2024学年河北省石家庄市第二中学高考数学试题原创模拟卷(十)

合集下载

河北省石家庄市(新版)2024高考数学人教版摸底(评估卷)完整试卷

河北省石家庄市(新版)2024高考数学人教版摸底(评估卷)完整试卷

河北省石家庄市(新版)2024高考数学人教版摸底(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题A,B,C是直线与函数(,)的图象的三个交点,如图所示.其中,点,B,C两点的横坐标分别为,若,则()A.B.-1C.D.2第(2)题若函数的图象按向量平移后,得到函数的图象,则向量()A.B.C.D.第(3)题已知函数,关于的不等式的解集为,则()A.B.C.0D.1第(4)题已知锐角三角形的内角,,的对边分别为,,.且,则的取值范围为()A.B.C.D.第(5)题已知,为单位向量,则“,的夹角为”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(6)题已知函数,如图是直线与曲线的两个交点,,则()A.0B.C.D.第(7)题将甲、乙等5名同学分配到3个社区进行志愿服务,要求每人只去一个社区,每个社区不能少于1人,且甲、乙在同一社区,则不同的安排方法数为()A.54B.45C.36D.27第(8)题的展开式中第四项的系数为540,则的值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题函数的图象是双曲线,且直线和是它的渐近线.已知函数,则下列说法正确的是()A.,B.对称轴方程是C.实轴长为D.离心率为第(2)题对于函数,下列结论正确得是()A.的值域为B.在单调递增C.的图象关于直线对称D .的最小正周期为第(3)题如图所示的数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和.则下列说法正确的是()A.第6行第1个数为192B.第10行的数从左到右构成公差为的等差数列C.第10行前10个数的和为D.数表中第2021行第2021个数为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设等比数列的前n项和为,公比为q,若,,则________.第(2)题某公益社团有中学生36 人,大学生24 人,研究生16 人,现用分层抽样的方法从中抽取容量为19 的样本,则抽取的中学生的人数是___________ .第(3)题已知,则________四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知动直线:与轴交于点,过点作直线,交轴于点,点满足,的轨迹为.(1)求的方程;(2)已知点,点,过作斜率为的直线交于,两点,延长,分别交于,两点,记直线的斜率为,求证:为定值.第(2)题已知是正项数列的前项和,满足,.(1)若,求正整数的值;(2)若,在与之间插入中从开始的连续项构成新数列,即为,求的前30项的和.第(3)题如图,底面是等腰梯形,,,点为的中点,以为边作正方形,且平面平面.(1)证明:平面平面.(2)求点到平面的距离.第(4)题中,,.(1)若,,求的长度;(2)若,,求的最大值.第(5)题已知函数.(1)求的极值;(2)若,且,证明:.。

河北省石家庄市(新版)2024高考数学统编版摸底(提分卷)完整试卷

河北省石家庄市(新版)2024高考数学统编版摸底(提分卷)完整试卷

河北省石家庄市(新版)2024高考数学统编版摸底(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知点都在球的球面上,,是边长为1的等边三角形,与平面所成角的正弦值为,若,则球的表面积为()A.B.C.D.第(2)题已知定义在R上的可导函数的导函数为,满足且为偶函数,,则不等式的解集为()A.B.C.D.第(3)题已知,,若不等式的解集中只含有个正整数,则的取值范围为()A.B.C.D.第(4)题设在中,角所对的边分别为, 若, 则的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定第(5)题如图,已知正方体的棱长为,,分别为,的中点.则下列选项中错误的是()A.直线平面B.在棱上存在一点,使得平面平面C.三棱锥在平面上的正投影图的面积为D.若为棱的中点,则三棱锥的体积为第(6)题已知数列满足,则A.B.C.D.第(7)题双曲线的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是()A.B.C.D.第(8)题经统计某射击运动员随机射击一次命中目标的概率为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数值的随机数,用0,1,2表示没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:9597,7424,7610,4281,7520,0293,7140,9857,0347,4373,0371,6233,2616,8045,6011,3661,8638,7815,1457,5550.根据以上数据,则可估计该运动员射击4次恰有3次命中的概率为().A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知分别是定义在R上的奇函数和偶函数,且,则下列说法正确的有()A.B.在上单调递减C.关于直线对称D.的最小值为1第(2)题已知函数是偶函数,是奇函数,且满足,则下列结论正确的是()A.是周期函数B.的图象关于点中心对称C .D.是偶函数第(3)题已知函数,则()A.在上的极大值和最大值相等B.直线和函数的图象相切C.若在区间上单调递减,则D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知为等差数列的前项和.若,,则当取最大值时,的值为___________.第(2)题已知m、n是不同的直线,是不重合的平面,给出下列命题:①若,则;②若,则;③若,则;④m,n是两条异面直线,若,则.上面的命题中,真命题的序号是____________.(写出所有真命题的序号)第(3)题已知,是第三象限角,则___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(Ⅰ)当时,讨论的单调性;(Ⅱ)若对任意,恒成立,求m的取值范围.第(2)题甲、乙两队进行篮球比赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”,设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立.(1)在比赛进行4场结束的条件下,求甲队获胜的概率;(2)赛事主办方需要预支球队费用万元.假设主办方在前3场比赛每场收入100万元,之后的比赛每场收入200万元.主办方该如何确定的值,才能使其获利(获利=总收入预支球队费用)的期望高于万元?第(3)题已知数列满足.(1)证明是等比数列;(2)若,求的前项和.第(4)题定义:平面内两个分别以原点和两坐标轴为对称中心和对称轴的椭圆,它们的长、短半轴长分别为和,若满足,则称为的级相似椭圆.已知椭圆为的2级相似椭圆,且焦点共轴,与的离心率之比为.(1)求的方程.(2)已知为上任意一点,过点作的两条切线,切点分别为.①证明:在处的切线方程为.②是否存在一定点到直线的距离为定值?若存在,求出该定点和定值;若不存在,说明理由.第(5)题已知函数.(1)若函数在R上是增函数,求实数a的取值范围;(2)如果函数恰有两个不同的极值点,证明:.。

河北省石家庄市2024年数学(高考)统编版模拟(自测卷)模拟试卷

河北省石家庄市2024年数学(高考)统编版模拟(自测卷)模拟试卷

河北省石家庄市2024年数学(高考)统编版模拟(自测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知函数在上有两个零点,,则()A.B.C.D.第(2)题已知集合,集合,则()A.B.C.D.第(3)题已知函数,若函数存在零点,则实数的取值范围为()A.B.C.D.第(4)题函数在开区间的零点个数为()A.B.C.D.第(5)题设集合,则的所有子集的个数为()A.3B.4C.8D.16第(6)题已知向量,,,则与的夹角为()A.B.C.D.第(7)题执行如图所示的程序框图,若输出S的值为4,则输入的的值为()A.B.C.2D.16第(8)题已知复数满足(i为虚数单位),则(为z的共轭复数)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知函数,则以下结论正确的是().A.函数为增函数B.,,C .若在上恒成立,则自然数n的最小值为2D.若关于的方程有三个不同的实根,则第(2)题已知某校有1200名同学参加某次模拟考试,其中数学考试成绩近似服从正态分布,则下列说法正确的有()(参考数据:①;②;③)A.这次考试成绩超过100分的约有500人B.这次考试分数低于70分的约有27人C.D.从中任取3名同学,至少有2人的分数超过100分的概率为第(3)题如图所示,在长方体中,为中点,,点在矩形(含边界)上运动,则说法正确的是()A.存在点,使得B.直线与所成角的正弦值为C.存在点(异于点),使得四点共面D.若点到面的距离与它到点的距离相等,则点的轨迹是抛物线的一部分三、填空(本题包含3个小题,每小题5分,共15分。

