九年级上数学《第24章圆》复习课件

合集下载

人教版九年级数学上册第24章第1节《圆》课件

人教版九年级数学上册第24章第1节《圆》课件

A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理

人教版数学九年级上册第24章《圆》ppt章末复习课件

人教版数学九年级上册第24章《圆》ppt章末复习课件
A’
O
A
B
3.如图,已知PA、PB切圆O于点A,B, 过弧AB上任一点E作圆O的切线,交 PA,PB于点C,D,则:
..A C.E P
O
.D
B (1) △PCD的周长=2PA
(2) ∠COD= 900- 1∠APB
2
第24章 《圆》知识体系复习
本章知识结构图
圆的基本性质
与圆有关的位置关系

正多边形和圆
圆的对称性 弧、弦圆心角之间的关系 同弧上的圆周角与圆心角的关系
点和圆的位置关系 三角形的外接圆
直线和圆的位置关系 切线 三角形内切圆 圆和圆的位置关系
等分圆
有关圆的计算
弧长 扇形的面积 圆锥的侧面积和全面积
本 第1部分 圆的基本性质
做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫
做直线与这个圆相交.
直线与圆位置关系的识别:
r.
r.
r.

∟ ∟
O d
dO
dO
l
l
l
设圆的半径为r,圆心到直线的距离为d,则: (1)当直线与圆相离时_d>_r
(2)当直线与圆相切时_d _=r ;
(3)当直线与圆相交时d_<_r..
C
三角形的外心就是三角形 三边垂直平分线 的 交点.外心到三角形 三个顶点 的距离相等。
思考:三角形的外心一定在三角形内吗?
CC
C
C
AA
OO
B
B
B
OBAO源自A⊿ABC是直角三角形
▲ABC是锐角三角形
▲ABC是钝角三角形
三角形的外心位置:
锐角三角形的外心在三角形__内__, 直角三角形的外心在三角形在_ 斜边的中点_,处 钝角三角形的外心在三角形__外__。

最新人教版初中九年级上册数学【第二十四章 24章圆单元复习】教学课件

最新人教版初中九年级上册数学【第二十四章 24章圆单元复习】教学课件
同弧上的圆周角和圆心角的关系

点、直线和圆
的位置关系
正多边形和圆
弧长和扇形面积
点和圆的位置关系
直线和圆的位置关系
三角形的外接圆
切线
三角形的内切圆
等分圆周
弧长
扇形面积
圆锥的侧面积和全面积
重点回顾:弧长、扇形面积公式
n
π
R
弧长:在半径为R的圆中,no的圆心角所对的弧长为:l =
180
扇形面积:在半径为R的圆中,圆心角为no的扇形面积为:
回归教材
(教材第102页第12题)如图,AB为⊙O的直径,C为⊙O上一点,
AD和过点C的切线互相垂直,垂足为D,求证:AC平分∠DAB.
CD是⊙O的切线
AC平分∠DAB
D
C
∠DAC=∠OAC
A

O
B
90O-∠DCA ∠ACO
90O-∠DCA
回归教材
(教材第102页第12题)如图,AB为⊙O的直径,C为⊙O上一点,
圆的有关性质
弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系

点、直线和圆
的位置关系
正多边形和圆
弧长和扇形面积
点和圆的位置关系
直线和圆的位置关系
三角形的外接圆
切线
三角形的内切圆
等分圆周
弧长
扇形面积
圆锥的侧面积和全面积
重点回顾:正多边形和圆
知识梳理
圆的对称性
圆的有关性质
弧、弦、圆心角之间的关系
经过半径的外端并且
垂直于这条半径的直
线是圆的切线.
切线的性质定理:
圆的切线垂直于过切
点的半径.
图形语言

人教版数学九年级上册第二十四章《24.点和圆的位置关系》课件

人教版数学九年级上册第二十四章《24.点和圆的位置关系》课件

三角形外接圆的作法: 1.作三角形任意两边的垂直平分线,确定其交点; 2.以该交点为圆心,交点到三个顶点中任意一点的距离为半径作圆即可.
分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,
视察并叙述各三角形与它的外心的位置关系. A
A
A
●O
●O
B

