多目标决策讲义课件(ppt 62页)
合集下载
多目标决策讲义课件ppt

10
第二节 化多目标为单目标的方法
例:某厂生产A、B两种产品以供应市场的需要。生产两种产品所
需的设备台时、原料消耗定额及其限制量、单位产品利润等如下表 所示。在制定生产计划时工厂决策者考虑了如下三个目标:第一, 计划期内生产产品所获得的利润为最大;第二,为满足市场对不同 产品的需要,产品A的产量必须为产品B的产量的1.5倍;第三,为
用函数来描述目标fj(x)与功效系数dj之间的关系,称之为功效 函数,表达式为dj=Fj(x)
17
第二节 化多目标为单目标的方法
不同类型的目标应选用不同类型的功效函数
Fj(x)Biblioteka Fj(x)Fj(x)
13
第二节 化多目标为单目标的方法
3.平方和加权法
基本思想:为所有目标 fj(x), j=1,2, … ,N 确定一个预期达 到的目标值fj*,使作出的决策与这些目标值越接近越好。
构造评价函数
N
U( x)
wj[
f j ( x)
f
* j
]2
j 1
要求U(x)最小。其中权系数wj反映了各个偏差的重要性。
向量优化问题(Vector optimization problems,简称VOP)
6
第一节 多目标决策问题
二、多目标决策问题解的概念
最优解 设x*∈X,如果对任意的x∈X ,均有f(x)≤ f(x*),
即对一切的j=1, 2, …, N,均有fj(x)≤ fj(x*),则称x*为多目 标决策问题(Vp)的最优解。
7
第一节 多目标决策问题
二、多目标决策问题解的概念
f2
非劣解
C
E D
B
f2
A
A
第二节 化多目标为单目标的方法
例:某厂生产A、B两种产品以供应市场的需要。生产两种产品所
需的设备台时、原料消耗定额及其限制量、单位产品利润等如下表 所示。在制定生产计划时工厂决策者考虑了如下三个目标:第一, 计划期内生产产品所获得的利润为最大;第二,为满足市场对不同 产品的需要,产品A的产量必须为产品B的产量的1.5倍;第三,为
用函数来描述目标fj(x)与功效系数dj之间的关系,称之为功效 函数,表达式为dj=Fj(x)
17
第二节 化多目标为单目标的方法
不同类型的目标应选用不同类型的功效函数
Fj(x)Biblioteka Fj(x)Fj(x)
13
第二节 化多目标为单目标的方法
3.平方和加权法
基本思想:为所有目标 fj(x), j=1,2, … ,N 确定一个预期达 到的目标值fj*,使作出的决策与这些目标值越接近越好。
构造评价函数
N
U( x)
wj[
f j ( x)
f
* j
]2
j 1
要求U(x)最小。其中权系数wj反映了各个偏差的重要性。
向量优化问题(Vector optimization problems,简称VOP)
6
第一节 多目标决策问题
二、多目标决策问题解的概念
最优解 设x*∈X,如果对任意的x∈X ,均有f(x)≤ f(x*),
即对一切的j=1, 2, …, N,均有fj(x)≤ fj(x*),则称x*为多目 标决策问题(Vp)的最优解。
7
第一节 多目标决策问题
二、多目标决策问题解的概念
f2
非劣解
C
E D
B
f2
A
A
多目标决策分析ppt课件

一个分层结构复杂的目标准则体系(图6.1).
海滩港址
←总体目标
这
经济
技术
环境
社会
就
是 直
目接
标
效 益
间 接 效
航
海
道
滩
建
运城交
筑
行市通
关关
资 源
环 境
政 策
பைடு நூலகம்
军←
事准
益
系系
则
准 则投
投利
海
国
国
现稳
深稳
保
码围
防船
货
铁
内
能
征
淡
三
风
国
层
军
体
资 额
资税 回总
运 收
际 贸
内 贸
状定 性
度定 性
持 稳
头堰
波舶 堤航
(k 1,2,...,K)
s.t
n j1
ai
j
x
j
bi
xj 0
(i 1,2,...,m) ( j 1,2,...,n)
为了求解多目标线性规划,需要解决两个问题:
第一,如何将多目标规划转化为单目标规划求解;
第二,K个目标函数对于决策者来说,有主次轻重之分,
如何表示多目标的主次顺序.