河北省石家庄市(新版)2024高考数学人教版模拟(自测卷)完整试卷

河北省石家庄市(新版)2024高考数学人教版模拟(自测卷)完整试卷

河北省石家庄市(新版)2024高考数学人教版模拟(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题下列判断正确的是()A.若,则的最小值是5B.若,则C.若,则的最小值是D.若,则第(2)题曲线在处的切线方程为()A.B.C.D.第(3)题已知复数满足(为虚数单位),则在复平面内复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(4)题阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹.如图,在平面直角坐标系xOy中,螺线与坐标轴依次交于点,,,,,,,,并按这样的规律继续下去.若四边形的面积为760,则n的值为()A.18B.19C.21D.22第(5)题某学生月考数学成绩x不低于100分,英语成绩y 和语文成绩z 的总成绩高于200分且低于240分,用不等式组表示为()A.B.C.D.第(6)题已知x是上的一个随机的实数,则使x满足的概率为()A.B.C.D.第(7)题某中学运动会上一天安排长跑、跳绳等6场不同的比赛项目,若第一场比赛不安排长跑,最后一场不安排跳绳,则不同的安排方案种数为()A.504B.510C.480D.500第(8)题已知数列满足,,则使的正整数n的最小值是()A.2018B.2019C.2020D.2021二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数对任意实数均满足,则()A.B.C.D.函数在区间上不单调第(2)题已知实数满足,则下列说法正确的是()A.B.C.D.第(3)题已知向量,,,其中,则下列命题正确的是()A.在上的投影向量为B.的最小值是C.若,则D.若,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,若存在实数满足,且,则的取值范围是__________.第(2)题某高校安排甲、乙、丙、丁、戊5名大学生去三个贫困县调研“精准扶贫”政策的落实情况,每个县至少安排一个人,则学生甲、乙被安排到同一个县城有_________种不同的安排方式?第(3)题在中,角所对的边分别为.若,,则角的大小为____________________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆的右焦点为,离心率.(1)若为椭圆上一动点,证明到的距离与到直线的距离之比为定值,并求出该定值;(2)设,过定点且斜率为的直线与椭圆交于,两点,在轴上是否存在一点,使得轴始终平分?若存在,求出点的坐标;若不存在,请说明理由.第(2)题已知函数.(1)若直线为曲线的切线,求a的值;(2)当时,设,,…,,且,若不等式,求m的最小值.第(3)题已知函数.(1)求不等式的最小整数解;(2)在(1)的条件下,对任意,,若,求的最小值.第(4)题已知等差数列满足,.(Ⅰ)求的通项公式;(Ⅱ)设等比数列满足,,问:与数列的第几项相等?第(5)题港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A还有多远?。

