有两条侧棱 垂直于底面一边,可以得到相对的两侧面是矩形,不能得 出侧棱与底面垂直;④正确,由对角线相等,可得出平行 六面体的对角面是矩形,从而推得侧棱与底面垂直,所以 是直平行六面体;⑤正确,长方体是直四棱柱,再加上底 面是正方形,所以是正四棱柱.
②若体对角线与相交于一点的三个面所成的角分别为α、β、 γ,则cos2α+cos2β+cos2γ=2;sin2α+sin2β+sin2γ=1.
(5)由于长方体本身的特点,较容易建立空间直角坐标系,因 此,利用空间向量求解与长方体有关的问题较为简单.
二、棱锥
1.棱锥
有一个面是
,其余各面是有一个公共顶点的 ,
这些面围成的几多何边体形叫做棱锥.
2015-2016高考数学总复习:9-3 圆的方程(共53张PPT)(新人教版理科)(精品课件)

3.圆的一般方程 当 D2+E2-4F>0 时, 方程 x2+y2+Dx+Ey+F=0 叫圆的一 2 2 D E D E 般方程,它的圆心 (- 2 ,- 2 ) ,半径 4 + 4 -F .二元 二次方程 Ax2+By2+Dx+Ey+F=0.
答案 C
)
B.x+y+3=0 D.x-y+3=0
解析 选 C.
因为圆心是(1,2), 所以将圆心坐标代入各选项验证知
例1
已知方程 x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=
0 表示一个圆. (1)求实数 m 的取值范围; (2)求该圆半径 r 的取值范围; (3)求圆心的轨迹方程.
2 2 5 - a + 1 = r , 点坐标代入方程,得 2 2 1 - a + 9 = r ,
a=2, 解得 2 r =10,
所以所求圆的方程为
(x-2)2+y2=10.
4.过圆 x2+y2=4 外一点 P(4,2)作圆的切线,切点为 A、B, 则△APB 的外接圆方程为________.
第 3 课时
圆 的 方 程
2014•考纲下载
1.掌握确定圆的几何要素. 2.掌握圆的标准方程与一般方程.
请注意!
圆是常见曲线,也是解析几何中的重点内容,几乎每年高考 都有一至二题,以选择填空形式出现,难度不大,主要考查圆的 方程(标准方程、一般方程)及圆的有关性质.
1.圆的定义 平面内 到定点的距离等于定长的点的集合 (轨迹)是圆,定 点是圆心,定长是半径. 2.圆的标准方程
【解析】 (1)方程表示圆的充要条件是 D2+E2-4F>0,即 1 4(m+3) +4(1-4m ) -4(16m +9)>0,所以-7<m<1.
高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解专题9 二项式定理知识点一 二项式定理(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C k n a n -k b k +…+C n n b n (n ∈N *).(1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n 的二项展开式,展开式中一共有n +1项. (3)二项式系数:各项的系数C kn (k ∈{0,1,2,…,n })叫做二项式系数. 知识点二 二项展开式的通项(a +b )n 展开式的第k +1项叫做二项展开式的通项,记作T k +1=C k n an -k b k . 【例1】(2023•上海)设423401234(12)x a a x a x a x a x -=++++,则04a a +=.【例2】(2022•上海)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n =.【例3】(2021•浙江)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =;234a a a ++=.知识点三二项展开式的通项 求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是字母的指数为0(即0次项).(2)对于有理项,一般是先写出通项公式,求其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数集,再根据数的整除性来求解.(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.【例4】(2022•新高考Ⅰ)8(1)()y x y x-+的展开式中26x y 的系数为(用数字作答).【例5】(2022•天津)523)x 的展开式中的常数项为.【例6】(2023•驻马店期末)若7102910012910(2)(1)(1)(1)(1)x x a a x a x a x a x +-=+-+-+⋯⋯+-+-,则5a =.【例7】(2023•海淀区模拟)已知5()x a +的展开式为5432543210p x p x p x p x p x p +++++,若3415p p -=,则a =.知识点四余数和整除的问题利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.【例8】(2022秋•杨浦区校级期末)504除以17的余数为.【例9】(2023•沈阳模拟)若20232023012023(1)x a a x a x +=++⋯+,则0242022a a a a +++⋯+被5除的余数是.