精选PPT课件
总目标
目
目
目
标
标
标
1
2
3
……
目目 标标
m-1 m
图6.2
适用:微观经济管理,例如选购某种设备和装置 。
精选PPT课件
8
二、目标准则体系的结构
2.序列型多层次目标准则体系
多目标决策分析教材(PPT 46页)

RI 0 0 0.58 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59
(3)当CR<0.1时,判断矩阵满足一致性
例 上例中,max 3.003 ,n=3
CI 3.003 3 0.0015 ,RI 0.58 (查表)
31
2,4,6,8 为以上两判断之间的中间状态
倒数 j 因素与 i 因素相比的重要程度
称为正互反矩阵
特点:
aij>0 aij= 1/aji aii=1
例如:
1 3 1/ 2 A 1/ 3 1 1/ 7
2 7 1
2、层次单排序
求判断矩阵A的最大特征值 max 及其特征向量W,即
AW= maxW
将W归一化后得 W=[w1,w2,……,wn]即为各指标的排序权值。
D3:李伟峰 D4:张恩华 D5:徐云龙
1/2 1/3 1/3
2
1
1
1
1/2
½
1
1
1
C1:技术 C2:心理 C3:经验 C4:伤病
D1:范
D2:杜
D3:李
D4:张
D5:徐
最后计算出层次总排序的权重向量为:
W=(0.263, 0.136, 0.251, 0.238, 0.112)
C.I.=0.049 C.R.=0.044<0.1
矩阵C2-D, C3-D 各为四阶(略):
目标层A 准则层C
A 合理使用资金
C1
调动员工工作 积极性
C2
提高企业 技术水平
C3
改变员工物 质文化生活
方案层D
D1 发奖金
D2 扩建福利设施
多目标决策方法讲义

n
w1 w2 M
wn
AW = nW
W是 A 的最大特征值的向量。
实际评价时,并不知道这权重向量
比较Ai与Aj重要性时,通过询问决策者只能得到近 似的比值aij aij~wi/wj
得到的判断矩阵是近似的判断矩阵A. A~ A 精确判断矩阵 A 的最大特征值的向量
W= (w1, w2, …,wn) T 是完全精确的权重向量
基本模型—单层次模型
1. 单层次模型结构
C
C—目标,
A1
Ai—隶属C的n个评价元素 决策者
A2
…… An
问题: 由决策者在这个目标意义下对这n 个元素进行评价,对
他们进行优劣排序并作出相对重要性的权量。
2. 思想: (1) 整体判断
n个元素的两两比较。
(2) 定性判断
定量表示(通过标量 )
(3)通过数学公式(特征值)确定各元素评价权重
DELPHI法使用要点
独立性,专家尽可能互不见面,防止心 理影响(权压,声压,从众行为) 统计处理 滤波技术
第二节 层次分析法
(Analytics Hierarchy Process, AHP)
一、简介 二、基本模型 三、基本步骤 四、应用案例
简介
层次分析法是由美国匹兹堡大学教授 T.L.Saaty在70年代中期提出的。它的基本思 想是把一个复杂的问题分解为各个组成因素, 并将这些因素按支配关系分组,从而形成一个 有序的递阶层次结构。通过两两比较的方式确 定层次中诸因素的相对重要性,然后综合人的 判断以确定决策诸因素相对重要性的总排序。 层次分析法的出现给决策者解决那些难以定量 描述的决策问题带来了极大的方便,从而使它 的应用几乎涉及任何科学领域。
运筹学-第十章-多目标决策 PPT

个候选人就能力、合作精神、进取心进行评优,给 出分数如下:
得分 能力 合作 进取
候选人1 (x1) 候选人2 (x2)
7
8
8
9
9
7
候选人3 (x3) 9 7 8
26
该公司总裁在选拔干部时,注意特长,他喜欢在某一方面比 别人分数高的人,当某人一项指标高过另一人2分,他就认 为前者好,因此他的看法是 :
m in/m axf(x)(f1(x),L,fp(x)) s.t. xX
其中
X { x R n g i( x ) 0 ,i 1 , ,m }
7
多目标决策问题的共同特点
目标之间的不可公度性:指各个目标一般没有统一的衡量 标准,因而很难进行比较
目标之间的冲突性:大部分多目标决策问题存在着冲突。 即如果采用某种方案去改进一个目标值,很可能会使另一 目标值变坏
5
设该厂下一季度生产 i 号品的时间为 xi 小时(i =1,…,5)
m
in
m
a
x
m
a
x
s
.t
.
