基于51单片机的无线心电监护系统设计
基于51单片机心率测量电路设计

基于51单片机心率测量电路设计作者:蒋铁生来源:《科学导报·学术》2019年第10期1.1选题背景心率是人的重要的可被测量的生理指标。
在现代社会,随着人类社会生活水平的提高,人们的生活方式和饮食结构的改变,高血压,冠心病等心脏方面的疾病渐渐成为人们的常见病。
由有关数据显示,中国城市人口每五个成年人中就有一个人患有不同程度的心血管方面的疾病。
由于心脏不健康而导致的心肌梗塞,猝死等事件时有发生,并且心脏疾病方面发病率逐年提升,发病年龄也是下降趋势。
要减小心血管疾病给人们带来的健康危害,早期有效的测量設备与判断方法是十分重要的。
心率是人体十分重要有效的信息,是可以被检测的生物信号,它是反映心脏是否正常工作的一个重要参数,可以根据心率值判断一个人是否患有心率过速,早搏等几种常见的心脏病。
因此,设计一种简单,能显示心率的仪器十分有必要。
1.2 主要内容本心率测量电路设计是一个硬软件相结合的设计类题目。
要求设计一个基于51单片机的心率的检测电路。
可以实现与心率检测功能,整个系统电路的设计功能包括:1、使用MAX30102心率传感器模块进行心率采集;2、使用STC89C52芯片为控制核心;3、使用OLED液晶进行显示。
2 总体方案设计2.1整体设计思路本设计采用的是STC89C52芯片,通过STC89C52最小系统,心率模块、液晶屏,实现心率的测量与现实。
实时的心率显示在OLED液晶上。
由于STC89C52有较多的引脚数,能实现OLED液晶驱动以及实时心率测量等这些功能。
电源部分是通过USB线来外接可移动电源或电池供电。
2.2心率测量模块光电式传感器。
光电式传感器测量方法灵活多样,可测量参数较多,具有非接触,高精度,高分辨率,高可靠性,反映快等特点。
适合用来测量心率。
测量原理:随着心脏的跳动,人体组织半透明随之改变,当血液到达人体组织时,组织班透明度减小,当血液回流心脏时,组织的半透明度加大。
这种现象在人体组织较薄的地方比较明显,例如手指尖,耳垂部位。
基于51单片机的心率体温检测系统设计

基于51单片机的心率体温检测系统设计随着科技的不断进步,智能化设备在日常生活中的应用越来越广泛。
心率体温检测系统作为一种应用广泛的智能设备,可以实时监测人体的心率和体温的变化情况,为人们的健康提供及时准确的数据支持。
本文将介绍一个基于51单片机的心率体温检测系统的设计方案。
一、系统概述本心率体温检测系统由硬件和软件两部分组成,硬件部分包括传感器模块、信号处理模块和显示模块,软件部分则是通过51单片机进行数据的采集和处理,并在显示模块上进行实时的结果显示。
二、硬件设计1. 传感器模块本系统采用心率传感器和体温传感器进行数据的采集。
心率传感器采集心率信号,体温传感器采集体温信号。
这两个传感器通过模拟信号将采集的数据传递给信号处理模块。
2. 信号处理模块信号处理模块对从传感器模块采集到的心率和体温信号进行滤波和放大处理,提高信号的精确性和可读性。
经过处理后的信号将被发送给显示模块进行实时显示。
3. 显示模块显示模块采用OLED显示屏,可以实时显示心率和体温的数值,以及相应的警报信息。
用户可以通过显示屏上的按键进行操作和设定。
三、软件设计1. 数据采集51单片机通过模拟输入引脚采集来自传感器模块的心率和体温信号。
通过定时中断的方式,可以实现对信号的连续采集。
2. 数据处理采集到的数据通过A/D转换进行数字化,并存储到内部RAM中。
通过计算和处理,可以得到心率和体温的准确数值。
3. 数据显示通过串行通信接口,将处理后的数据发送到显示模块,并通过OLED显示屏进行实时展示。
用户可以通过按键控制,实现不同数据的显示切换。
四、系统特点1. 精确性高本系统通过合理的传感器选择和信号处理,可以保证心率和体温数据的准确性,为用户提供可靠的健康数据支持。
2. 实时监测本系统能够实时监测心率和体温的变化情况,并将结果实时显示在屏幕上。
用户可以时刻关注自身的健康状况。
3. 便捷性基于51单片机的心率体温检测系统体积小巧,易于携带和使用。
毕业设计(论文)-基于单片机便携式心电图仪的研究与设计

基于单片机便携式心电图仪的研究与设计便携式心电监护仪摘要本系统以TI公司的高精度仪表放大器INA2331和低功耗AT89C51单片机为核心,实现了两路心电信号的采集和显示。
设计采用右腿驱动电路和高通负反馈滤波器等抑制干扰措施,提高了放大器的共模抑制比;选用内部资源丰富的AT89C51单片机和12864液晶显示器LCD 实现了心电信号的动态显示。
结果表明系统各项技术指标达到了设计要求,具有低功耗低成本的特点。
AbstractThe system which takes the high-precision instrumentation amplifier INA2331 and low-power AT89C51 MCU as the core has realized two_channel ECG’s detection, storage and display 。
It adopts a right-leg -driven circuit、a high-pass filter with reverse feedback and so on,which makes the CMRR of the preamplifier higher 。
By adopted the inner resourceful AT89C51 single chip and 12864 LCD the ECG can be recorded and playbacking demonstrated 。