河北省石家庄市2024届高三下学期高考模拟预测 数学试题【含答案】

河北省石家庄市2024届高三下学期高考模拟预测 数学试题【含答案】

2024年河北省石家庄市高考数学模拟试卷附解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2024180,Z A k k αα︒==-︒+⋅∈∣中的最大负角α为()A .2024-︒B .224-︒C .44-︒D .24-︒2.已知()41i 1iz +=-,则z 的虚部为()A .2iB .2i-C .2-D .23.已知平面内的向量a 在向量b 上的投影向量为12b,且1a b == ,则2a b - 的值为()AB .1C .34D .324.设正项等比数列{}n a 的前n 项和为n S ,11a =,且3a -,2a ,4a 成等差数列,则2024S 与2024a 的关系是()A .2024202421S a =-B .2024202421S a =+C .2024202443S a =-D .2024202441S a =+5.已知变量x 和y 的统计数据如表:x 12345y66788根据上表可得回归直线方程0.6y x a =+,据此可以预测当8x =时,y =()A .8.5B .9C .9.5D .106.现将四名语文教师,三名心理教师,两名数学教师分配到三所不同学校,每个学校三人,要求每个学校既有心理教师又有语文教师,则不同的安排种数为()A .216B .432C .864D .10807.已知椭圆221222:1(0),,x y C a b F F a b+=>>为左、右焦点,P 为椭圆上一点,1260F PF ∠=,直线:l y x t =-+经过点P .若点2F 关于l 的对称点在线段1F P 的延长线上,则C 的离心率是()A .13B .22C .12D .238.已知函数()xf x x =,()0,x ∈+∞,则下列命题不正确的是()A .()f x 有且只有一个极值点B .()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增C .存在实数()0,a ∈+∞,使得()1ef a =D .()f x 有最小值1e1e二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中,正确的是()A .一组数据10,11,11,12,13,14,16,18,20,22的第40百分位数为12B .两组样本数据1x ,2x ,3x ,4x 和1y ,2y ,3y ,4y 的方差分别为21s ,22s ,若已知10i i x y +=(1,2,3,4i =),则2212s s =C .已知随机变量X 服从正态分布()2,N μσ,若()()261P X P X ≥-+≥=,则2μ=D .已知一系列样本点(),i i x y (1,2,3,i =⋅⋅⋅)的回归方程为ˆˆ3y x a =+,若样本点(),3m 与()2,n 的残差(残差=实际值i y -模型预测值ˆy)相等,则310m n +=10.若关于x 的不等式22e 2ln x x ax x x -+-≥在()0+∞,上恒成立,则实数a 的值可以是()A .1eB .12C .e 3D .211.已知定义在实数集R 上的函数()f x ,其导函数为()f x ',且满足()()()f x y f x f y xy +=++,()()110,12f f '==,则()A .()f x 的图像关于点()1,0成中心对称B .()322f '=C .()202410122023f =⨯D .20241()10122024k f k ='=⨯∑三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}22230,0,M x x x N x x ax x =--<=-<∈Z ,若集合M N ⋂恰有两个元素,则实数a 的取值范围是.13.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交双曲线于点P ,若213PF PF =,则双曲线的离心率为.14.如图,在梯形ABCD 中,190,22ABC BAD AB BC AD ∠=∠====,将BAC 沿直线AC 翻折至1B AC △的位置,13AM MB =,当三棱锥1B ACD -的体积最大时,过点M 的平面截三棱锥1B ACD -的外接球所得的截面面积的最小值是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()e e axf x x b =--在0x =处的切线为x 轴.(1)求,a b 的值;(2)求()f x 的单调区间.16.如图,三棱锥A BCD -中,,,,AD CD AD CD ADB BDC E ∠∠⊥==为线段AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设3,2,0AB BD BF FD EF BD ===⋅=,求直线CF 与平面ABC 所成角的正弦值.17.有无穷多个首项均为1的等差数列,记第()*N n n ∈个等差数列的第()N,2m m m ∈≥项为()m a n ,公差为()0n n d d >.(1)若()()22212a a -=,求21d d -的值;(2)若m 为给定的值,且对任意n 有()()12m m a n a n +=,证明:存在实数,λμ,满足1λμ+=,10012d d d λμ=+;(3)若{}n d 为等比数列,证明:()()()()()1122mm m m m a a n n a a a n +⎡⎤⎣⎦+++≤ .18.设椭圆E :22221x y a b +=()0a b >>经过点()2,1P -,且离心率e =:3m x =垂直x 轴交x 轴于T ,过T 的直线l 1交椭圆E 于()11,A x y ,()22,B x y 两点,连接PA ,PB ,PT .(1)求椭圆E 的方程;(2)设直线PA ,PB 的斜率分别为1k ,2k .(ⅰ)求12k k +的值;(ⅱ)如图:过P 作x 轴的垂线l ,过A 作PT 的平行线分别交PB ,l 于M ,N ,求||||MN MA 的值.19.在函数极限的运算过程中,洛必达法则是解决未定式00型或∞∞型极限的一种重要方法,其含义为:若函数()f x 和()g x 满足下列条件:①()lim 0x a f x →=且()lim 0x a g x →=(或()lim x a f x →=∞,()lim x ag x →=∞);②在点a 的附近区域内两者都可导,且()0g x '≠;③()()lim x af x Ag x →'='(A 可为实数,也可为±∞),则()()()()limlimx ax af x f x Ag x g x →→'=='.(1)用洛必达法则求0limsin x xx→;(2)函数()()232112!3!21!n x x x f x x n -=+++++- (2n ≥,*n ∈N ),判断并说明()f x 的零点个数;(3)已知()()2cos g x g x x =⋅,()01g =,ππ,22x ⎛⎫∈- ⎪⎝⎭,求()g x 的解析式.参考公式:()()lim lim x a x af x f x →→=,()()lim lim x a x a kf x k f x →→=.1.C【分析】利用任意角的定义与集合A 所表示的角即可得解.【详解】因为04420211481︒=-︒-⨯︒-,所以集合{}2024180,Z A k k αα︒==-︒+⋅∈∣中的最大负角α为44-︒.故选:C.2.D【分析】利用复数的乘方运算和四则运算法则求出复数z ,继而得z 的虚部.【详解】由()42221i [(1i)](2i)4(1i)2(1i)22i 1i 1i 1i (1i)(1i)z ++-+=====-+=------+,则22i z =-+,z 的虚部为2.故选:D.3.A【分析】先根据条件,确定向量的夹角,再根据向量数量积的性质求模.【详解】因为2·1·2a b b b b = ⇒2·12a b b= ,又1a b == ,所以·12·a b a b =⇒1cos ,2a b = ⇒,60a b =︒ .所以:()2222a b a b-=-= 2214·41411432a ab b -+=-⨯⨯⨯+=,所以2a b -= 故选:A 4.A【分析】先利用等比数列的通项公式列方程求公比,然后求出2024S 和2024a 观察它们之间的关系即可.【详解】设正项等比数列{}n a 的公比为q ,0q >因为3a -,2a ,4a 成等差数列,所以2342a a a =-+,所以232q q q =-+,解得2q =,所以()20241202420241211a q S q-==--,20232023202412a a q==,则2024202421S a =-.故选:A.5.D【分析】根据给定的数表,求出样本的中心点,进而求出a 即可得解.【详解】依题意,1234535x ++++==,6678875y ++++==,即样本的中心点为(3,7),于是70.63a =⨯+,解得 5.2a =,即0.6 5.2y x =+,当8x =时,预测0.68 5.210y =⨯+=.故选:D 6.B【分析】根据给定条件,利用分步乘法计数原理,结合分组分配列式计算得解.【详解】求不同的安排种数需要分成3步,把3名心理教师分配到三所学校,有33A 种方法,再把4名语文教师按2:1:1分成3组,并分配到三所学校,有2343C A 种方法,最后把2名数学教师分配到只有1名语文教师的两所学校,有22A 种方法,由分步乘法计数原理得不同的安排种数为32323432A C A A 432⋅⋅=.故选:B 7.B【分析】根据题意,得到点M 与点2F 关于PH 对称,从而2120F PM ∠=,在12PF F △中,利用正弦定理得到121212sin15sin105sin PF PF F F F PF +=+∠ ,结合sin 60sin15sin105c e a ==+,即可求解.【详解】由直线:l y x t =-+,且点2F 关于l 的对称点在线段1F P 的延长线上,如图所示,可得点M 与点2F 关于PH 对称,且1260F PF ∠=,故在2PF M 中,则2120F PM ∠= ,故230PF M ∠=又PH 的倾斜角为135 ,则245HF M ∠=,故在12PF F △中,有1260F PF ∠= ,21105PF F ∠=,1215PF F ∠= ,又由1212211212sin sin sin PF PF F F PF F PF F F PF ==∠∠∠,可得121212sin15sin105sin PF PF F F F PF +=+∠,即1222sin15sin105sin a cF PF =+∠ ,又因为1sin15sin(4530)22224=-⨯-⨯=,1sin105sin(6045)2=++ ,所以sin 602sin15sin1052c e a ===+.