5
xi T
i1
5
iaixi
i1
a1x1 a 2 x2
bi aixi 0 (i 3,4,5)
5
xi T 0
i1
xi 0 (i 1,L 5)
6
多目标最优化模型 (Multiobjective Optimization/Vector Optimization)
分层求解法--分层模型 完全分层法,分层评价法,分层单纯形法
目标规划法
40
10.4 目标规划
目标规划的产生与发展 目标规划模型
41
目标规划的产生与发展
得分 能力 合作 进取
候选人1 (x1) 候选人2 (x2)
7
8
8
9
9
7
候选人3 (x3) 9 7 8
26
该公司总裁在选拔干部时,注意特长,他喜欢在某一方面比 别人分数高的人,当某人一项指标高过另一人2分,他就认 为前者好,因此他的看法是 :
m in/m axf(x)(f1(x),L,fp(x)) s.t. xX
其中
X { x R n g i( x ) 0 ,i 1 , ,m }
7
多目标决策问题的共同特点
目标之间的不可公度性:指各个目标一般没有统一的衡量 标准,因而很难进行比较
目标之间的冲突性:大部分多目标决策问题存在着冲突。 即如果采用某种方案去改进一个目标值,很可能会使另一 目标值变坏
5
设该厂下一季度生产 i 号品的时间为 xi 小时(i =1,…,5)
m
in
m
a
x
m
a
x
s
.t
.
5
xi T
i1
5
iaixi
i1
a1x1 a 2 x2
bi aixi 0 (i 3,4,5)
5
xi T 0
i1
xi 0 (i 1,L 5)
6
多目标最优化模型 (Multiobjective Optimization/Vector Optimization)
分层求解法--分层模型 完全分层法,分层评价法,分层单纯形法
目标规划法
40
10.4 目标规划
目标规划的产生与发展 目标规划模型
41
目标规划的产生与发展
《多目标决策》PPT课件

(1) 低造价(每平方米造价不低于500元,不高于700元)
(2) 抗震性能(抗震能力不低于里氏5级,不高于7级);
(3) 建造时间(越快越好)
(4) 结构合理(单元划分、生活设施及使用面积比例等 设计合理)
(5) 造型美观(评价越高越好)。
2021/3/8这三个方案的具体评价如表13.1所示。
2
第13章 多目标决策 表13.1
有一个,当然就选它。问题是在一般情况下非劣解远不止一
个202,1这/3/8就有待于决策者选择。
8
第13章 多目标决策
对于m个目标,一般用m个目标函数f1(x), f2(x), …, fm(x)刻画,其中x表示方案,而x的约束就是备选方案范围。
最优解:设最优解为x*,
fi(x*)≥fi(x) 2)
i=1, 2, …, n (13.1)
max z=4x1+3.2x2
2x1+4x2≤12(设备台时约束)
3x1+3x2≤12(原料约束)
s.t. x1-1.5x2=0(目标约束)
2x1+4x2≥11(目标约束)
2021/3/8
结构、造型等则为定性指标。
所谓目标间的矛盾性, 是指如果选择一种方案以改进某 一目标的值,可能会使另一目标的值变坏。如房屋设计中造 型、抗震性能的提高,可能会使房屋建造成本提高。
2021/3/8
4
第13章 多目标决策
2.