The results indicate that the major technical specifications of the system meet the design equirements, The system has the following features, such as low-power、and low-cost 。
51单片机电池电量检测系统设计

51单片机电池电量检测系统设计1. 简介本文档描述了一种使用51单片机设计的电池电量检测系统。
该系统旨在监测电池的电量,并通过51单片机进行数据处理和显示。
该系统适用于需要监测电池电量的各种设备,如智能手表、无人机等。
2. 系统设计2.1 系统架构该电池电量检测系统由以下主要组件构成:•51单片机:作为系统的核心处理器,负责数据采集、处理和显示。
•电压测量模块:用于测量电池的电压。
•LCD显示模块:用于显示电池电量信息。
•按钮模块:用于系统操作和设置。
2.2 硬件设计2.2.1 电压测量模块电压测量模块主要由一个ADC转换器组成,用于将电池电压转换为数字量,以便51单片机进行处理。
2.2.2 LCD显示模块LCD显示模块用于显示电池电量信息。
可以使用基于液晶技术的LCD模块,通过51单片机控制显示电池电量的百分比或其他信息。
2.2.3 按钮模块按钮模块用于系统的操作和设置。
可以通过按钮模块实现电池电量的复位、设置电池类型等功能。
2.3 软件设计2.3.1 系统初始化系统初始化时,51单片机将初始化ADC转换器、LCD显示模块和按钮模块。
设置合适的ADC参考电压,配置LCD显示模块的参数,并对按钮模块进行初始化。
2.3.2 电池电量测量系统将定时读取ADC转换器的数值,转换为电池电压。
然后,根据电池的电压和电池类型进行电量计算,并将计算结果存储在内存中。
2.3.3 数据显示每次电池电量测量完成后,系统将更新LCD显示模块上的电量信息。
可以通过LCD显示百分比、图形等形式显示电池电量信息。
2.3.4 系统操作通过按钮模块,用户可以对系统进行操作,如复位电池电量计数、设置电池类型等。
3. 总结本文档描述了一种使用51单片机设计的电池电量检测系统。
通过ADC转换器测量电池电压,并使用LCD显示模块显示电池电量信息。
此系统可广泛应用于电池电量监测领域,提供方便和准确的电量监测功能。
基于单片机控制的人体健康监测系统设计

摘要本系统设计的是基于单片机控制的人体健康监测系统,本系统需要检测人体的三个健康体征:心跳、体温、血压。
由硬件和软件两部分组成。
首先是心跳检测,利用压电传感器将检测到的心跳信号转换为电信号再通过集成运放转换成单片机可以接收的信号。
其次是温度检测,利用一线口温度传感器DS18B20进行温度检测,由于该芯片采用单总线模式,在编程过程中严格按照该芯片的读写时序进行温度检测。
再次是血压检测,利用压力传感器BP01将血压转换成为电信号,通过ADC0809模数转换器转化为数字信号通过单片机处理显示出来。
另外还包括单片机电源电路、超限报警电路、复位电路以及键盘电路。
本系统的研究于开发有利于人体健康检测的需要,对日常生活的改善有很多好处,具有很高的实用价值。
关键词单片机8051;DS18B20;BP01;A/D转换毕业设计(论文) AbstractAbstractThis system design is the human body health monitor system whichcontrols based on the monolithic integrated circuit, this system needshealthily to examine the human body three health body drafts:Palpitation, body temperature, blood pressure. Are composed by the hardware and the software two parts. First is the palpitation examines, will examine the palpitation signalusing the piezoelectric pick-up to transform into the electricalsignal transports again through the integration puts transforms thesignal which the monolithic integrated circuit will be allowed toreceive. Next is the temperature examination, uses mouth temperature sensorDS18B20 to carry on the temperature examination, because this chipuses the single main line pattern, strictly carries on the temperatureexamination in the programming process according to this chipread-write succession. Is the blood pressure examination once more, transforms into usingpressure transmitter BP01 the blood pressure