故选:B.8.C【分析】由条件可得函数ln z x x =可以看作为函数ln z y =与函数x y x =的复合函数,然后求导判断其单调性与极值,即可得到结果.【详解】由x y x =得ln ln y x x =,令ln z x x =,则函数ln z x x =可以看作为函数ln z y =与函数x y x =的复合函数,因为ln z y =为增函数,所以ln z x x =与x y x =单调性、图象变换等基本一致,ln 1z x '=+,由0z '=得1ex =,列表如下:x10,e ⎛⎫ ⎪⎝⎭1e 1,e ∞⎛⎫+ ⎪⎝⎭z '-+z1e-由表知,ln z x x =在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ∞⎛⎫+ ⎪⎝⎭上单调递增,在1ex =时,取得极小值(最小值)1e -,所以()xf x x =在1,e ∞⎛⎫+ ⎪⎝⎭上单调递增,即B 正确;在1e x =时,取得唯一极值(极小值,也是最小值)1e 1e e->,即A 、D 都正确,C 错误.故选:C 9.BC【分析】A 选项,根据百分位数的运算公式得到答案;B 选项,利用平均数定义得到10y x =-,根据方差的计算公式得到()()()()2222123422214s x x x x x x x xs -++-++-++-+==;C 选项,由正态分布的对称性得到C 正确;D 选项,由题意得到()()ˆˆ336m an a -+=-+,得到D 错误.【详解】A 选项,0010404⨯=,故从小到大从第4个和第5个数的平均数作为第40百分位数,即121312.52+=,A 错误;B 选项,12344x x x x x +++=,12344y y y y y +++=,因为10i i x y +=,(1,2,3,4i =),故123410101010104x x x x y x -+-+-+-==-,故()()()()22221423124s x x x x x x x x-+-+--=+,()()()()2222123422*********s y x y x y x y x-++-++-++-+=()()()()2222123410101010101010104x x x x x x x x --++--++--++--+=()()()()222212344x x x x x x x x-++-++-++-+=,故2212s s =,B 正确;C 选项,因为()2,X N μσ ,()()261P X P X ≥-+≥=,2,6X X =-=关于x μ=对称,所以2622μ-+==,C 正确;D 选项,由题意得()()ˆˆ336m an a -+=-+,整理得39m n +=,D 错误.故选:BC 10.AB【分析】根据题意分12a ≤和12a >两种情况讨论,当12a ≤时,有222ln e e 12ln 1ln e 1ln x x x x ax x x x x x x x----+-++-+=+-+≥,通过求导,判断函数的单调性,确定函数的最值得出2ln e 1ln 0x x x x --+-+≥结论验证;当12a >时,令()2ln u x x x =--,求导判断出函数存在零点设为0x ,即可判断020000e 12ln (12)0x ax x a x x -+-+=-<,最后综合得出a 的取值范围.【详解】依题意,2e 12ln 0x ax x x -+-+≥在()0+∞,上恒成立,当12a ≤时,222ln e e 12ln 1ln e 1ln x x x x ax x x x x x x x----+-++-+=+-+≥,令2ln t x x =--,则()e 1t h t t =--,()e 1t h t '=-,故当t (,0)∈-∞时,()0h t '<,当(0,)t ∈+∞时,()0h t '>,故()(0)0h t h >=,故2ln e 1ln 0x x x x --+-+≥,则不等式成立;当12a >时,令()2ln u x x x =--,因为(1)10u =-<,(4)22ln 20u =->,故()x μ在()1,4内必有零点,设为0x ,则002ln x x -=,则020ex x -=,故020000e 12ln (12)0x ax x a x x -+-+=-<,不合题意,舍去;综上所述,12a ≤.故选:AB.【点睛】恒成立问题求参数注意分类讨论;适当的构造函数通过函数的最值分析参数的取值.11.BCD【分析】对A 、B ,利用赋值法进行计算即可得;对C 、D ,利用赋值法后结合数列的性质进行相应的累加及等差数列公式法求和即可得.【详解】对A :令0x y ==,则有()()()0000f f f =++,即()00f =,令1x y ==,则有()()()2111f f f =++,又()10f =,故()21f =,()f x 不关于()1,0对称,故A 错误;对于B ,令1y =,则有()()()()11f x f x f x f x x +=++=+,两边同时求导,得()()11f x f x +='+',令1x =,则有()()13211122f f =+=+='',故B 正确;对C :令1y =,则有()()()11f x f x f x +=++,即()()1f x f x x +-=,则()()()()()()()2024202420232023202211f f f f f f f =-+-+-+ ()2023120232023202210101220232+⨯=++++==⨯ ,故C 正确;对D :令1y =,则有()()()11f x f x f x +=++,即()()1f x f x x +=+,则()()11f x f x +='+',即()()11f x f x +-'=',又()112f '=,故()11122f k k k -'=+=-,则()20241112024202422101220242k f k =⎛⎫+-⨯ ⎪⎝⎭==⨯'∑,故D 正确.故选:BCD.【点睛】关键点点睛:本题C 、D 选项关键在于利用赋值法,结合数列的性质进行相应的累加及等差数列公式法求和.12.(2,)+∞【分析】解二次不等式化简集合M ,再利用二次不等式解的形式与交集的结果即可得解.【详解】因为{}2230{13}M x x x xx =--<=-<<∣,{}20,{()0,}N x x ax x x x x a x =-<∈=-<∈Z Z ∣,又集合M N ⋂恰有两个元素,所以M N ⋂恰有两个元素1和2,所以2a >.故答案为:(2,)+∞.13【分析】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,运用双曲线的定义和条件可得1||3PF a =,2||PF a =,12||2F F c =,再由渐近线的斜率和余弦定理,结合离心率公式,计算即可得到所求值.【详解】解:设过2F 与双曲线的一条渐近线b y x a=平行的直线交双曲线于点P ,由双曲线的定义可得12||||2PF PF a -=,由12||3||PF PF =,可得1||3PF a =,2||PF a =,12||2F F c =,由12tan b F F P a ∠=可得12cos a F F P c ∠=,在三角形12PF F 中,由余弦定理可得:222121221212||||||2||||cos PF PF F F PF F F F F P =+-∠ ,即有2229422aa a c a c c=+- ,化简可得,223c a =,则双曲线的离心率==c e a【点睛】本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程和定义法,以及余弦定理,考查化简整理的运算能力,属于中档题.14.3π4【分析】当三棱锥1B ACD -的体积最大时,此时1B 到底面ACD 的距离最大,即此时平面1⊥B AC 平面ACD ,取AC 的中点E ,AD 的中点O ,O 是三棱锥1B ACD -的外接球球心,当且仅当过点M 的平面与OM 垂直时,截外接球的截面面积最小,此时,截面的圆心就是点M ,从而求解.【详解】当三棱锥1B ACD -的体积最大时,由于底面ACD 的面积是定值,所以此时1B 到底面ACD 的距离最大,平面1⊥B AC 平面ACD ,且平面1B AC 平面ACD AC =,取AC 的中点E ,则1B E AC ⊥,故1B E ⊥平面ACD ,取AD 的中点O,则OE =1B E =1π2B EO ∠=,则12OB =,又∵2OA OD OC ===,故O 是三棱锥1B ACD -的外接球球心,且该外接球的半径2R =;显然,当且仅当过点M 的平面与OM 垂直时,截外接球的截面面积最小,此时,截面的圆心就是点M ,记其半径为r ,则222R OM r ==+;由于AC CD ⊥,CD ⊂平面ACD ,所以CD ⊥平面1B AC ,而1AB ⊂平面1B AC ,则1CD AB ⊥,则1π2AB D ∠=,在1B AD 中,12,4B A AD ==,故1π3B AD ∠=;又13AM MB = ,故12AM =,又2OA =,故由余弦定理有211π13422cos 4234OM =+-⨯⨯⨯=,∴22234r R OM =-=,故所求面积为3π4.故答案为:3π4【点睛】关键点点睛:取AD 的中点O ,由12OA OD OC OB ====,确定点O O 是三棱锥1B ACD -的外接球球心.15.(1)e a =,1b =(2)单调递减区间为(),0∞-,单调递增区间为()0,∞+【分析】(1)求出函数的导函数,依题意可得()00f =且()00f '=,即可得到方程组,解得即可;(2)求出函数的导函数()f x ',再利用导数说明()f x '的单调性,即可求出()f x 的单调区间.【详解】(1)因为()e e ax f x x b =--,所以()e e ax f x a '=-,依题意()00f =且()00f '=,所以00e 0e e 0b a ⎧-=⎨-=⎩,解得e 1a b =⎧⎨=⎩.