2019-2020年高中物理 第2章 原子结构 2.4 氢原子光谱与能级结构教案 鲁科版选修3-5
高中物理第2章原子结构2.4氢原子光谱与能级结构教案鲁科版选修3_5 (2)

第四节氢原子光谱与能级结构三维教学目标1、知识与技能(1)了解光谱的定义和分类;(2)了解氢原子光谱的实验规律,知道巴耳末系;(3)了解经典原子理论的困难。
2、过程与方法:通过本节的学习,感受科学发展与进步的坎坷。
3、情感、态度与价值观:培养我们探究科学、认识科学的能力,提高自主学习的意识。
教学重点:氢原子光谱的实验规律。
教学难点:经典理论的困难。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
(一)引入新课粒子散射实验使人们认识到原子具有核式结构,但电子在核外如何运动呢?它的能量怎样变化呢?通过这节课的学习我们就来进一步了解有关的实验事实。
(二)进行新课1、光谱(结合课件展示)早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。
(如图所示)光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。
有时只是波长成分的记录。
(1)发射光谱物体发光直接产生的光谱叫做发射光谱。
发射光谱可分为两类:连续光谱和明线光谱。
问题:什么是连续光谱和明线光谱?(连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。
只含有一些不连续的亮线的光谱叫做明线光谱。
明线光谱中的亮线叫谱线,各条谱线对应不同波长的光)炽热的固体、液体和高压气体的发射光谱是连续光谱。
例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。
如图所示。
稀薄气体或金属的蒸气的发射光谱是明线光谱。
明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。
实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。
如图所示。
(2)吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。
氢原子光谱课件

氢原子光谱课件引言氢原子光谱是量子力学和原子物理学领域的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。
本课件旨在介绍氢原子光谱的基本原理、实验观测和理论解释,帮助读者深入理解氢原子的能级结构和光谱特性。
一、氢原子的基本结构1.1电子轨道和量子数氢原子由一个质子和一个电子组成,电子围绕质子旋转。
根据量子力学的原理,电子在氢原子中只能存在于特定的轨道上,这些轨道被称为能级。
每个能级由主量子数n来描述,n的取值为正整数。
1.2能级和能级跃迁氢原子的能级可以用公式E_n=-13.6eV/n^2来表示,其中E_n 是第n能级的能量,单位为电子伏特(eV)。
当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子,这个频率与能级之间的能量差有关。
二、氢原子光谱的实验观测2.1光谱仪和光谱图氢原子光谱可以通过光谱仪进行观测。
光谱仪将入射光分解成不同频率的光谱线,并将这些光谱线投射到感光材料上,形成光谱图。
通过观察光谱图,可以得知氢原子的能级结构和光谱特性。
2.2巴尔末公式实验观测到的氢原子光谱线可以通过巴尔末公式来描述,公式为1/λ=R_H(1/n1^21/n2^2),其中λ是光谱线的波长,R_H是里德伯常数,n1和n2是两个能级的主量子数。
巴尔末公式可以准确地预测氢原子光谱线的位置。
三、氢原子光谱的理论解释3.1玻尔模型1913年,尼尔斯·玻尔提出了氢原子的量子理论模型,即玻尔模型。
该模型假设电子在氢原子中只能存在于特定的轨道上,每个轨道对应一个能级。
当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子。
3.2量子力学解释1925年,海森堡、薛定谔和狄拉克等人发展了量子力学理论,为氢原子光谱提供了更为精确的解释。
量子力学认为,电子在氢原子中的状态可以用波函数来描述,波函数的平方表示电子在空间中的概率分布。
通过解薛定谔方程,可以得到氢原子的能级和波函数。
四、结论氢原子光谱是量子力学和原子物理学的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。
高三物理鲁科版氢原子光谱与能级结构PPT优秀课件

THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
B.巴尔末公式反映了氢原子发光的连续性
C.巴尔末依据对氢光谱的分析总结出巴尔末公式
D.巴尔末公式准确反映了氢原子所有光谱的波长,其波长
的分立值不是人为规定的
• 答案 C
课堂讲义
• 解析 巴尔末公式只确定了氢原子发光中的 一个线系波长,不能描述氢原子发出的各种 光的波长,也不能描述其他原子发出的光, 故D错误.巴尔末公式是由当时已知的可见光 中的部分谱线总结出来的,但它适用于整个 巴尔末线系,故A、B错误,C正确.