the electrical signal,transforms through the ADC0809 modulus switch for the digital signaldemonstrates through monolithic integrated circuit processing. Moreover also includes the monolithic integrated circuit powercircuit, ultra limits the alarm circuit, repositions the electriccircuit as well as the keyboard electric circuit.This system research is advantageous to the development to the humanbody health examination need, has very many advantage to the dailylife improvement, has the very high practical valueKey wordMonolithic integrated circuit 8051; DS18B20; BP01; A/D transformation毕业(论文) 目录目录中文摘要及关键字 (I)英文摘要及关键字 (II)绪论 .................................................................................................................................. - 1 - 1. 总体方案 ..................................................................................................................... - 2 -1.1方案论证及系统工作原理 .............................................................................. - 2 - 1.2 总体方案图 ..................................................................................................... - 2 - 2硬件设计 ....................................................................................................................... - 3 - 2.1主控芯片MCS—51介绍................................................................................ - 3 - 2.2 ADC0809的介绍............................................................................................. - 8 - 2.3心跳检测原理设计 ........................................................................................ - 10 - 2.4温度检测的原理及设计 ................................................................................. - 11 - 2.5血压检测电路原理及设计 ............................................................................ - 15 - 2.6其他电路设计 ................................................................................................ - 17 - 2.7 硬件总电路图 ............................................................................................... - 17 - 3.软件设计 .................................................................................................................. - 18 - 3.1主程序流程图 ................................................................................................ - 18 - 3.2 子程序流程图 ............................................................................................... - 19 - 3.2.1心跳检测流程 ................................................................................... - 19 - 3.2.2温度检测流程图 ............................................................................... - 20 - 3.2.3血压检测流程图 ............................................................................... - 21 - 3.3主程序清单 .................................................................................................... - 22 - 3.4子程序清单 .................................................................................................... - 25 - 3.4.1心跳子程序: ................................................................................... - 25 - 3.4.2温度检测子程序: ........................................................................... - 27 - 3.4.3血压检测子程序: ........................................................................... - 31 - 结论 ................................................................................................................................ - 33 - 致谢 ............................................................................................................................ - 35 - 参考文献 ........................................................................................................................ - 36 - 附录一 ............................................................................................................................ - 37 - 附录二 .................................................................................................... 错误!未定义书签。
心电监护系统设计毕业设计

基于C8051F320单片机的低成本心电监护系统设计1 引言虚拟医学仪器充分利用计算机丰富的软硬件资源,仅增设少量专用软、硬件模块,便可实现传统仪器的全部功能及一些传统仪器无法实现的功能,同时缩短了研发周期。
本系统由两部分组成:以C8051F320单片机为核心的数据采集装置和以PC机为平台的分析处理系统。
设计中充分考虑数据采集装置体积小、功耗低、操作快捷的要求,因此全部采用SMT封装的元器件。
PC监护终端通过USB 接口接收数据,传输速率高;采用图形编程语言LabVIEW编写显示、存储、分析处理等功能程序。
该系统可实时监护并提供心动周期,心率等参数,也可进行数据的存储回放,为心血管疾病的诊断提供依据。
系统的软件开发和硬件与上位机软件的集成测试表明,系统运行稳定可靠,取得了预期效果。
2 系统硬件设计该系统由C8051F320数据采集模块和PC机两部分组成,如图1所示。
图1 系统框图数据采集模块主要由心电采集电路和基于C8051F320单片机的DAQ接口卡构成,如图2所示。
图2 数据采集模块图框该模块通过C8051F320片上A/D转换器采集经预处理的心电信号,再将其由USB总线传输至PC机显示。
PC机部分主要是软件设计,包括通过C8051F320单片机片上USB主机API函数和LabVIEW软件编写数据采集图形用户界面;实现接收、显示和处理由数据采集模块通过USB接口发送采集数据的程序。
LabVIEW应用程序和C8051F320应用程序均采用Silicon Laboratories公司的USB Xpress 开发套件的API和驱动程序实现对底层USB器件的读写操作。
心电信号属于微弱信号,体表心电信号的幅值范围为1~10 mV。
在测量心电信号时存在很强的干扰,包括测量电极与人体之间构成的化学半电池所产生的直流极化电压,以共模电压形式存在的50 Hz工频干扰.人体的运动、呼吸引起的基线漂移,肌肉收缩引起的肌电干扰等。
用单片机实现三导联远程心电监护系统共11页

用单片机实现三导联远程心电监护系统1 引言随着人们生活水平的提高、生活节奏的加快,心血管疾病的发病率迅速上升,已成为威胁人类身体健康的主要因素之一。