(2)由(1)可得()e e e 1x f x x =--函数的定义域为R ,又()()e 1e e e e e 1x xf x +'=-=-,令()()e 1e e xg x f x +'==-,则()e 2e0x g x +'=>,所以()g x (()f x ')在定义域R 上单调递增,又()00f '=,所以当0x <时()0f x '<,当0x >时()0f x ¢>,所以()f x 的单调递减区间为(),0∞-,单调递增区间为()0,∞+.16.(1)证明见解析(2)15【分析】(1)根据等腰三角形的三线合一及全等三角形的性质,利用线面垂直的判定定理及面面垂直的判定定理即可求解;(2)利用线面垂直的判定定理及性质定理,建立空间直角坐标系,求出相关点的坐标,分别求出直线CF 的方向向量与平面ABC 的法向量,利用向量的夹角公式,结合向量的夹角与线面角的关系即可求解.【详解】(1)因为DA DC =,E 为线段AC 的中点,所以DE AC⊥因为DA DC =,DB DB =,ADB CDB ∠=∠,所以ADB CDB ≌,故AB CB =.又E 为线段AC 的中点,所以BE AC ⊥.又DE BE E ⋂=,,DE BE ⊂平面BED .所以AC ⊥平面BED又AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)取DA 的中点G ,连接EG ,BG ,因为EG 为中位线,所以//EG CD ,又AD CD ⊥,所以AD EG ⊥.因为AB BD =,G 为DA 的中点,所以AD BG ⊥.又⋂=EG BG G ,,EG BG ⊂平面BEG ,所以AD ⊥平面BEG ,BE ⊂平面BEG ,所以AD BE ⊥,因为BA BC =,E 为AC 的中点,所以AC BE ⊥,又AC AD A = ,,AC AD ⊂平面ACD ,所以BE ⊥平面ACD .以E 为坐标原点,分别以EA 、EB 、ED 所在的直线为x 、y 、z 轴,建立空间直角坐标系E xyz -,如图所示设(),0,0A a ,(),0,0B b ,则()0,0,0E ,()0,0,D a ,()0,,0B b ,20,,33b a F ⎛⎫ ⎪⎝⎭.20,,33b a EF ⎛⎫= ⎪⎝⎭,()0,,BD b a =- ,由22222||92033AB a b b a EF BD ⎧=+=⎪⎨⋅=-+=⎪⎩,解得a b ⎧⎪⎨=⎪⎩.所以,33CF ⎫=⎪⎪⎭.又平面ABC 的法向量()0,0,1n = .设直线CF 与平面ABC 所成角为θ,则232153sin cos ,15CF n CF n CF nθ⋅===⋅ ,所以直线CF 与平面ABC.17.(1)212d d -=;(2)证明见解析(3)证明见解析【分析】(1)代入等差数列的通项公式,即可求解;(2)根据已知条件,代入等差数列的通项公式,得到数列{}n d 的递推公式,再通过构造得到数列{}n d 的通项公式,并根据(1)的结果,证明等式;(3)根据题意,结合等差数列和等比数列的综合应用,首先证明()()()()11m m m m a n i a i a n a +-+≤+,再利用求和,即可证明.【详解】(1)由题意得()()()2221212111a a d d d d -=+-+=-,又()()22212a a -=,所以212d d -=;(2)证明:因为()()12m m a n a n +=,所以()()111211n n m d m d ++-=+-⎡⎤⎣⎦,即1121n n d d m +=+-,所以111211n n d d m m +⎛⎫+=+ ⎪--⎝⎭,因此99100111211d d m m ⎛⎫+=+ ⎪--⎝⎭,所以99100111211d d m m ⎛⎫=+- ⎪--⎝⎭,又21121d d m =+-,即21121d d m =--,因此()()()()99999910012121122222221d d d d d d d d =+---=-+-,所以存在实数999922,21λμ=-=-,满足100121,d d d λμλμ+==+;(3)证明:因为{}n d 为等比数列,所以11n n d d q -=,其中q 为{}n d 的公比,于是()()1111n m a n m d q -=+-,当1i n ≤≤时,()()()()11m m m m a n i a i a n a +-+-+⎡⎤⎣⎦()()11111n i i n m d q q q ---=-+--()()()11111n i i m d q q --=----,因为0,0,10q n i i >-≥-≥,因此()()1110m i i q q ----≥,又()110m d --<,所以()()()()11m m m m a n i a i a n a +-+≤+,因此()()()()111nm m m m m a n i a i n a n a =+-+≤+⎡⎤⎡⎤⎣⎦⎣⎦∑,即()()()()()2121m m m m m a a a n n a n a +++≤+⎡⎤⎡⎤⎣⎦⎣⎦ ,所以()()()()()1122mm m m n a a n n a a a n +⎡⎤⎣⎦+++≤ .【点睛】关键点点睛:本题的关键是利用题意,并能正确表示()m a n 和公差为n d .18.(1)22163x y +=(2)(i )2;(ii )1【分析】(1)根据条件,列出关于,,a b c 的方程组,利用待定系数法,即可求解;(2)(ⅰ)首先设直线1l 的方程,并联立椭圆方程,转化为关于斜率的一元二次方程,利用韦达定理,即可求解;(ⅱ)首先设直线,PA PB 的倾斜角分别为,αβ,根据正弦定理利用角表示边长MN ,AN ,再求比值,利用(ⅰ)的结论,即可求解.【详解】(1)由题意知2222241122a b c a a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得ab c ==所以椭圆E 的方程为22163x y +=;(2)(ⅰ)易知()3,0T ,1PT k =,11112y k x +=-,22212y k x +=-,设直线1l 的方程为()()211m x n y -++=,由直线1l 过()3,0T 知1m n +=,联立方程()()22163210x y m x n y ⎧+=⎪⎨⎪-++=⎩得()()()()()()()2224144211420n y n m x y m x -++--+++-=,变形得:()()211244414022y y n n m m x x ++⎛⎫-+-++= ⎪--⎝⎭,即()1244144842424242n n n m n k k n n n ----+====---;(ⅱ)设直线,PA PB 的倾斜角分别为,αβ,则1tan k α=,2tan k β=,5π4NMP β∠=-,π2MPN β∠=-,π4PAN α∠=-,π2APN α∠=-,在PMN 中,πsin sin πsin 2sin 4PN PNMN MPN NMP ββ⎛⎫=∠=- ⎪∠⎛⎫⎝⎭- ⎪⎝⎭,在PAN △中,πsin sin πsin 2sin 4PN PN AN APN PAN αα⎛⎫=∠=- ⎪∠⎛⎫⎝⎭- ⎪⎝⎭,所以()ππsin sin cos sin cos tan 1242ππtan 1sin sin 422MN AN βαβαααββα⎛⎫⎛⎫-⋅--- ⎪ ⎪-⎝⎭⎝⎭===--⎛⎫⎛⎫-⋅- ⎪ ⎪⎝⎭⎝⎭由122k k +=知,tan tan 2αβ+=,即tan 11tan 1αβ-=--,故1MNAN =..【点睛】关键点点睛:本题第一问的转化比较巧妙,转化为关于斜率的方程,利用韦达定理即可求解,第二问巧妙设倾斜角,利用三角函数表示MN AN 的值.19.(1)1(2)仅在(),0x ∈-∞时存在1个零点,理由见解析(3)()()()sin ,π,00,π,1,0.x x g x x x ⎧∈-⋃⎪=⎨⎪=⎩【分析】(1)利用洛必达法则求解即可;(2)构造函数()e x f x ,结合()e xf x 的单调性求解即可;(3)利用累乘法求出()2n g x x g ⎛⎫ ⎪⎝⎭的表达式,然后结合()01g =,利用洛必达法则求极限即可.【详解】(1)001lim lim 1sin cos x x x x x →→==(2)()()2321123!21!n x x x f x x n -=+++++- ,()()232212!3!22!n x x x f x x n -'=+++++- ,所以()()()2121!n x f x f x n -'-=--,()()()()21e e e 21!n x x xf x f x f x x n -⎡⎤'-='=-⎢⎥-⎣⎦.当0x >时,()0e x f x ⎡⎤'<⎢⎥⎣⎦,函数()e x f x 在()0,∞+上单调递减,当0x <时,()0e x f x ⎡⎤'>⎢⎥⎣⎦,函数()e x f x 在(),0∞-上单调递增,()lime xx f x →-∞=-∞,()01f =,当0x >时,()0e x f x >,所以仅在(),0x ∈-∞时存在1个零点.(3)()()2cos g x x g x =,所以()cos 22g x x x g =⎛⎫ ⎪⎝⎭,2cos 44x g x x g ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,…,12cos 22n n n x g x x g -⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭将各式相乘得()cos cos cos 2422n n g x x x x x g =⋅⋅⋅⎛⎫ ⎪⎝⎭ cos cos cos sin 1sin 24222sin sin 22n n n n nx x xxx x x ⋅⋅⋅⋅=⋅ ,两侧同时运算极限,所以()1sin sin 22lim lim lim sin sin 222n n n n n n n n x x g x x x x x x g →+∞→+∞→+∞⋅==⋅⎛⎫ ⎪⎝⎭,即()()sin 2lim 0sin 2n n n x g x x xg x →+∞=,令2nx t =,原式可化为()()0sin lim 0sin t g x x t g x t →=,又()01g =,由(1)得0lim1sin t t t →=,故()()sin 0x g x x x=≠,由题意函数()g x 的定义域为()π,π-,综上,()()()sin ,π,00,π,1,0.x x g x x x ⎧∈-⋃⎪=⎨⎪=⎩【点睛】方法点睛:本题考查新定义,注意理解新定义,结合洛必达法则的适用条件,构造函数()2n g x x g ⎛⎫ ⎪⎝⎭,从而利用洛必达法则求极限.。