CB
C
锐角三角形的外心位于三角形内;
课堂练习
1.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关 系只能是( D )
A.点在圆内 C.点在圆心上
B.点在圆上 D.点在圆上或圆内
2.如图,△ABC内接于⊙O,若∠OAB=20°,则∠ACB的度数是__7_0_°__.
解:∵∠OAB=20°,OA=OB, ∴∠OBA=∠OAB=20°, ∴∠AOB=180°-∠OAB-∠OBA=140°, ∴∠ACB=12∠AOB=70°.
A
B
C
PQ R M
2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与 本来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( D )
A.第①块 C.第③块
B.第④块 D.第②块
3.如图,AB,CD是⊙O内非直径的两条弦.
求证:AB与CD不能互相平分.
合作探究
经过同一条直线上的三个点能作出一个圆吗?
如图,假设过同一条直线l上三点A,B,C可以 作一个圆,设这个圆的圆心为P,那么点P既在 线段AB的垂直平分线l1上,又在线段BC的垂直 平分线l2上,即点P为l1与l2的交点,而l1⊥l, l2⊥l 这与我们以前学过的“过一点有且只有一 条直线与已知直线垂直”相矛盾,所以过同一 条直线上的三点不能作圆.

人教版九年级数学上册第二十四章 圆的复习课件

人教版九年级数学上册第二十四章  圆的复习课件

点在圆外
d﹥r
●A 点在圆上
d=r
点在圆内
d﹤r
不在同一直线上的三个点确定一个圆。
人教版九年级数学上册第二十四章复习课件
练习
5. 已知:△ABC,AC=12,BC=5, AB=13,则△ABC的外接圆半径为 。
6. 如图,直角坐标系中一条圆弧经过
网格点A,B,C,
其中B点坐标(4,4),
则该圆弧所在圆的
人教版九年级数学上册第二十四章复习课件

复习课件
人教版九年级数学上册第二十四章复习课件
一、知识结构
圆的基 本性质
弧、弦与圆心角 圆周角及其与同弧上圆心角 圆的对称性

与圆有 关的位 置关系
点与圆的位置关系 直线与圆的位置关系 圆与圆的位置关系
圆 切线 的 切 线 切线长
扇形面积,弧长, 圆中的计算
相等;并且这一点和圆心的连线平
分两条切线的夹角.
人教版九年级数学上册第二十四章复习课件
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半
径的直线是圆的切线。 3.经过半径的外端且垂直于这条
半径的直线是圆的切线。


O A
∵OA是半径,OA⊥ l l ∴直线l是⊙O的切线.
人教版九年级数学上册第二十四章复习课件
直线与 圆心与直线 直线 直线与
l
圆的位 的距离d与
置关系
圆的半径r的 关系
名称
圆的交 点个数
d
●r
相离
d﹥r ——
0
相切
d=r
切线
1
相交
d﹤r 割线
2
切线的判定定理 经过半径的外端,并且垂直于

第24章 圆的复习-九年级数学上册教学课件(人教版)

第24章 圆的复习-九年级数学上册教学课件(人教版)

原 所示,则这个小圆孔的宽口AB的长度为 8 mm.

C


O
8mm
A
B

D

与圆有关的概念
典 1.圆:平面内到定点的距离等于定长的所有点组成的图形.
例 2.弦:连结圆上任意两点的线段.
3.直径:经过圆心的弦是圆的直径,直径是最长的弦.
原 4.劣弧:小于半圆周的圆弧.
理 5.优弧:大于半圆周的圆弧.
炼 【注意】(1)三角形的外心是三角形三边的垂直平分线的交点.
(2)一个三角形的外接圆是唯一的.

(3)三角形的内心是三角形三条角平分线的交点.

(4)一个三角形的内切圆是唯一的.
点与圆的位置关系
典 1.在△ABC中,∠C=90º,AC=1,BC=2,M是AB的中点,以点C为圆 例 心,1为半径作⊙C,则( C )
原 2.垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦, 理 并且平分这条弦所对的两条弧;
精 3.垂径定理的推论:平分弧的直径垂直平分这条弧所对的弦. 炼
提 升
圆的基本性质
典 1.圆的对称性: 例 圆是轴对称图形,任意一条直径所在的直线都是它的对称轴.
原 2.有关圆心角、弧、弦的性质:

在同圆或等圆中,如果两个圆心角、
° 精 炼
提 升
典 6.如图,已知A、B、C、D是⊙O上的四点,延长DC,AB相交于点 例 E.若BC=BE.求证:△ADE是等腰三角形.
原 理
精 炼
提 升
典 7.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. 例 (1)若∠CBD=39º,求∠BAD的度数; 原 (2)求证:∠1=∠2. 理

初中数学人教九年级上册第二十四章圆圆(复习)PPT


关于弦的问题,常常需 B
MA
要过圆心作弦的垂线段
P
,这是一条非常重要的
O
辅助线。
圆心到弦的距离、半径
、弦长构成直角三角形
,便将问题转化为直角
三角形的问题。
谢 谢!
5、正多边形和圆有什么关系?
6、如何计算弧长、扇形面积、圆锥的侧面积和全面积。
一.圆的基本概念: 1.圆的定义:到定点的距离等于定长的点的集合叫做圆.
2.有关概念:

O
(1)弦、直径(圆中最长的弦) (2)弧、优弧、劣弧、等弧 (3)弦心距
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数条对 称轴. (2)圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合,即 圆具有旋转不变性.

2.垂径定理:
垂直于弦的直径平分这条弦,并且 平分弦所对的两条弧.
C
∵CD是圆O的直径
,CD⊥AB
A
. ∴AP=BP,
︵︵ ︵︵ P
B AD = BD
D
AC = BC
1、如图,已知⊙O的半径OA长为5,弦AB的长8,OC⊥AB 于C,则OC的长为 _______.
AC=BC 3
A
O
半径 弦心距
圆和圆的位置关系
等分圆
有关圆的计算
ቤተ መጻሕፍቲ ባይዱ
弧长 扇形的面积
圆锥的侧面积和全面积
学习要求:
1、圆是如何定义的?
2、同圆或等圆中的弧、弦、圆心角有什么关系?垂直于弦的直径有什么性质?一 条弧所对的圆周角和它所对的圆心角有什么关系?
3、点和圆有怎样的位置关系?直线和圆呢?圆和圆呢?怎样判断这些位置关系呢 ?

九年级上数学第24章圆复习课件


做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫
做直线与这个圆相交.
直线与圆位置关系的识别:
r.
r.
r.

∟ ∟
O d
dO
dO
l
l
l
设圆的半径为r,圆心到直线的距离为d,则:
(1)当直线与圆相离时d>r; (2)当直线与圆相切时d =r; (3)当直线与圆相交时d<r.
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半
径的直线是圆的切线。 3.经过半径的外端且垂直于这条
半径的直线是圆的切线。


O A
∵OA是半径,OA⊥ l l ∴直线l是⊙O的切线.
切线的性质: (1)圆的切线垂直于经过切点的半径. (2)经过圆心垂直于切线的直线必经过切点. (3)经过切点垂直于切线的直线必经过圆心.

∵直线l是⊙O的切线,切 点为A
A
B

O C
D
1. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则
弦AB所对的圆周角为__5__0_0或___1_3_0_0_.(05年上海)
2.如图,AB是⊙O的直径,BD是
⊙O的弦,延长BD到点C,使
DC=BD,连接AC交⊙O与点F.
(1)AB与AC的大小有什么关
A
系?为什么? (2)按角的大小分类, 请你判断
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A
B
圆周角的性质:
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角). 性质4: 900的圆周角所对的弦是圆的直径.

人教版九年级数学上册第24章第1节《圆周角》课件


探究新知
24.1 圆的有关性质/
素养考点 1 利用圆周角定理及推论求角的度数
例1 如图,AB是☉O的直径,∠A=80°.求∠ABC的
大小.
AC
解: ①∵AB是☉O的直径,
O
∴∠ACB=90°
∴∠ABC=180°-∠A-∠ACB
B
=180°-90°-80°=10°.
巩固练习
24.1 圆的有关性质/
AB BC 2 AC 2 10 5 2(cm). 圆周角,通过构造直角
2
2
三角形来解决。
巩固练习
24.1 圆的有关性质/
3. 如图,BD是⊙O的直径,∠CBD=30°, 则∠A的度数为( C )
A.30° B.45° C.60° D.75°
探究新知
24.1 圆的有关性质/
知识点 3 圆内接四边形
A.30°
B.40°
C.50°
D.60°
课堂检测
24.1 圆的有关性质/
基础巩固题
4.如图,四边形ABCD内接于⊙O,如
∠BOD=130°则∠BCD的度数是(
A. 115°
B. 130°
C. 65°
D. 50°
C)
C
O
B
D A
课堂检测
24.1 圆的有关性质/
能力提升题
如图,OA,OB,OC都是⊙O的半径,∠AOB=
(3)同弦所对的圆周角相等( × )
课堂检测
24.1 圆的有关性质/
基础巩固题
2.已知△ABC的三个顶点在⊙O上,∠BAC=50°,
∠ABC=47°, 则∠AOB= 166°.
C
O
A
B
课堂检测