【例10】(2022•多选•庆阳期末)下列命题为真命题的是() A .61()x x -展开式的常数项为20B .1008被7除余1 C .61()x x-展开式的第二项为46x -D .1008被63除余1知识点五 二项式系数的性质1.对称性:在(a +b )n 的展开式中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -mn2.增减性与最大值 增减性:当k <n +12时,二项式系数是逐渐增大的;当k >n +12时,二项式系数是逐渐减小的. 最大值:(1)当n 为偶数时,中间一项的二项式系数2C n n最大;当n 为奇数时,中间两项的二项式系数12C n n-,12C n n+相等,且同时取得最大值(2)求二项式系数最大的项,根据二项式系数的性质对(a +b )n 中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大; ②当n 为偶数时,中间一项的二项式系数最大. (3)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx )n (a ,b ∈R )的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第k +1项最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1,解出k ,即得出系数的最大项. 3.各二项式系数的和(1)C 0n +C 1n +C 2n +…+C n n =2n ;(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -14.二项展开式中系数和的求法(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可,对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【例11】(2022•北京)若443243210(21)x a x a x a x a x a -=++++,则024(a a a ++=) A .40B .41C .40-D .41-【例12】(2023•新乡开学)若二项式*(2()n x n N∈的展开式中只有第5项的二项式系数最大,则展开式中2x 项的系数为() A .1120-B .1792-C .1792D .1120【例13】(2023•慈溪市期末)若二项式*(12)()n x n N +∈的展开式中第6项与第7项的系数相等,则此展开式中二项式系数最大的项是() A .3448x B .41120x C .51792x D .61792x【例14】(2022秋•葫芦岛期末)设n ∈N +,化简=+++-12321666n n n n n n C C C C ( )A .7nB .C .7n ﹣1D .6n ﹣1【例15】已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值:(1)a 0+a 1+a 2+…+a 5;(2)|a 0|+|a 1|+|a 2|+…+|a 5|;(3)a 1+a 3+a 5.(4)a 0+a 2+a 4;(5)a 1+a 2+a 3+a 4+a 5; (6)5a 0+4a 1+3a 2+2a 3+a 4.【例16】(2023•泰州期末)若6652360136()x y a y a xy a x y a x +=++⋯++⋯+,则220246135()()a a a a a a a +++-++的值为()A .0B .32C .64D .128【例17】(2023•静安区期末)在23(3)nx x -+的二项展开式中,533r n r n rnC x--称为二项展开式的第1r +项,其中0r =,1,2,3,⋯,n .下列关于23(3)nx x -+的命题中,不正确的一项是()A .若8n =,则二项展开式中系数最大的项是1426383C xB .已知0x >,若9n =,则二项展开式中第2项不大于第3项的实数x 的取值范围是3540()3x <…C .若10n =,则二项展开式中的常数项是44103C D .若27n =,则二项展开式中x 的幂指数是负数的项一共有12项 【例18】(2023秋•泰兴市月考)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++-,则()A .001132n n n n b a b a b a -+-++-=-B .0101012()nn nb b b a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++D .21201(1)4()4n n n n b b n b a a a ++++=+++【例19】(2023•江宁区期末)二项式定理是产生组合恒等式的一个重要源泉,由二项式定理可得:0122*1111(1)(,),1n nn m mn n n n n n C C x C x C x x n N x R C C m n -+++++=+∈∈=+等,则012111231nn n n n C C C C n ++++=+.