第二节 刚体定轴转动的动力学方程

合集下载

刚体的定轴转动

刚体的定轴转动

J
1 2 m( R12 R2 ) 2
1 mR 2 2 若R1 R2 R, J mR 2
16
例:求长度为L,质量为m的均匀细棒AB的转动惯量。 (1)对于通过棒的一端与棒垂直的轴。 (2)对于通过棒的中心与棒垂直的轴。 m 解(1)细杆为线质量分布,单位长度的质量为: l L 1 3 2 2 dm A B J A x dm x dx L o 0 3 x
2 0
2

0
dm MR
2
绕圆环质心轴的转动惯量为
M
o
R
பைடு நூலகம்dm
J MR
2
讨论:若圆环绕其直径轴转动,再求此圆环的转动 惯量。
14
例: 一质量为m,半径为R的均匀圆盘,求对通过盘 中心并与盘面垂直的轴的转动惯量。
m 解: σ πR 2
dm σ 2π rdr
dJ r dm 2πσ r dr
5
匀变速圆周运动的基本公式
p
1 2 0 0t t 2
0 t
s
R
o

p
x
2 2 0 2 ( 0 )
定轴转动刚体上任一点的速度和加速度 s R 路程与角位移之间的关系:
v R 线速度与角速度的关系:
加速度与角量的关系: 2 dv d v at R R , an 2 R, dt dt R
1
柱壳形状的质元 ,其长为l半径为r厚度为dr, 则该质元的质量为 dm dV ( 2 rdr )l
R2
R2
l
J r dm 2lr dr
2 3 m R1
l
2

§3-2定轴转动定理

§3-2定轴转动定理
i
刚体内力是刚体内各质元间的相互作用力, 可以证明:刚体内各质元间每一对内力的内力 矩之和为零。 讨论 1)力经过转轴,力矩恒为零。 2)合力为零,合力矩不一定为零. 太原理工大学物理系
3)合力矩为零,合力不一定为零
例:将两个半径不同的圆盘 同心地粘在一起,两个圆盘 的半径分别为r1、r2,圆盘 上绕有绳子,如图。 如果
太原理工大学物理系
设外力作用于P点, F 的方向 与轴既不垂直也不平行,将力分解 为垂直于转轴和平行于转轴两个 分量
力对原点o´的力矩
M RF
一、力对转轴的力矩
z
F //
F
F
R
o'
P
力矩在z轴方向的分量
M
z
xF y yF x
x
y
太原理工大学物理系
写成矢量式 M z k r F 平行于转动轴的分力 只能引 起轴的变形, 对转动无贡献。
三、转动惯量 转动惯量 J
m r
i
2
i i
由刚体的各质元相对于固定转轴的分布所 决定的,与刚体的运动及所受外力无关。 对于质量连续分布的刚体
J
m
r
2
dm
其中r为质元dm到转轴的垂直距离。
太原理工大学物理系
对质量线分布的刚体: d m d l
质量线密度
对质量面分布的刚体: d m
太原理工大学物理系
f
/ r
当不计滑轮质量及摩擦阻力矩
即令m=0、Mf=0时,有
T1 T 2
2 m1m 2 m 2 m1
g
a
m 2 m1 m 2 m1
g
阿特伍德机是一种可用来测量重力加速 度g的简单装置。