人教版数学九年级上册第24章圆章节复习课件(共38张)


( (
并且AC与BD的度数分别是96 °和36 °,动点P是AB上的任意一
点,则PC+PD的最小值是
3.
C
D
A
B PO P
D’
图b
3 与圆有关的位置关系
【例3】如图, O为正方形对角线上一点,以点O 为圆心,OA长为
半径的☉O与BC相切于点M.
(1)求证:CD与☉O相切;
(1)证明:过点O作ON⊥CD于N.连接OM ∵BC与☉O相切于点M, ∴ ∠OMC=90 °, ∵四边形ABCD是正方形,点O在AC上. ∴AC是∠BCD的角平分线, ∴ON=OM, ∴ CD与☉O相切.
二、与圆有关的位置关系 1.点与圆的位置关系 判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较
得到.
设☉O的半径是r,点P到圆心的距离为d,则有
d<r d=r d>r
点P在圆内; 点P在圆上; 点P在圆外.
【注意】点与圆的位置关系可以转化为 点到圆心的距离与半径之间的关系;反 过来,也可以通过这种数量关系判断点 与圆的位置关系.
2.扇形面积公式 半径为R,圆心角为n°的扇形面积S= _n_3_6R_0_2_或__12__l_R_. 3.弓形面积公式
弓形的面积=扇形的面积±三角形的面积
4.圆锥的侧面积 (1)圆锥的侧面展开图是一个 扇形 . (2)如果圆锥母线长为l,底面圆的半径为r,那么这个扇形的半径为 l ,
扇形的弧长为 2 r .
点C作☉O的切线交AB的延长线于点E,则∠E等于 50° .
2 垂径定理
【例2】工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的
直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
A
B
C
C
O
反思:在⊙ O中,若⊙ O的半径r、 A
B
圆心到弦的距离d、弦长a中,
任意知道两个量,可根据 垂径 定理D求出第三个量:
3、如图,P为⊙O的弦BA延长线上一点,PA= AB=2,PO=5,求⊙O的半径。
关于弦的问题,常常需 B
MA
要过圆心作弦的垂线段,
P
这是一条非常重要的辅
O
助线。
圆心到弦的距离、半径、
过D点作DF ^AC
于F点,然后证明
F
DF等于圆D的半
径BD
如图,AB在⊙O的直径,点D在AB的延长 线上,且BD=OB,点C在⊙O上,∠CAB=30°.
(1)CD是⊙O的切线吗?说明你的理由; (2)AC=_____,请给出合理的解释.
C
只要连接OC, A 而后证明OC
O
B
D
弦长构成直角三角形,
便将问题转化为直角三
角形的问题。
4.圆周角:
定义:顶点在圆周上,两边和圆相交的 角,叫做圆周角. 性质:(1)在同一个圆中,同弧所对的圆周 角等于它所对的圆心角的一半.
A O
C
∠BAC=
1 ∠BOC
2
B
圆周角的性质(2)
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
F O
△ABC属于哪一类三角形,
并说明理由.(05宜昌)
B
D
C
3.如图在比赛中,甲带球向对方球门 PQ进攻,当他带球冲到A点时,同伴乙 已经助攻冲到B点,此时甲是直接射门 好,还是将球传给乙,让乙射门好?为什 么?
P
Q
·
A
B
三.与圆有关的位置关系:
1.点和圆的位置关系
(1)点在圆内 (2)点在圆上 (3)点在圆外
1.圆的定义:到定点的距离等于定长的点的 集合叫做圆. 2.有关概念: (1)弦、直径(圆中最长的弦)
(2)弧、优弧、劣弧、等弧
. (3)弦心距
O
二. 圆的基本性质
1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
A
B