一个多目标决策问题一般包括目标体系、备选方案和 决策准则三个基本因素。目标体系是指由决策者选择方案 所考虑的目标组及其结构。
2021/3/8
10
第13章 多目标决策
13.2
13.2.1
第五章多目标决策课件

15
• 一、基本原理
• 二、步骤和方法
• 三、应用领域
• 四、应用层次分析法的注意事项 • 五、 应用实例
16
一、层次分析法的基本原理
层次分析法根据问题的性质和要达到的 总 目标,将问题分解为不同的组成因素,
并按照因素间的相互关联影响以及隶属关 系将因素按不同层次聚集组合,形成一个 多层次的分析结构模型,从而最终使问题 归结为最低层(供决策的方案、措施等)相 对于最高层(总目标)的相对重要权值的确
14
• 层次分析法是社会、经济系统决策中的有效工具。 其特征是合理地将定性与定量的决策结合起来, 按照思维、心理的规律把决策过程层次化、数量 化。是系统科学中常用的一种系统分析方法。
• 该方法自1982年被介绍到我国以来,以其定性与 定量相结合地处理各种决策因素的特点,以及其
系统灵活简洁的优点,迅速地在我国社会经济各 个领域内,如工程计划、资源分配、方案排序、 政策制定、冲突问题、性能评价、能源系统分析、 城市规划、经济管理、科研评价等,得到了广泛 的重视和应用。
. 目标准则体系的层次结构,一般用树形结构图直观表示。 最上一层,通常只有一个目标,称之为总体目标,最下一 层,其中的每一个子目标都可以用单一准则评价,称之为 准则层。
. 多 目标决策过程,就是依据某种科学方法,对于整个多层 次结构的目标准则体系,合理地给出表示每个可行方案注 意程度的数值,称之为满意度。
不要超过9个因素。
25
判断矩阵元素aij 的标度方法
标度 1 3 5 7 9
2,4,6,8 倒数
含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比,一个因素比另一个因素极端重要
• 一、基本原理
• 二、步骤和方法
• 三、应用领域
• 四、应用层次分析法的注意事项 • 五、 应用实例
16
一、层次分析法的基本原理
层次分析法根据问题的性质和要达到的 总 目标,将问题分解为不同的组成因素,
并按照因素间的相互关联影响以及隶属关 系将因素按不同层次聚集组合,形成一个 多层次的分析结构模型,从而最终使问题 归结为最低层(供决策的方案、措施等)相 对于最高层(总目标)的相对重要权值的确
14
• 层次分析法是社会、经济系统决策中的有效工具。 其特征是合理地将定性与定量的决策结合起来, 按照思维、心理的规律把决策过程层次化、数量 化。是系统科学中常用的一种系统分析方法。
• 该方法自1982年被介绍到我国以来,以其定性与 定量相结合地处理各种决策因素的特点,以及其
系统灵活简洁的优点,迅速地在我国社会经济各 个领域内,如工程计划、资源分配、方案排序、 政策制定、冲突问题、性能评价、能源系统分析、 城市规划、经济管理、科研评价等,得到了广泛 的重视和应用。
. 目标准则体系的层次结构,一般用树形结构图直观表示。 最上一层,通常只有一个目标,称之为总体目标,最下一 层,其中的每一个子目标都可以用单一准则评价,称之为 准则层。
. 多 目标决策过程,就是依据某种科学方法,对于整个多层 次结构的目标准则体系,合理地给出表示每个可行方案注 意程度的数值,称之为满意度。
不要超过9个因素。
25
判断矩阵元素aij 的标度方法
标度 1 3 5 7 9
2,4,6,8 倒数
含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比,一个因素比另一个因素极端重要
多目标决策解析共55页PPT

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
多目标决策解析
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
处理多目标决策问题,要先找出非劣解。然后再按一定规则从中 选取满足要求的,作为最后决策。
二、多指标决策问题的解法 化多为少的方法
“化多为少”的主要目的是将多目标化成单目标 问题处理,目前主要有以下几种方法。
1、主要目标法。通过对实际问题的分析,抓住其 中一二个主要目标,让它们尽可能优化,而其他指标 只要满足一定要求即可。这个方法比较有效。
决策指标权重的确定
通常,确定指标权重的方法可以分为以下三类: 2. 客观赋权法
客观赋权法是根据决策矩阵提供的客观信息(指标值) ,通过建立某种数学模型计算出权重的方法,主要有熵值 法、主成分分析法等。
客观赋权法通常基于完善的数学理论,但指标信息数据 的采集难免受到随机干扰,也忽视了决策者的主观信息, 可能与指标的实际重要性程度不完全符合。
9
定性指标9级量化表
等级 很低 低 一般 高 很高 分值 1 3 5 7 9
定性指标5级量化表
决策指标的标准化处理
6.2.1 定性指标的量化