3.3刚体定轴转动中的功与能

3.3刚体定轴转动中的功与能
−1 1
解:以 ω 和 ω 分别表示冲孔前后的飞轮的角速度
1 2
ω = (1 − 0 .2 )ω = 0.8ω
2 1
2
2
2πn ω = = 8πrad ⋅ s 60
1 1
−1
1
1 1 1 由转动动能定理 A = Jω − Jω = Jω (0 .8 − 1) 2 2 2 1 又 J = mr A = −5 .45 × 10 J 2
课后习题 3-8
θ1
θ2
二、刚体的转动动能和重力势能
1.绕定轴转动刚体的动能 绕定轴转动刚体的动能 绕定轴转动刚体的
∆ ,∆ ,⋅⋅⋅,∆ ,⋅⋅⋅,∆ m m m m r r r r r, r ,⋅⋅⋅, r ⋅⋅⋅, r r r r r v ,v ,⋅⋅⋅,v ,⋅⋅⋅,v
1 2 i
1 2 i, N
N
Q = rω v 1 E= ∆ v m 2
2 2 2
1 1
2
3
质量M的圆盘滑轮可绕通过盘心的水平轴转 例3-7半径R质量 的圆盘滑轮可绕通过盘心的水平轴转 半径 质量 滑轮上绕有轻绳,绳的一端悬挂质量为m的物体 的物体。 动,滑轮上绕有轻绳,绳的一端悬挂质量为 的物体。 当物体从静止下降距离h时 物体速度是多少? 当物体从静止下降距离 时,物体速度是多少? 以滑轮、 解:以滑轮、物体和地球组成系统为研究对 由于只有保守力做功,故机械能守恒。 象。由于只有保守力做功,故机械能守恒。 设终态时重力势能为零 初态:动能为零,重力势能为mgh 初态:动能为零,重力势能为 末态: 末态:动能包括滑轮转动动能和物体平动动能 由机械能守恒
i i
i i i
2
1
2
i
N

力学10-转动定律,转动惯量,刚体绕定轴转动中的功、能量、功能关系

力学10-转动定律,转动惯量,刚体绕定轴转动中的功、能量、功能关系
12
第五章 刚体力学基础 动量矩
§5-3 绕定轴转动刚体的动能 动能定理
一. 转动动能
设系统包括有 N 个质量元 取 ∆mi,其动能为 其动能为
ω
O
z
1 1 2 2 2 Eki = ∆mivi = ∆miri ω 2 2
刚体的总动能
r ri
r vi
P
• ∆mi
1 1 2 2 2 1 Ek = ∑Eki = ∑ ∆mi ri ω = ∑∆mi ri ω2 = Jω2 2 2 2
第五章 刚体力学基础 动量矩
m1g
m2g
五式联立,可解 五式联立,可解T1,T2,a1,a2,β
2012-4-16 11
总结
力的瞬时作用规律 力矩的瞬时作用规律
v F =0
v v F = ma
静止 匀速直线
M = Jβ
M = 0 静止 匀角速转动
J—转动时惯性大小的量度 转动时惯性大小的量度 力矩的持续作用规律: 力矩的持续作用规律: 空间: 空间: 时间: 时间:
(2) M、J、β必须对同一转轴定义。 必须对同一转轴定义。 、 、 必须对同一转轴定义 (3) M 正比于 β ,力矩越大,刚体的 β 越大 。 力矩相同,若转动惯量不同,产生的角加速度不同。 (4) 力矩相同,若转动惯量不同,产生的角加速度不同。
M (5) 与牛顿定律比较: → F, J → m, β → a 与牛顿定律比较:
14
讨论
(1) 力矩对刚体的功就是力对刚体的功。 力矩对刚体的功就是力对刚体的功。
θ2 θ2
1
(2) 合力矩的功
A= ∫
θ1
∑Midθ = ∑∫θ i i
Midθ = ∑Ai

2.2 刚体定轴转动定律及其应用

2.2  刚体定轴转动定律及其应用
0 m
R
dS

r
O
- 2 r kv 2 r d r
0
R
m
- 2 r k r 2 r d r
0
R
4 k r 3dr k R 4
0
R
M 随 变化
M J
M J
4
d J dt
M k R
4
1 2 d k R mR 2 dt
mg



0
d


0
d


0
3g cos d 2L

3g sin L
3) 此时,棒中点C的速度和加速度
L v C rC 6
2
3g sin L
竖直位置?
g acn rC sin 2
g act rC cos 4
例:如图,设滑块A,重物B及滑轮C的质量分别为MA, MB,MC。滑轮C是半径为 r 的均匀圆板。滑块A与桌面之 间,滑轮与轴承之间均无摩擦,轻绳与滑轮之间无滑动。 求:(1)滑块A的加速度a (2)滑块A与滑轮C之间绳的张力T1, (3)滑轮C与重物B之间绳的张力T2。
两边积分

2 k R 2 d dt 0 0 m
0

t
d
0
0

0
2 k R 2 d m
2 k R 2 0 m m0 m 0 N 2 2 2 k R 2 2 4 kR
例. 将一根质量为M,长为L的匀质细杆两端A、B用 等长的线水平地悬挂在天花板上,若突然剪断其中一 根,求此瞬间另一根绳内的张力有多大。 解: 突然剪断B线,棒AB受重力和A线对它的拉力作用 AB绕A点在竖直面内转动。 A线的拉力对A点的力矩为零 重力对A点的力矩为 转动定律