而心电图则是治疗此类疾病的主要依据,具有诊断可靠,方法简便,对病人无损害的优点,在现代医学中,变得越来越重要。
常规心电图是病人在静卧情况下由心电图仪记录的心电活动,历时仅为几s~1 m,只能获取少量有关心脏状态的信息,所以在有限时间内即使发生心率失常,被发现的概率也是很低的。
因此有必要通过相应的监护装置对患者进行长时间的实时监护,记录患者的心电数据。
又由于心脏病的发生具有突发性的特点,患者不可能长时间地静卧在医院,但又需实时得到医护人员的监护,所以研发相应的便携式无线心电监护产品就显得更加重要。
目前虽说国内已有成型的无线心电监护产品,但其采用的方案大都是“采集器+发送器(PDA或手机)”,这必然导致其价格昂贵,且PDA或手机的其他功能对于绝大部分患者完全没有必要,所以到目前为止国内实用的无线心电监护产品领域还是空白。
本文所述的远程心电监护系统是在医院的提案基础之上,进行充分调研之后设计的总体方案,主要实现如下功能:三导联心电信号采集;无线传输紧急情况下40 s的心电数据及诊断结果;24小时心电图连续记录;通过高速USB上传心电数据至PC机;紧急呼叫。
2 系统总体设计作为便携式手持远程移动终端,在设计时应充分考虑其体积小,功耗低,存储容量大和处理速度高的要求,因此在CPU的选择上十分慎重。
经过资料收集和反复比较,最终选择了Samsung公司推出的基于ARM920T内核的S3C2410处理器,该处理器资料丰富,性价比高。
采用RISC架构的ARM微处理器一般具有如下特点:体积小,功耗低,成本低,性能高;支持Thumb(16位)/ARM(32位)双指令集;大量使用寄存器,使指令执行速度更快;寻址方式灵活简单,执行效率高;指令长度固定。
可以看出基于ARM的嵌入式处理器是便携式手持终端的最佳选择,所以在设计系统方案时首先定位在该系列处理器上。
基于单片机的心率设计

基于单片机的心率设计引言:心率是测量人体健康状况的重要指标之一,通过监测心率可以及时了解人体的健康状况,对心脑血管疾病的预防和治疗具有重要意义。
本文将基于单片机设计一款心率检测装置,实现心率的实时监测和数据的显示。
一、设计方案1.硬件部分:(2)单片机:选用性能稳定的单片机,如STM32系列单片机,通过单片机来控制心率传感器进行数据采集和处理。
(3)显示模块:选择一款合适的显示模块,如OLED模块或LCD模块,用于实时显示心率数据。
2.软件部分:(1)心率检测算法:设计心率检测算法,通过心率传感器采集到的数据进行心率计算,可以采用波峰检测算法或者傅里叶变换等方法进行心率的计算。
(2)数据处理与显示:通过单片机进行数据的处理和显示,将计算得到的心率数据实时显示在显示模块上,并可以设置报警阈值,当心率超过设定的阈值时进行报警。
二、系统设计及实现1.硬件设计:(1)搭建硬件电路:将心率传感器与单片机进行连接,连接时需要注意信号的保护和滤波,以提高数据的准确性和可靠性。
(2)连接显示模块:将显示模块与单片机进行连接,将计算得到的心率数据通过串口或者I2C总线传输到显示模块上进行显示。
2.软件设计:(1)初始化:进行单片机和心率传感器的初始化工作,配置相应的引脚和寄存器。
(2)数据采集:设置数据采集的频率和时长,通过心率传感器采集心率数据,并进行滤波和去噪处理。
(3)心率计算:采用波峰检测算法或者傅里叶变换等方法,对心率数据进行处理和计算,得到实时的心率数值。
(4)数据显示:将计算得到的心率数值通过串口或I2C传输到显示模块上进行显示。
(5)报警功能:设置心率的报警阈值,当心率超过设定的阈值时,通过蜂鸣器或者LED进行报警。
三、总结和展望本文基于单片机实现了心率检测装置的设计,通过心率传感器采集到的数据计算得到心率,并实时显示在显示模块上。
该装置具有实时性和准确性,并可以设置报警功能,以提醒用户注意心率异常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于51单片机的无线心电监护系统设计
1 引言随着经济的快速发展和人们生活水平的不断提高,健康已成为人们关注的焦点。
心脏疾病是危害人类健康的一大杀手,其偶然性与突发性的特
点使得心电监护系统具有重要的临床应用价值。
由于传统的心电监护仪不能进
行远距离的实时监护,所以便携式无线心电监护系统显得更加重要。
无线医疗
监护系统主要由生理信息与数据采集、无线数据通信、控制和显示等单元组成。
目前国内已有用于临床的无线心电监护产品,但其采用的方案大都是“采集器+
发送器(PDA 或手机)”,从成本上看其价格昂贵;从无线传输方面看,大多是将心电数据以模拟信号传输,这必然导致信号在传输过程中发生失真。
此外,由
于人体电阻差异导致心电信号在1~10 mV 之间变动,固定放大倍数系统缺乏适应性。
基于此,这里提出基于C8051F320 单片机的无线监护系统。
该系统分为数据采集盒和PC 监护终端两部分。
数据采集盒在设计中充分考虑其体积小、功耗低、操作快捷的要求,因此全部采用SMT 封装的元器件;PC 监护终端通过USB 接收数据。
采用VC++编写显示、存储、分析处理和报警等功能程序。
实验结果表明该系统能满足病人在100 m 范围内活动,并能根据不同病人选择合适的放大倍数;由于心电信号在数据采集盒内经MD 转换器处理后才发送,信号抗干扰能力更强。
2 系统硬件设计2.1 系统整体构成系统南数据采集盒和PC 监护终端两部分构成,见图1。
数据采集盒采用C8051F320 单片机为核心采集心电数据并控制程控放大器,采用NRF24L01 模块收发数据与PC 监护终端通信。
PC 监护终端中C8051F320 单片机通过NRF24L01 模块接收心电数据并通过自带的USB 接口将数据送至PC 机。