河北省石家庄市(新版)2024高考数学人教版模拟(备考卷)完整试卷

河北省石家庄市(新版)2024高考数学人教版模拟(备考卷)完整试卷

河北省石家庄市(新版)2024高考数学人教版模拟(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知复数的共轭复数为,则在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限第(2)题已知集合,,若,则实数的取值范围为()A.B.C.D.第(3)题以下四个命题,其中正确的个数有()①经验回归直线必过样本中心点;②在经验回归方程中,当变量x每增加一个单位时,变量平均增加0.3个单位;③由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀;④在一个列联表中,由计算得,则有99.9%的把握确认这两个变量间有关系(其中).A.1个B.4个C.3个D.2个第(4)题抛物线的焦点到圆上点的距离的最大值为()A.6B.2C.5D.8第(5)题已知直线m,n是平面的两条斜线,若m,n为不垂直的异面直线,则m,n在平面内的射影()A.不可能平行,也不可能垂直B.可能平行,但不可能垂直C.可能垂直,但不可能平行D.可能平行,也可能垂直第(6)题已知复数为复数的共轭复数,且满足,则对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限第(7)题甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在小区的概率为()A.B.C.D.第(8)题已知集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,其中表示不超过实数的最大整数,关于有下述四个结论,其中错误的结论是()A.的一个周期是B.是偶函数C.在区间上单调递减D.的最大值大于第(2)题已知,则下列正确的是()A.B.在复平面内所对应的点在第二象限C.D.第(3)题古希腊哲学家发现并证明了只存在5种正多面体,即正四面体、正六面体、正八面体、正十二面体、正二十面体,其中正八面体是由8个等边三角形构成.正八面体在计算机科学中用于三维模型和场景的构建,以及人工智能领域中用于图象识别和处理,另外在晶体和材料科学中也被广泛应用.现有一个棱长为2的正八面体,如图所示,下列说法中正确的是()A.若点在同一个球的球面上,则该球的体积为B.若该正八面体的12条棱中点在同一个球的球面上,则该球的表面积为C.该正八面体内任意一点到8个侧面的距离之和为定值D.已知正方体的中心与该正八面体的中心重合,当该正方体绕中心任意转动时,若该正方体始终未超出该正八面体,则该正方体棱长的最大值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数的定义域为,为其导函数,若,,则不等式的解集是______.第(2)题若m,,,,则_____________.(请用一个排列数来表示)第(3)题赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了 “勾股圆方图”,亦称“赵爽弦图” (以直角三角形的斜边为边得到的正方形). 类比 “赵爽弦图”,构造如图所示的图形,它是由三个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,且,点在上,,点在内 (含边界)一点,若,则的最大值为_____.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆过两点.(1)求椭圆C的方程;(2)F为椭圆C的右焦点,直线l交椭圆C于P,Q(均不与点A重合)两点,记直线AP,AQ,l的斜率分别为k1,,,若,求△FPQ的周长.第(2)题已知函数(,e为自然对数的底数)(1)求函数的单调区间;(2)若不等式在区间上恒成立,求实数k的取值范围.第(3)题如图,已知直圆柱的上、下底面圆心分别为,是圆柱的轴截面,正方形内接于下底面圆,点是中点,.(1)求证:平面平面;(2)若点为线段上的动点,求直线与平面所成角的余弦值的最小值.第(4)题设函数,.(1)若直线和曲线相切,求k的值;(2)当时,若存在正实数m,使对任意,都有恒成立,求k的取值范围.第(5)题在平面直角坐标系中,已知椭圆的右顶点为,离心率为,P是直线上任一点,过点且与PM垂直的直线交椭圆于A,B两点.(1)求椭圆的方程;(2)设直线PA,PM,PB的斜率分别为,,,问:是否存在常数,使得?若存在,求出的值;若不存在,说明理由.。