课堂讲义
• 借题发挥 巴尔末公式的应用方法及注意问 题
• (1)巴尔末公式反映氢原子发光的规律特征, 不能描述其他原子.
• (2)公式中n只能取整数,不能连续取值,因此 波长也只是分立的值.
• (3)公式是在对可见光区的四条谱线分析时总 结出的,在紫外区的谱线也适用.
• (4)应用时熟记公式,当n取不同值时求出一一 对应的波长λ.
3.巴尔末公式 (1)巴尔末对氢原子光谱的谱线进行研究得到了下面的公 式: 1λ=R(212-n12) n=3,4,5…该公式称为巴尔末公式. (2)公式中只能取n≥3的整数,不能连续取值,波长是分立 的值.
课堂讲义
4.赖曼线系和帕邢线系:氢原子光谱除了存在巴尔末线系外, 还存在其他一些线系.例如: 赖曼线系(在紫外区):1λ=R112-n12(n=2,3,4,…) 帕邢线系(在红外区):1λ=R312-n12(n=4,5,6,…)
课堂讲义
借题发挥 在计算氢原子发出的某一线系的光的波长时,需首
先明确为哪一线12-n12
,n的取值只
能为整数且大于a.
2020高考备考物理重难点《原子结构和原子核》(附答案解析版)

重难点10 原子结构和原子核【知识梳理】一、氢原子光谱、氢原子的能级、能级公式 1.原子的核式结构(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱 (1)光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝⎛⎭⎫122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。
3.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n 。
(h 是普朗克常量,h =6.63×10-34 J·s ) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
4.氢原子的能级、能级公式 (1)氢原子的能级 能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV。
高中物理 第二章 原子结构 第3节 光谱 氢原子光谱课件 教科版选修3-5.ppt

活动三 氢原子光谱
1, 其中n = 3、4、5、… (里德伯
22 n2
常量: R = 1.10×107 m-1)
8
【例 2】 在氢原子的光谱的紫外区的谱线系中有多条谱线,
试利用赖曼系的公式λ1 =R112-n12,n=2,3,4,…,计算
紫外线的最长波和最短波的波长.
答案 1.21×10-7 m 9.10×10-8 m
借题发挥 在计算氢原子发出的某一线系的光的波长时,需首
先明确为哪一线系,选用相应的公式λ1 =R(a12-n12),n 的取值
只能为整数且大于 a.
10
活动四 经典理论的困难
问题1 卢瑟福的原子核式结构模型的成功之处在 哪里?
问题2 经典电磁理论的困难是什么?
按照经典电磁理论对原子核式结构的分析结 问题3 果,经典电磁理论包含哪两点基本内容?
答案 BD 解析 太阳光谱是吸收光谱,可进行光谱分析;白炽灯光 产生的是连续谱;霓虹灯管内充有稀薄气体,产生的光谱 为线状谱.
5
【练】有关原子光谱下列说法正确的是
()
A.原子光谱反映了原子的结构特征
B.氢原子光谱跟其他原子的光谱是不同的
C.太阳光谱是连续的
D.鉴别物质的成分可以采用光谱分析
答案 ABD
12
解析 各原子光谱反映了它们各自的特征,所以A、B正确;
太阳光谱是吸收光谱,它是不连续的.光谱可以用来鉴别
物质的组成.C错误、D正确.故正确答案为A、B、D.