【例6-2】对例6-1中的阑尾炎治疗问题的定性指标进 行量化。
量化后的决策矩阵为:
决策指标的标准化处理
6.2.2 不同量纲指标的标准化
将不同量纲和数量级的指标通过适当的变换,转换 为无量纲的标准化指标,称为指标的标准化。
多目标决策方法 1.多目标决策问题的基本概念
在多目标决策问题中,由于不能简 单比较两个解的优和劣,所以就有劣解 和非劣解两个重要概念。
例如,从5个人中选出身体最高又最 重的人,身高和体重就是两个目标。如5 个人中,确有1名最高又最重的,无疑他 是当选者。但在一般情况下,高、重各有 不同,这样,情况就比复杂了。
A公司 B公司
加权分值在雷达图中强调评判决策方案的标准差别,特 别是权重较大的标准。
多指标工作选择
指标 工资
A公0司.085 B公司0.09 权重 0.1
职业前景 0.285 0.21 0.3
职业安全性 0.24 0.38 0.4
地理位置 0.18 0.14 0.2
0.1975 0.205 1
例如,这两个公司在薪水和工作的地理位置上非常接近,而 在职业前景和工作安全方面差距较大,雷达图的图解能力描述了 这种差别。
定性指标的量化不改变指标的性质。 通常将描述程度划分为9个或5个级别。一般取0~10
间的整数,每个级别赋予适当分值。极端值0和10通 常不用,留给极特殊的情况使用。
决策指标的标准化处理
6.2.1 定性指标的量化
等级 最低 很低 低 较低 一般 较高 高 很高 最高
分值 1
234
5
678
在多指标决策分析中,各个指标对决策而言,它们 的相对重要程度是不同的。通常用权重来定量表示 各指标的重要程度,指标越重要,权重越大。
设有n个决策指标,分别为x1,x2,…,xn;它们对 应的权重分别为w1,w2,…,wn;
则有 w1+ w2+…+wn=1(wi≥0, 1≤i ≤ n)。
决策指标权重的确定
5. 定性指标和定量指标混合。 6. 方案与指标的关系可以明显地表示出来,例如,
表示成一个矩阵。
多指标决策的解
设一个决策问题,有两个效益型指标,分别是x1和 x2,有6个备选方案,可以用二维坐标图表示如下:
决策指标的标准化处理
6.2.1 定性指标的量化
常用方法:将这些指标依描述程度的强弱划分为若干 级别,分别赋予不同的量值。
决策指标权重的确定
通常,确定指标权重的方法可以分为以下三类: 3. 组合赋权法
由于主、客观赋权法各有利弊,实际应用中应该有 机结合。已有不少学者提出了综合主、客观赋权的组合 赋权法,主要有方差最大化赋权法、组合目标规划法、 最佳协调赋权法、基于熵的线性组合赋权法等。
现用一直角坐标描述”身高”与“体重”两个目标,得到图中5 个点。显然点③④都比①② ⑤点为优,故①② ⑤为劣解,在多目 标决策中应舍去。而③④三点中各有一个指标优越,故不能舍去, 称之为非劣解,也叫有效解。
体重
72
70
③
68
66 ①
64
⑤
④
62
②
60 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 身高
比性。 3. 指标导向不一致。
– 效益型指标,这类指标的值越大越好; – 成本型指标,这类指标的值越小越好; – 固定型指标,指标值越接近某个固定值越好; – 区间型指标,指标值越接近某个固定区间(包括
落入该区间)越好; – 偏离型指标,指标值越偏离某个固定值越好。
多指标决策的特点
4. 指标之间的矛盾性。某一指标的完善往往会损害 其他指标的实现,即改进某一指标值可能会使其他指 标值变坏。
多目标决策的优点就是它具有很大的灵活性,它 能为决策者提供多种行动方案和决策信息。单目标最优 化模型追求唯一最优解,告诉决策者的只是“必须这样 去做”;而多目标决策可以提供一组有效解及其有关信 息,决策者可以自己进行判断和选择,并且知道“如果 希望…,应该怎么办,得失如何”。毫无疑问,多目标 决策更加符合现代化管理的实际。
rij
a
j
-
a ij
a
j
a
j
对于固定型指标,令
rij
1
aij -sj m1iamxaij -sj
决策指标的标准化处理
6.2.2 不同量纲指标的标准化
【例6-3】对例6-2中量化后的决策矩阵进行标准化处理。 解:治疗时间(x1)、治疗费用(x2)和副作用(x6)为
2、线性加权法。若有m个目标f1(x),…,fm (x), 分别给以权系数λ i(i= 1,2,…,m), 然后作新的目标函数(也称效用函数):
多指标决策
多指标决策是一类特殊的多目标决策问题,其特 征就是具有有限个离散的方案。多指标决策在决策 论、经济学、统计学、心理学、管理学中有广泛的 应用。
毫无疑问,前面已经介绍过的多目标决策的常 用方法同样也适用于多指标决策.但是由于多指标 决策的特殊性,因此有很多特殊的、简便的决策方 法。
例如,要寻找一根针, 不一定非要找最尖的那根针, 否则必须把所有的针全拿来 进行比较,如果改成寻找一 根尖得能缝衣服的针,问题 就简单多了.