【例20】(2022•玄武区期末)在231(1)(1)(1)n x x x +++++⋯++的展开式中,含2x 的系数是n a ,8a =;若对任意的*n N ∈,*n N ∈,20n n a λ⋅-…恒成立,则实数λ的最小值是.【例21】(2019•江苏)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =.(1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值.同步训练1.(2021•上海)已知二项式5()x a +展开式中,2x 的系数为80,则a =.2.(2021•上海)已知(1)n x +的展开式中,唯有3x 的系数最大,则(1)n x +的系数和为.3.(2020•浙江)二项展开式52345012345(12)x a a x a x a x a x a x +=+++++,则4a =,135a a a ++=.4.(2020•新课标Ⅲ)262()x x+的展开式中常数项是(用数字作答).5.(2020•天津)在522()x x+的展开式中,2x 的系数是.6.(2023•郫都区模拟)已知921001210(1)(1)x x a a x a x a x --=+++⋯+,则8a =45-.7.(2020•新课标Ⅰ)25()()y x x y x++的展开式中33x y 的系数为()A .5B .10C .15D .208.(2023•湖北模拟)51(1)(12)x x+-的展开式中,常数项是() A .9-B .10-C .9D .109.(2023•曲靖模拟)已知4520222023(1)(12)(12023)(12022)x x x x -++++-展开式中x 的系数为q ,空间有q 个点,其中任何四点不共面,这q 个点可以确定的直线条数为m ,以这q 个点中的某些点为顶点可以确定的三角形个数为n ,以这q 个点中的某些点为顶点可以确定的四面体个数为p ,则(m n p ++=) A .2022B .2023C .40D .5010.(2023•徐汇区期末)1002被9除所得的余数为() A .1B .3C .5D .711.已知f (x )=(3x 2+3x 2)n 的展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.12(2023•河源期末)5(21)x y --的展开式中含22x y 的项的系数为() A .120-B .60C .60-D .3013.(2023•怀化期末)已知10111012n n C C =,设2012(23)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋯+-,下列说法:①2023n =,②20233n a =-,③0121n a a a a +++⋯+=,④展开式中所有项的二项式系数和为1.其中正确的个数有() A .0B .1C .2D .314(2023•青原区期末)若28(1)(1)ax x x -+-的展开式中含2x 的项的系数为21,则(a =) A .3-B .2-C .1-D .115.(2023•常熟市月考)今天是星期五,经过7天后还是星期五,那么经过1008天后是()A .星期三B .星期四C .星期五D .星期六16.(2023•南海区月考)已知012233222281n n n nn n n C C C C C +++++=,则123nn n n n C C C C ++++等于()A .15B .16C .7D .817.(2022•浙江)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =,12345a a a a a ++++=.。
新教材老高考适用2023高考数学一轮总复习第三章第九节函数模型及其应用pptx课件北师大版

x -300x+80 000,假设每处理一吨二氧化碳得到的化工产品的收入为200
2
元.
(1)该公司二氧化碳月处理量为多少吨时,每吨的平均月处理成本最低,最
低平均成本是多少?
(2)该公司利用这种技术处理二氧化碳的最大月收益是多少?(月收益=月收
入-月处理成本)
解 (1)设每吨的平均处理成本为t元,
由已知得
所以
t=
=
1 80 000
x+
-300,x∈[300,600].
2
1 80 000
1
80 000
t=2x+ -300≥2 2 · -300=2
1 80 000
x=
,即
2
40 000-300=100,当且仅当
x=400 时,等号成立.
故当二氧化碳月处理量为400吨时,每吨的平均月处理成本取得最低值100
益为282万元.
时,△AMN 的面积为
1
f(t)= ×2×[t-(2t-2)]=2-t;当
2
1
f(t)=2×2×[(2t-4)-(t-2)]=t-2;当
1
f(t)=2·
2t·
t=t2;当
1<t≤2
2<t≤3 时,△AMN 的面积为
3<t≤4 时,△AMN 的面积为
2 ,0 ≤ ≤ 1,
2-,1 < ≤ 2,
C.y=max+n(m>0,a>1)
D.y=mlogax+n(m>0,a>0,a≠1)
)
答案
B
解析 由函图象可知符合条件的只有指数函数模型,并且m>0,0<a<1,故