6
活活动动二一 光谱分析的应用
➢由于每种原子都有自己的特征谱线,因此可以 根据光谱来鉴别物质和确定的化学组成。这种方 法叫做光谱分析。 ➢原子光谱的不连续性反映出原子结构的不连续 性,所以光谱分析也可以用于探索原子的结构。
高三物理氢原子的光谱与能级结构

还 有 三
布喇开系
1
R
1 42
1 n2
个 线 系
普丰特线系
1
R
1
52
1 n2
n 4,5,6,
n 5,6,7,
n 6,7,8,
二、玻尔理论对氢原光光谱的解释
En
13.6 n2
eV
1
E1 hc
(
1 n2
1 22
)
n=6
n=5 n=4
486.1nm
1.几种特定频率的光
2.光谱是分立的亮线
Hα (红色)
652.2nm
λ/nm
原子光谱
每一种光谱-------印记
每一种原子都有自己特定的原子光谱,不同原子,其原子 光谱均不同
巴尔末的研究氢原子光谱
(可见光区)
(里德伯常数:R=1.09677581×107m-1)
R E1 hc
巴尔末公式
第4节 氢原子的光谱与能级结构
一、光谱
复色光经过色散系统(如棱镜、光栅)分光后,被色散 开的单色光按波长( 验
玻璃管充进氢气
连续光谱经过氢气的光谱
2. 氢原子的光谱图
(紫绿色) Hδ
410.1nm
特点
Hγ (青色)
434.0nm
Hβ (蓝绿色)
N > 6 的符合巴耳末公式的光谱线(大部分在紫外区) 巴尔末系
人们把一系列符合巴耳末公式的光谱线统称为巴耳末系 适用区域: 可见光区、紫外线区
氢原子光谱的其他线系
紫 外 线 区
赖曼线系
原子物理第二章氢原子光谱

1 Ze 2 En 2 4π 0 rn
n 1, 2, 3,
(2) 跃迁(transition)假设
h
h
原子在不同定态之间跃迁,以电磁 辐射形式吸收或发射能量。
hv En Em
吸收 发射
频率条件
跃迁频率:
En Em h
(3) 角动量量子化假设 为保证定态假设中能量取不连续值,必须 rn 取不连续值, 如何做到?
H H H
1 1 22 n 2 n 3, 4, 5,
氢原子的Rydberg常数
RH 1.0967758 107 m1
巴尔末线系限:
RH v 2 2
2.H原子光谱的其它线系
(远紫外)赖曼系:
1 1 v RH 2 2 n 2,3, 4 1 n
线系的一般表示: 令:
1 1 v RH 2 2 n m RH RH T ( m) 2 T ( n) 2 m n
光谱项
并合原则: v T (m) T (n)
每一谱线的波数差都可表达为二光谱项之差
这些经验公式是否反映了原子内部结构的规律性??
2.3 玻尔氢原子理论
Ze 2 r 40 mv 2 1
4 0 n 2 h 2 解得 r ; n 2 2 4 mZe
h p mvr n 2
nh Vn 2 mr
我们引入
4 0 h2 a1 2 2 0.529166 1010 m 4 me
则量子化的轨道半径为
n2 rn a1 Z
非量子化的状态与连续光谱 我们已经知道,所有的光谱线分为一系列线 系,每个线系的谱线都从最大波长到最小波 长(系线);可是试验中观察到在系限之外 还有连续变化的谱线。这是怎么回事呢?