4-2刚体的转动-刚体动力学解析

4-2刚体的转动-刚体动力学解析
1 ( m A m C )m B g 2 T2 1 m A m B mC 2
mB g
1 m A mB mC 2 m Am B g T1 1 m A m B mC 2
物体B由静止出发作匀速直线运动
2mB gy v 2ay 1 m A mB mC 2
考虑滑轮与轴承间的摩擦力
由初始条件 : t 0时, 0 0, 0 0得 :


0
3g d sind 2l 0
3g (1 cos ) 2l
例4:一半径为R,质量为m的匀质圆盘,平放在粗 糙的水平桌面上。设盘与桌面间摩擦系数为 , 令圆盘最初以角速度 0绕通过中心且垂直盘面的 轴旋转,问它经过多少时间才停止转动?
2m1m2 T1 T2 g m2 m1
m2 m1 a g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测 量重力加速度g的简单装置。因为在已知m1、 m2 、 r和J的情况下,能通过实验测出物体1和2的加速度a, 再通过加速度把g算出来。在实验中可使两物体的m1 和 m2 相近,从而使它们的加速度 a 和速度 v都较小, 这样就能角精确地测出a来。
例2.质量为 m A 的物体A静止在光滑的水 平面上,它和一轻绳相连接,此绳跨过一半 径为R、质量为 mC 的园柱形滑轮C,并系在 另一质量为 m B 的物体B上,滑轮与轴承间 A 的摩擦力不计.问: C (1)两物体的线加 速度? 水平和铅直 B 两段绳的张力? (2)B由静止下落距离y时速率? (3)若滑轮与轴承间的摩擦力矩为 M ,再 求线加速度及绳的张力.
1 1 2 a RT2 RT1 M J mC R mC Ra 2 R 2 ( 4)
解(1)(2)(4),即可得 a,T

刚体定轴转动的角动量

刚体定轴转动的角动量

刚体定轴转动的角动量•转动惯量一、刚体对一转轴的转动惯量1、转动惯量定义:说明:转动惯量与刚体的质量分布和转轴的位置有关。

2、转动惯量的计算:①质量不连续分布情况:其中:表示质点对转轴的距离。

②质量连续分布的情况:3、平行轴定理若两轴平行,距离为d,其中一轴过质心,刚体对它的转动惯量为,则刚体对一轴转动惯量为:证明:如右图示,刚体的二轴分别为z和轴,由此可知:刚体对各平行轴的不同转动惯量中,对质心轴的转动惯量最小。

4、垂直轴定理:(仅适用于厚度无穷小的薄板,厚度)即:无穷小厚度的薄板对一与它垂直的坐标轴的转动惯量,等于薄板对板面内另两互相垂直轴的转动惯量之和。

证明:如右图所示,则:∴注意:垂直轴定理适用条件:x、y、z轴过同一点,且互相垂直,z轴垂直于板面x、y轴在板面内。

例1:均质杆长l,质量为m,求对过杆一端点的转动惯量。

解:由平行轴定理:例2:求一薄板质量为m,半径为R,密度均匀的圆盘,它对过圆心且与盘面垂直的转轴的转动惯量I。

解法一:利用积分法求转动惯量(利用对称性):解法二:由垂直轴定理:又∵∴二、刚体定轴转动的动力学方程——对轴的角动量定理刚体对转轴(假定为z轴)的角动量:应用质点系对Z轴的角动量定理,可得定轴转动刚体的角动量定理:其中为外力对Z轴的力矩;为刚体的角加速度在Z轴上的投影,可正可负。

三、定轴转动刚体对轴上一点的角动量以质量相等的两质点m,中间以一轻连杆组成刚体,绕Z轴转动为例,如图示:设,杆与水平方向成α角,求此刚体对轴上任一点O的角动量。

∵∴若Z轴过杆的中点,即:,则有:上式表明,定轴转动刚体对轴上任一点的角动量不一定沿转轴方向(或方向)。

四、刚体的重心1、定义:刚体处于不同方位时重力作用线都要通过的那一点叫作重心。

2、重心的位置与质心有何关系:如果刚体的形状不是特别大,保证各处的是完全相同,则刚体中各质元的力对任意一参考点o的力矩:∴一般有,且与不平行,故有:∴即:重心和质心重合。