很明显,“满意解”模型耍比“最优解模 型”耍丰富得多,也更加简化和容易接受.由 此可知,现代管理决策所追求的不是绝对意义 的最优解,而是相对意义的满意解.
3、从“唯一解”到“一组 解”
1.从“经济人”到“管理人。
从亚当.斯密开始,西方经济学家的一个基本假设就是认为企业的决策 者是“经济人。,他们的行为只受“利润最大化”行为准则所支配,他 们从事经济活动没有其它的动机只以追求最大经济利益(实现企业的最大 利润)为唯一的目标。
H.A.西蒙(H.A.simon)着眼于现代企业的管理职 能,否定了“经济人”的概念和“利润最大化”行为准则, 提出了“管理人”和“令人满意”行为准.H.A.西蒙指 出——现代管理决策的两个基本假设是:
但是,决策者可以预先规定一个满足原定目标的最低 要求,然后寻找满足这些最低要求的方案.这样就把决 策过程大大简化了.
例如,在一块面积很大的玉 米田里,如果要找一个最大最长 的玉米,就必须测定所有的玉米 之后,才能找到.但是如果把要 求改为寻找一个能使人吃饱肚子 的玉米,问题就大大简化了.只 要找一个比较大的玉米就能填饱 肚子
2、线性比例变换
效益指标
r ij
x ij
f* j (指标向量中的最大值)
成本指标
r ij
f^ (指标向量中的最小值) j
x ij
在多标准模型中,雷达图是多种备选方案的图 例解决方法,非常有效。
地理位置
工资
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
职业前景
职业安全性
6.2.2 不同量纲指标的标准化
2. 线性比例变换法
简单方法就是将某个指标值与其最优值进行比较。
令
,
,
对于效益型指标:
对于成本型指标:
决策指标的标准化处理
6.2.2 不同量纲指标的标准化
3. 极差变换法
对于效益型指标,令
rij
a ij
-
a
j
a
ja j 对于成本型指标,令这也是一张雷达图, 只不过取了各方案的加 权分值,
地理位置
工资
0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
0
职业前景
职业安全性
多指标决策举例
【例6-1】对于阑尾炎的治疗,常见的治疗方案有保守药 物治疗、腹腔镜手术和传统手术3种。这些方案在治疗时 间、费用、效果、根治程度、耐受性等方面存在差异, 如下表所示。
举例:
找工作--在两个工作机会中选择一个,必须综合多种 因素。如起点工资、晋升机会、工作安全和工作地点等。
多指标工作选择
指标 工资
A公司0.85 B公司0.9
职业前景
0.95 0.7
职业安全性
0.6 0.95
地理位置
0.9 0.7
0.825 0.8125
标准化处理方法
1、向量归一化
主要解决存在正负数的情况,否则直接求和即可。
通常,确定指标权重的方法可以分为以下三类: 1. 主观赋权法
主观赋权法是由决策者根据自己的主观经验和判断直接赋 权的方法,主要有德尔菲法(Delphi)、相对比较法和特征 向量法等。
主观赋权法反映了决策者的主观判断或直觉,但是可能 受到决策者的知识结构、工作经验及偏好的影响,具有随意 性,再现性差。
多目标决策
前几章讨论的决策问题,仅有一个目标值 (盈利、收入…),评价准则也是单一的(最 大、最小、后悔值… )。