高三物理氢原子的光谱与能级结构

n 2, 3,4,
n 4,5,6,
帕邢线系
布喇开系
普丰特线系
1 1 R 2 2 4 n 1 1 1 R 2 2 5 n 1
n 5,6,7,
n 6,7, 8,
二、玻尔理论对氢原光光谱的解释
13.6 En eV 2 n
第4节 氢原子的光谱与能级结构
一、光谱
复色光经过色散系统(如棱镜、光栅)分光后,被色散 开的单色光按波长(或频率)大小而依次排列的图案
观察光谱实验
1. 实 验
玻璃管充进氢气
连续光谱经过氢气的光谱
2. 氢原子的光谱图
(紫绿色) Hδ 410.1nm
Hγ
(青色)
Hβ
(蓝绿色)
Hα
(红色)
434.0nm
N > 6 的符合巴耳末公式的光谱线(大部分在紫外区)
巴尔末系
人们把一系列符合巴耳末公式的光谱线统称为巴耳末系
适用区域: 可见光区、紫外线区
氢原子光谱的其他线系
紫 外 线 区 红 外 区 还 有 三 个 线 系 赖曼线系
1 1 R 2 2 1 n 1
1 1 R 2 2 3 n 1
486.1nm
652.2nm λ/nm
特点 1.几种特定频率的光 2.光谱是分立的亮线
原子光谱
每一种光谱-------印记
每一种原子都有自己特定的原子光谱,不同原子,其原子 光谱均不同
巴尔末的研究氢原子光谱
(可见光区)
(里德伯常数:R=1.09677581×107m-1)
E1 R hc
巴尔末公式
E1 1 1 ( 2 2) hc n 2
n=6 n=5 n=4 n=3 n=2 Hα Hβ Hγ Hδ E4= -0.85ev E3= -1.51ev
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中物理第2章原子结构 2.4 氢原子光谱与能级结构教案
鲁科版选修3-5
三维教学目标
1、知识与技能
(1)了解光谱的定义和分类;
(2)了解氢原子光谱的实验规律,知道巴耳末系;
(3)了解经典原子理论的困难。
2、过程与方法:通过本节的学习,感受科学发展与进步的坎坷。
3、情感、态度与价值观:培养我们探究科学、认识科学的能力,提高自主学习的意识。
教学重点:氢原子光谱的实验规律。
教学难点:经典理论的困难。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
(一)引入新课
粒子散射实验使人们认识到原子具有核式结构,但电子在核外如何运动呢?它的能量怎样变化呢?通过这节课的学习我们就来进一步了解有关的实验事实。
(二)进行新课
1、光谱(结合课件展示)
早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。
(如图所示)
光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。
有时只是波长成分的记录。
(1)发射光谱
物体发光直接产生的光谱叫做发射光谱。
发射光谱可分为两类:连续光谱和明线光谱。
问题:什么是连续光谱和明线光谱?(连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。
只含有一些不连续的亮线的光谱叫做明线光谱。
明线光谱中的亮线叫谱线,各条谱线对应不同波长的光)
炽热的固体、液体和高压气体的发射光谱是连续光谱。
例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。
如图所示。
稀薄气体或金属的蒸气的发射光谱是明线光谱。
明线光谱是由游离状态的原子发射的,
所以也叫原子的光谱。
实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。
如图所示。
(2)吸收光谱
高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。
这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。
因此吸收光谱中的暗谱线,也是原子的特征谱线。
太阳的光谱是吸收光谱。
如图所示。
课件展示:氢、钠的光谱、太阳光谱:
投影各种光谱的特点及成因知识结构图:
(3)光谱分析