O C
D1. 在⊙O中,弦AB源自对的圆心角∠AOB=100°,则弦AB所对的圆周角为__5__0_0或___1_3_0_0_.(05年上海)
2.如图,AB是⊙O的直径,BD是
⊙O的弦,延长BD到点C,使
DC=BD,连接AC交⊙O与点F.
(1)AB与AC的大小有什么关
A
系?为什么? (2)按角的大小分类, 请你判断

O.
∴ OA⊥ l
A
l
切线长定理:
从圆外一点引圆的两条切线,它们 的切线长相等;这点与圆心的连线平分 这两条切线的夹角。
.A
. O . B
∵PA、PB为⊙O的切线 ∴PA=PB, P ∠APO= ∠BPO
1.在Rt△ABC中,∠B=90°,∠A的平分线交 BC于D,以D为圆心,DB长为半径作⊙D. 试说明:AC是⊙D的切线.

2.垂径定理:
垂直于弦的直径平分这条弦,并且 平分弦所对的两条弧.
C
∵CD是圆O的直
径,CD⊥AB
A

P
B ∴A︵︵APD=B=P,︵︵BD
AC = BC
D
3.同圆或等圆中圆心角、弧、弦之间的关系:
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
︵ ︵ D ∵ ∠COD =∠AOB
O
∴ AB = CD
C ∴AB=CD
A
B
1、如图,已知⊙O的半径OA长 为5,弦AB的长8,OCA⊥C=ABBC于C, 则OC的长为 ___3____.
A
O
半径 弦心距
C 半弦长 B
E
2:如图,圆O的弦AB=8 ㎝ , DC=2㎝,直径CE⊥AB于D,
直径求M半N径⊥OACB的,长垂。足为E,交弦CD于点F. O
如果规定点与圆心的距离为d,圆的半径 为r,则d与r的大小关系为:
点与圆的位置关系 d与r的关系
.A. 点在圆内
d<r

点在圆上
d=r
C
. 点在圆外
d>r
B
7.在Rt△ ABC中,∠C=90°,BC=3cm,AC=4cm,D 为AB的中点,E为AC的中点,以B为圆心,BC为
半径作⊙B, 问:(1)A、C、D、E与⊙B的位置关系如何?
第24章圆知识体系复习
本章知识结构图
圆的基本性质
圆的对称性 弧、弦圆心角之间的关系
同弧上的圆周角与圆心角的关系
点和圆的位置关系 三角形的外接圆
与圆有关的位置关系
直线和圆的位置关系 切线 三角形内切圆
圆和圆的位置关系

正多边形和圆
等分圆
有关圆的计算
弧长 扇形的面积 圆锥的侧面积和全面积
一.圆的基本概念:
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
圆周角的性质:
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角). 性质4: 900的圆周角所对的弦是圆的直径.
∵AB是⊙O的直径
C
∴ ∠ACB=900
A
O
B
15
3.6
作圆的直径与找90度的圆周 角也是圆里常用的辅助线
径的直线是圆的切线。 3.经过半径的外端且垂直于这条
半径的直线是圆的切线。


O A
∵OA是半径,OA⊥ l l ∴直线l是⊙O的切线.
切线的性质: (1)圆的切线垂直于经过切点的半径. (2)经过圆心垂直于切线的直线必经过切点. (3)经过切点垂直于切线的直线必经过圆心.

∵直线l是⊙O的切线,切 点为A
做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫
做直线与这个圆相交.
直线与圆位置关系的识别:
r.
r.
r.

∟ ∟
O d
dO
dO
l
l
l
设圆的半径为r,圆心到直线的距离为d,则:
(1)当直线与圆相离时d>r; (2)当直线与圆相切时d =r; (3)当直线与圆相交时d<r.
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半
(2)AB、AC与⊙B的位置关系如何?
B D
C

A
2.如图,OA是⊙O的半径,已知AB=OA,试探 索当∠OAB的大小如何变化时点B在圆内?
点B在圆上?点B在圆外?
O•
A
B
2.直线和圆的位置关系:



O
O
O
l
l
l (1) 相离: 一条直线与一个圆没有公共点,叫做
直线与这个圆相离. (2) 相切: 一条直线与一个圆只有一个公共点,叫
相关文档
最新文档