刚体动力学2

刚体动力学2

J = ∑ mi ri 2
转动惯量
转动定律
M = Jβ
刚体是特殊质点系,转动定律和质心运 动定律非常相似:
G G M = Jβ
G G F = mac
4
§3.3 转动惯量
一、转动惯量的物理意义 转动惯量特点
J = ∑ mi ri = ∑ J i
2
第 第三 三章 章
转动惯量是转 动惯性的量度
质量是平动 惯性的量度
桌面支持力对轴不产生力矩,摩 擦力矩使圆盘转动停止。 设转动方向为正,转动定律
o
ω0
R
dω −M f = J β = J dt
14
第三 三章 章 设圆盘的体密度 ρ ,厚度 l,在圆盘上 第 半径r处,取宽为dr的细圆环为质元。 质量dm=ρdV=2πrlρdr ,摩擦力df=μN=μgdm G G G 2 d M = 2 πμρ glr dr 力矩 dM f = r × df 大小 f
转 动 定 律
第 第三 三章 章
o x 1 2 M = Fy = J β = ml β 3 y F = F = ma x方向上的质心运动定理 ∑ x cx c
【解】只有F的力矩引起转动,转动定律
线量和角量关系,细杆的质心在l/2处
F y
l acx = ac = β 2
解得
2 y= l 3
17
【例】 如图所示,两物体的质量
J = ∑ mi ri
2
2
J = ∫r dm
质量体分布 dm ρ= dV J = ∫V r 2 ρ d V
6
一些常见刚体的转动惯量 一些常见刚体的转动惯量
第 第三 三章 章
细杆
1 2 J = ml 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚体定轴转动的动力学方程z
F//
1. 力矩
F
力F 对z 轴的力矩 力F 在垂直于轴的平面内
M z Fd F r sin Fτr
力不在垂直于轴的平面内
dr
θ
F
P Fn
FF
M z Fd Frsin Fτr
若力 F F 也作用在P点上.
则力矩大小相等,效果不同.
力对定轴 力矩的矢量形式 M Z r F
GC F’T2 FT2
求 两物体的线加速度和水平、竖直两段绳索的张力
mB B
解 以mA , mB , m C为研究对象, 受力分析
物体 mA: FT1 mAaA
物体 mB :mB g FT 2 mBaB
滑轮
mC
:FT2R
FT1R
J
1 2
mC R2
aA aB a
FT1 FT1 FT 2 FT2
J dJ R 1(r2 dx) r2 02
R R2 x2 2 dx 2 mR2
2 R
5
x
r
dx x o
R
dJ 1 dm r2 2
转动定律的应用举例
基本方法和步骤
分析力,确 定外力矩
列出转动定律和牛 顿定律方程
列出线量和角量 之间的关系式
求解联 立方程
例 一轻绳绕在半径 r =20 cm 的飞轮边缘,在绳端施以F=98 N
a R
GB
a mBg
mA
mB
1 2
mC
FT1
mA
mAmB g
mB
1 2
mC
FT
2
mA
mA
1 2
mC
mB
mB g
1 2
mC
例 上题中,若滑轮与轴承间的摩擦不能
dm ds m 2πrdr 2mr dr
πR 2
R2
J
m r 2dm
0
R 0
2m R2
r 3dr
m 2
R2
dl m
R O
Rm dr
r O
③ J 与转轴的位置有关
z
z
M
L
O
dx
x
M
L
O dx
x
J L x2dx 1 ML2
0
3
J L/2 x2dx 1 ML2
L / 2
12
平行轴定理
(设轮轴光滑无摩擦,滑轮的初角速度为零)
求 滑轮转动角速度随时间变化的规律。
解 以m1 , m2 , m 为研究对象, 受力分析
物体 m1: m1g T1 m1a1
mr
T2
T1
物体 m2: T2 m2 g m2a2
滑轮
m:
T1r
T2r
J
1 mr2
2
a1 a2 a r
T2 m2
T1 m1