由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定的化学组成。
这种方法叫做光谱分析。
原子光谱的不连续性反映出原子结构的不连续性,所以光谱分析也可以用于探索原子的结构。
2、氢原子光谱的实验规律
氢原子是最简单的原子,其光谱也最简单。
(课件展示)
4、玻尔理论对氢光谱的解释
(1)基态和激发态
基态:在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态,叫基态。
激发态:原子处于较高能级时,电子在离核较远的轨道上运动,这种定态,叫激发态。
(2)原子发光:原子从基态向激发态跃迁的过程是吸收能量的过程。
原子从较高的激发态向较低的激发态或基态跃迁的过程,是辐射能量的过程,这个能量以光子的形式辐射出去,吸收或辐射的能量恰等于发生跃迁的两能级之差。
说明:氢原子中只有一个核外电子,这个电子在某个时刻只能在某个可能轨道上,或者说在
某个时间内,由某轨道跃迁到另一轨道——可能情况只有一种。
可是,通常容器盛有的氢气,总是千千万万个原子在一起,这些原子核外电子跃迁时,就会有各种情况出现了。
但是这些跃迁不外乎是能级图中表示出来的那些情况。
(1)夫兰克—赫兹实验的历史背景及意义
1911年,卢瑟福根据α粒子散射实验,提出了原子核式结构模型。
1913年,玻尔将普朗克量子假说运用到原子核式结构模型,建立了与经典理论相违背的两个重要概念:原子定态能级和能级跃迁概念。
电子在能级之间跃迁时伴随电磁波的吸收和发射,电磁波频率的大小取决于原子所处两定态能级间的能量差。
随着英国物理学家埃万斯对光谱的研究,玻尔理论被确立。
但是任何重要的物理规律都必须得到至少两种独立的实验方法的验证。
随后,在1914年,德国科学家夫兰克和他的助手赫兹采用电子与稀薄气体中原子碰撞的方法(与光谱研究相独立),简单而巧妙地直接证实了原子能级的存在,从而为玻尔原子理论提供了有力的证据。
1925年,由于他二人的卓越贡献,他们获得了当年的诺贝尔物理学奖(1926年于德国洛丁根补发)。
夫兰克-赫兹实验至今仍是探索原子内部结构的主要手段之一。
所以,在近代物理实验中,仍把它作为传统的经典实验。
(2)夫兰克—赫兹实验的理论基础
根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态之中,其中每一种状态相应于一定的能量值E n(n=1,2,3‥),这些能量值称为能级。
最低能级所对应的状态称为基态,其它高能级所对应的态称为激发态。
当原子从一个稳定状态过渡到另一个稳定状态时就会吸收或辐射一定频率的电磁波,频率大小决定于原子所处两定态能级间的能量差。
(h为普朗克恒量)本实验中是利用一定能量的电子与原子碰撞交换能量而实现,并满足能量选择定则:(V为激发电位)夫兰克-赫兹实验玻璃容器充以需测量的气体,本实验用的是汞。
电子由阴级K发出,K与栅极G之间有加速电场,G与接收极A之间有减速电场。
当电子在KG空间经过加速、碰撞后,进入KG空间时,能量足以冲过减速电场,就成为电流计的电流。
(3)实验原理
改进的夫兰克-赫兹管的基本结构如下图所示。
电子由阴极K发出,阴极K和第一栅极G1之间的加速电压V G1K及与第二栅极G2之间的加速电压V G2K使电子加速。
在板极A和第二栅极G2
之间可设置减速电压V G2A。
设汞原子的基态能量为E0,第一激发态的能量为E1,初速为零的电子在电位差为V的加速电场作用下,获得能量为eV,具有这种能量的电子与汞原子发生碰撞,当电子能量eV<E1-E0时,电子能量几乎不损失。
如果eV≥E1-E0=ΔE,则汞原子从电子中取得能量ΔE,而由基态跃迁到第一激发态,ΔE=eV C。
相应的电位差VC即为汞原子的第一激发电位。
在实验中,逐渐增加V G2K,由电流计读出板极电流I A,得到如下图所示的变化曲线:
(4)实验结论
夫兰克—赫兹实验证明了原子被激发到不同的状态时,吸收的能量是不连续的,进而说明原子能量是量子化的。
6、玻尔理论的局限性
玻尔理论虽然把量子理论引入原子领域,提出定态和跃迁概念,成功解释了氢原子光谱,但对多电子原子光谱无法解释,因为玻尔理论仍然以经典理论为基础。
如粒子的观念和轨道。
量子化条件的引进没有适当的理论解释。