SPSS多元线性回归分析教程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性回归分析的SPSS操作
本节内容主要介绍如何确定并建立线性回归方程。包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析
1.数据
以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):
图7-8:回归分析数据输入
2.用SPSS进行回归分析,实例操作如下:
2.1.回归方程的建立与检验
(1)操作
①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。具体如下图所示:
图7-9 线性回归分析主对话框
②请单击Statistics…按钮,可以选择需要输出的一些统计量。如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。上述两项为默认选项,请注意保持选中。设置如图7-10所示。设置完成后点击Continue返回主对话框。
图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项
回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。
③用户在进行回归分析时,还可以选择是否输出方程常数。单击Options…按钮,打开它的对话框,可以看到中间有一项Include constant in equation可选项。选中该项可输出对常数的检验。在Options对话框中,还可以定义处理缺失值的方法和设置多元逐步回归中变量进入和排除方程的准则,这里我们采用系统的默认设置,如图7-11所示。设置完成后点击Continue返回主对话框。
④在主对话框点击OK得到程序运行结果。
(2)结果及解释
上面定义的程序运行结果如下所示:
①方程中包含的自变量列表同时显示进入方法。如本例中方程中的自变量为x,方法为Enter。
Variables Entered/Removed
Model Variables Entered Variables Removed Method
1 X . Enter
a All requested variables entered.
b Dependent Variable: Y
②模型拟合概述列出了模型的R、R2、调整R2及估计标准误。R2值越大所反映的两变量的共变量比率越高,模型与数据的拟合程度越好。
Model Summary
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .859 .738 .723 6.2814
a Predictors: (Constant), X
本例所用数据拟合结果显示:所考察的自变量和因变量之间的相关系数为0.859,拟合线性回归的确定性系数为0.738,经调整后的确定性系数为0.723,标准误的估计为6.2814。
③方差分析表列出了变异源、自由度、均方、F值及对F的显著性检验。
ANOVA
Model Sum of Squares df Mean Square F Sig.
1 Regression 1995.791 1 1995.791 50.583 .000
Residual 710.209 18 39.456
Total 2706.000 19
a Predictors: (Constant), X
b Dependent Variable: Y
本例中回归方程显著性检验结果表明:回归平方和为1995.791,残差平方和为710.209,总平方和为2706.000,对应的F统计量的值为50.583,显著性水平小于0.05,可以认为所建立的回归方程有效。
④回归系数表列出了常数及非标准化回归系数的值及标准化的回归系数,同时对其进行显
著性检验。
Coefficients
Unstandardized Coefficients Standardized
Coefficients
t Sig.
Model B Std. Error Beta
1 (Constant) -7.080 11.068 -.640 .530
X .730 .103 .859 7.112 .000
a Dependent Variable: Y
本例中非标准化的回归系数B的估计值为0.730,标准误为0.103,标准化的回归系数为0.859,回归系数显著性检验t统计量的值为7.112,对应显著性水平Sig.=0.000<0.05,可以认为方程显著。因此,本例回归分析得到的回归方程为:Y=-7.08+0.73X
对方程的方差分析及对回归系数的显著性检验均发现,所建立的回归方程显著。
2.2.回归方程的预测
(1)通过因变量的观测值和回归预测值的比较,可以了解许多关于模型和各种假定对数据的适合程度,上面回归方程的检验结果表明,所得到的回归直线是有效的。在回归方程有效的前提下,研究者往往希望对于给定的预测变量X的一个具体数值(如X0),预测因变量Y的平均值或者预测某一个观测的y0的值。如对于上面的例子,我们可以用回归方程来预测智商x0=120的被试,这次的平均成绩;也可以用来预测假如一名工作人员的智商是120,那么他参加这次考试,将会得多少分。
上面两种情况下,点预测值是相同的,不同的是标准误。
Y0=A+BX0=-7.08+0.73×120=86.52
在X0点,Y的预测均值的估计标准误为公式(7-24);在X0点,Y的个体预测值的估计标准误为公式(7-25)。
(2)SPSS可以提供上述两类预测值,具体操作如下:
在如图7-9的线性回归模型定义的主对话框中,单击save,出现如下对话框(图7-12):