的拉力,飞轮的转动惯量 J=0.5 kg·m2,飞轮与转轴间的摩擦
不计, (见图)
求 (1) 飞轮的角加速度
(2) 如以重量P =98 N的物体挂在绳端,
试计算飞轮的角加速
rO
解 (1) Fr J
Fr 98 0.2 39.2 rad/s2
J 0.5
(2) mg T ma Tr J
mgr J mr2
m2 g
m1g
m1 m2 g
m1
m2
1 2
m
r
0
t
m1 m2
m1 m2
gt
1m 2
r
例 如图所示,定滑轮的半径为R ,用不 能伸长的轻绳跨过滑轮两边分别系于 A 物体和 B 物体上,绳与滑轮间无相对滑 动。(设水平面和轮轴光滑无摩擦)
N
A
mA
FT1
GA
F’T1 C FC
mC
a r
98 0.2 0.5 10 0.22
21.8
rad/s 2
FT
T
mg
对于刚体与质点刚性连接的联体力学问题:
通常采用隔离法----将刚体与物体隔离,分 别进行受力分析,写出相应的运动学及动力学方 程,最后求解。 两种方程的关系通常由线量与角量的关系式体现
v r a r an r 2
例 一定滑轮的质量为 m ,半径为 r ,不能伸长的轻绳两边分别 系 m1 和 m2 的物体挂于滑轮上,绳与滑轮间无相对滑动。
(力对轴的力矩只有两个指向)
力矩的方 向按右螺 旋法则来
确定
z
当有 n 个力作用于刚体
M r1F1 sin1 r2F2 sin2 r3F3 sin3
F3
r 3
P3
3
即刚体受到多个力的力矩等于
各个力的力矩矢量和。
F2
r2 r1
P2
2
P1 1 F1
M z M1z M 2z M nz
刚体中内力对给定转轴的力矩 的矢量和等于零,只需考虑外 力矩的作用
M rF sin rFsin 0
z
r
F
r F
2.转动定律
第 i个质元 Fi Fi miai
切线方向 Fi Fi miai
Fi ri
Fi
在上式两边同乘以 ri Fi ri Firi miai ri miri ri
对所有质元求和
Fi ri Firi ( miri2 )
dm dl
dm ds
dm dV
其中、、 分别为
质量的线密度、面密 度和体密度。
线分布
面分布
体分布
例 质量为m,半径为R 的均匀球体, 求 通过球心的轴的转动惯量
解 刚体质量体分布
m 4 R3
3
将球体分成一系列半径不同的质量为
dm的 “元”薄圆盘组成
由薄圆盘的转动惯量式 J 1 mR2 2
内力矩之为0
转动惯量 J
刚体绕定轴转动微分方程(刚体的转动定律) M J
与牛顿第二定律比较: M F , J m, a
M J J d
dt
转动定律表明:决定绕定轴转动刚体的转动状态变化与否,及 变化快慢的量是外力矩之和
对于给定的绕定轴转动刚体,角加速 度反映了它绕定轴转动状态的变化
对于给定的外力矩, 转动惯量愈大,角加 速度愈小,即刚体转 动状态愈难改变
转动惯量是描述 刚体对轴转动惯 性大小的物理量
3.转动惯量
定义 J mk rk 2 质量不连续分布
r
k
J r 2dm 质量连续分布
V
J 的单位:kg ·m2
确定转动惯量的三个要素:
(1)总质量 (2)质量分布 (3)转轴的位置 ①J 与刚体的总质量有关
例如等长的细木棒和细铁棒绕端点轴转动惯量
J L x2dx L x2 M dx 1 ML2
0
0L
3
z M
J铁 J木
O
dx
L x
②J 与质量分布有关
例如圆环绕中心轴旋转的转动惯量
J L R2dm 2πR R2dl
0
0
R2 2πR dl 2πR3 m mR2
0
2πR
例如圆盘绕中心轴旋转的转动惯量
J z' J z ML2 J z' ⇒ 刚体绕任意轴的转动惯量
J z ⇒ 刚体绕通过质心的轴
z' z M
L C
L ⇒ 两轴间垂直距离
注意:(1) J 只是对某个轴的。 (2) dm 的取法:需使 dm上各点的 r 相等。
dm 为质量元,简称质元。其计算方法如下:
质量为线分布 质量为面分布 质量为体分布
相关文档
最新文档