河北省石家庄市(新版)2024高考数学人教版摸底(提分卷)完整试卷

河北省石家庄市(新版)2024高考数学人教版摸底(提分卷)完整试卷

河北省石家庄市(新版)2024高考数学人教版摸底(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知是抛物线的焦点,点,在该抛物线上且位于轴的两侧,(其中为坐标原点),则与面积之和的最小值是()A.B.C.D.第(2)题已知焦点分别在轴上的两个椭圆,且椭圆经过椭圆的两个顶点与两个焦点,设椭圆的离心率分别是,则()A .且B.且C .且D.且第(3)题若,则的大小关系为()A.B.C.D.第(4)题已知集合,,则()A.B.C.D.第(5)题在直角梯形ABCD中,,点E为BC边上一点,且,则的取值范围是()A.B.C.D.第(6)题已知抛物线C:的焦点为F,准线为l,过F的直线交抛物线C于A,B两点,的中垂线分别交l与x轴于D,E两点(D,E在的两侧).若四边形为菱形,则()A.B.C.D.2第(7)题抛物线的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,,垂足为K,则的面积是()A.4B.C.D.8第(8)题已知,函数的零点分别为,函数的零点分别为,则的最小值为A.1B.C.D.3二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题某厂近几年陆续购买了几台 A型机床,该型机床已投入生产的时间x(单位:年)与当年所需要支出的维修费用y(单位:万元)有如下统计资料:x23456y2.23.85.56.57根据表中的数据可得到经验回归方程为. 则()A.B.y与x的样本相关系数C.表中维修费用的第60百分位数为6D.该型机床已投入生产的时间为 10年时,当年所需要支出的维修费用一定是12.38万元第(2)题已知抛物线的焦点为,过点分别向抛物线与圆作切线,切点为分别为(不同于坐标原点),则下列判断正确的是()A.B.C.三点共线D.第(3)题已知函数,则下列说法正确的是()A.该函数的最大值为2B.该函数的最小正周期为C.是该函数的一个对称中心D.该函数的对称轴为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在中,内角A、B、C的对边分别为a、b、c,且,则_______.第(2)题△ABC中角A,B,C所对的边分别为a,b,c,若,△ABC的面积,则a的最小值为______.第(3)题已知随机事件A、B是互斥事件,若,则=____.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在同一平面直角坐标系中,圆经过伸缩变换后,得到曲线.(1)求曲线的方程;(2)设直线与曲线相交于,两点,连接并延长与曲线相交于点,且.求面积的最大值.第(2)题已知椭圆C:(a>b>0)的离心率为,且过点(1,).(1)求椭圆C的方程;(2)设与圆O:x2+y2=相切的直线交椭圆C于A,B两点,求△OAB面积的最大值,及取得最大值时直线的方程.第(3)题已知是二次函数,且.(1)求的解析式;(2)若,求函数的最小值和最大值.第(4)题现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求(I)所取的2道题都是甲类题的概率;(II)所取的2道题不是同一类题的概率.第(5)题在直角坐标系中,曲线的参数方程为(,为参数).直线的参数方程为(为参数).(1)求曲线和直线的普通方程;(2)直线与曲线相交于不同的两点,,,过且与直线平行的直线,与相交于,两点,求的值.。

河北省石家庄市第二中学2024届高三上学期第一次模拟测试数学试题及其详细解析

河北省石家庄市第二中学2024届高三上学期第一次模拟测试数学试题及其详细解析

第1页共26页河北省石家庄二中2024届高三第一模拟测试
数学试卷
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.
1.已知i 12i z ⋅=+(i 为虚数单位),则z z ⋅=(
)A.2
B. C.4 D.5【答案】D
【解析】
【分析】利用复数的除法运算可求得2i z =-,结合共轭复数定义和乘法运算即可求得结果.
【详解】根据题意由i 12i z ⋅=+可得()212i i 12i 2i i i
z ++===-,可得2i z =+,所以()()22i 2i 4i 5z z ⋅=-+=-=.
故选:D
2.已知向量(4)a m = ,,(1)b m = ,,若a 与b 反向共线,则2a b - 的值为(
)A.0
B.
C.
D.【答案】C
【解析】【分析】根据向量共线的坐标运算,求得参数,再结合向量线性运算的坐标运算求模长即可.
【详解】根据题意可得:24m =,解得2m =或2-;
当2m =时,a 与b 共线同向,故舍去;
当2m =-时,()()2,4,1,2a b =-=- ,()24,8a b -=- ,
2a b -=
= .故选:C.
3.已知集合{}{}22|20,lo (1|g )A x B x y x x x ===<---,则A B ⋃=()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2024学年河北省石家庄市第二中学高考数学试题原创模拟卷(十)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.要得到函数()sin(3)3f x x π=+的导函数()f x '的图像,只需将()f x 的图像( )A .向右平移3π个单位长度,再把各点的纵坐标伸长到原来的3倍 B .向右平移6π个单位长度,再把各点的纵坐标缩短到原来的13倍 C .向左平移3π个单位长度,再把各点的纵坐标缩短到原来的13倍 D .向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍 2.已知函数()(0)f x x x x =->,()xg x x e =+,()()ln 0h x x x x =+>的零点分别为1x ,2x ,3x ,则( )A .123x x x <<B .213x x x <<C .231x x x <<D .312x x x <<3.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件4.已知实数0,1a b >>满足5a b +=,则211a b +-的最小值为( ) A .3224+ B .3424+ C .3226+ D .3426+ 5.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .66.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC 、直角边AB AC 、,已知以直角边AC AB 、为直径的半圆的面积之比为14,记ABC α∠=,则2cos sin 2αα+=( )A .35B .45C .1D .857.已知A ,B ,C ,D 是球O 的球面上四个不同的点,若2AB AC DB DC BC =====,且平面DBC ⊥平面ABC ,则球O 的表面积为( ) A .203πB .152πC .6πD .5π8.若不相等的非零实数x ,y ,z 成等差数列,且x ,y ,z 成等比数列,则x yz+=( ) A .52-B .2-C .2D .729.函数24y x =-A ,集合(){}2log 11B x x =+>,则A B =( )A .{}12x x <≤B .{}22x x -≤≤C .{}23x x -<<D .{}13x x <<10.某程序框图如图所示,若输出的120S =,则判断框内为( )A .7?k >B .6?k >C .5?k >D .4?k >11.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O 为坐标原点若.0PA PB =,则直线OA 与OB 的斜率之积为( ) A .14-B .3-C .18-D .4-12.己知全集为实数集R ,集合A ={x |x 2 +2x -8>0},B ={x |log 2x <1},则()RA B ⋂等于( )A .[-4,2]B .[-4,2)C .(-4,2)D .(0,2)二、填空题:本题共4小题,每小题5分,共20分。

13.若2(23)nx x --的展开式中所有项的系数之和为256,则n =______,含2x 项的系数是______(用数字作答).14.若函数32,0()log ,0x x f x x x -⎧≤=⎨>⎩,则411[(log )]33f f 的值为______.15.函数1log 2y x =____.16.如图所示,在正三棱柱111ABC A B C -中,D 是AC 的中点,1:2:1=AA AB , 则异面直线1AB 与BD 所成的角为____.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知ABC ∆的内角、、A B C 的对边分别为a b c 、、,且()22sin sin sin sin sin A B C A B -=-. (Ⅰ)求C ;(Ⅱ)若1,c ABC =∆的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.18.(12分)已知曲线1C :3sin 62πρθ⎛⎫+= ⎪⎝⎭和2C :62x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位. (1)求曲线1C 的直角坐标方程和2C 的方程化为极坐标方程;(2)设1C 与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与1C ,2C 交于P ,Q 两点,求P ,Q 两点间的距离.19.(12分)在平面直角坐标系xOy 中,曲线1C 的参数方程为:1cos sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为:3ρθ=. (1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)若直线():0l y kx k =>与曲线1C 交于O ,A 两点,与曲线2C 交于O ,B 两点,求OA OB +取得最大值时直线l 的直角坐标方程.20.(12分)已知函数()ln(2)f x x a =+(0,0)x a >>,曲线()y f x =在点(1,(1))f 处的切线在y 轴上的截距为2ln 33-. (1)求a ;(2)讨论函数()()2g x f x x =-(0)x >和2()()21xh x f x x =-+(0)x >的单调性; (3)设12,5a =()1n n a f a +=,求证:1521202n n n a +-<-<(2)n ≥. 21.(12分)如图,在四棱柱C ABEF -中,平面ABEF ⊥平面ABC ,ABC 是边长为2的等边三角形,//AB EF ,90ABE ∠=︒,1BE EF ==,点M 为BC 的中点.(Ⅰ)求证://EM 平面ACF ; (Ⅱ)求二面角E BC F --的余弦值.(Ⅲ)在线段EF 上是否存在一点N ,使直线CN 与平面BCF 所成的角正弦值为2121,若存在求出EN 的长,若不存在说明理由.22.(10分)已知椭圆2222:1(0)x y G a b a b +=>>,上顶点为(0,1)B ,离心率为22,直线:2l y kx =-交y 轴于C 点,交椭圆于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N . (Ⅰ)求椭圆G 的方程;(Ⅱ)求证:BOM BCN S S ⋅△△为定值.参考答案一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.D 【解析】 先求得()'fx ,再根据三角函数图像变换的知识,选出正确选项.【详解】 依题意()'553cos 33cos 33sin 33626fx x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦3sin 363x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,所以由()sin(3)3f x x π=+向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍得到()'f x 的图像.故选:D【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题. 2.C 【解析】转化函数()(0)f x x x x =->,()xg x x e =+,()()ln 0h x x x x =+>的零点为y x =与(0)y x x =>,x y e =-,()ln 0y x x =->的交点,数形结合,即得解.【详解】 函数()(0)f x x x x =->,()xg x x e =+,()()ln 0h x x x x =+>的零点,即为y x =与(0)y x x =>,x y e =-,()ln 0y x x =->的交点,作出y x =与(0)y x x =>,x y e =-,()ln 0y x x =->的图象,如图所示,可知231x x x << 故选:C 【点睛】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题. 3.C 【解析】分析:从两个方向去判断,先看tan tan 1A B >能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出tan tan 1A B >成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在ABC ∆中,因为tan tan 1A B >, 所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<,所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >,所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征. 4.A 【解析】 所求211a b +-的分母特征,利用5a b +=变形构造(1)4a b +-=,再等价变形121()[(1)]41a b a b ++--,利用基本不等式求最值. 【详解】解:因为0,1a b >>满足5a b +=, 则()21211()1114a b a b a b +=++-⨯⎡⎤⎣⎦-- ()21113(3414b a a b -⎡⎤=++≥+⎢⎥-⎣⎦, 当且仅当()211b aa b -=-时取等号, 故选:A . 【点睛】本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提. 5.A 【解析】由圆心到渐近线的距离等于半径列方程求解即可. 【详解】双曲线的渐近线方程为y =±x ,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r ,即r =.答案:A 【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题. 6.D 【解析】根据以直角边AC AB 、为直径的半圆的面积之比求得12AC AB =,即tan α的值,由此求得sin α和cos α的值,进而求得所求表达式的值. 【详解】由于直角边AC AB 、为直径的半圆的面积之比为14,所以12AC AB =,即1tan 2α=,所以12sin ,cos 55αα==,所以2cos sin 2αα+=412825555+⨯⨯=. 故选:D 【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题. 7.A 【解析】由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案. 【详解】 如图,取BC 中点G ,连接AG ,DG ,则AG BC ⊥,DG BC ⊥,分别取ABC 与DBC 的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O , 则O 为四面体A BCD -的球心,由AB AC DB DC BC 2=====,得正方形OEGF OG =,∴四面体A BCD -的外接球的半径R ===,∴球O 的表面积为220π4π3⨯=. 故选A . 【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题. 8.A 【解析】 由题意,可得2x z y +=,2z xy =,消去y 得2220x xz z +-=,可得2x z =-,继而得到2z y =-,代入即得解 【详解】由x ,y ,z 成等差数列, 所以2x zy +=,又x ,z ,y 成等比数列, 所以2z xy =,消去y 得2220x xz z +-=,所以220x xz z⎛⎫+-= ⎪⎝⎭,解得1x z =或2x z =-,因为x ,y ,z 是不相等的非零实数,所以2x z =-,此时2zy =-, 所以15222x y z +=--=-. 故选:A 【点睛】本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题. 9.A 【解析】根据函数定义域得集合A ,解对数不等式得到集合B ,然后直接利用交集运算求解. 【详解】解:由函数y =240x -≥,解得22x -≤≤,即{}22A x x =-≤≤;又()22log 11og 2l x +>=,解得1x >,即{}1B x x =>, 则{}12A B x x ⋂=<≤. 故选:A. 【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题. 10.C 【解析】程序在运行过程中各变量值变化如下表:故退出循环的条件应为k>5? 本题选择C 选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.11.A 【解析】设出A ,B 的坐标,利用导数求出过A ,B 的切线的斜率,结合0PA PB ⋅=,可得x 1x 2=﹣1.再写出OA ,OB 所在直线的斜率,作积得答案. 【详解】解:设A (2114x x ,),B (2224x x ,),由抛物线C :x 2=1y ,得214y x =,则y ′12x =.∴112AP k x =,212PB k x =, 由0PA PB ⋅=,可得12114x x =-,即x 1x 2=﹣1.又14OA x k =,24OB xk =,∴124116164OA OB x x k k -⋅===-. 故选:A .点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A 2(2,)a a ,B 2(2,)b b ,ab ,再求切线PA,PB 方程,求点P 坐标,再根据.0PA PB =得到1,ab =-最后求直线OA 与OB 的斜率之积.如果先设点P 的坐标,计算量就大一些. 12.D 【解析】求解一元二次不等式化简A ,求解对数不等式化简B ,然后利用补集与交集的运算得答案. 【详解】解:由x 2 +2x -8>0,得x <-4或x >2, ∴A ={x |x 2 +2x -8>0}={x | x <-4或x >2}, 由log 2x <1,x >0,得0<x <2, ∴B ={x |log 2x <1}={ x |0<x <2}, 则{}|42RA x x =-≤≤, ∴()()0,2RA B =.故选:D. 【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档