磁共振功能成像的应用[业界优制]
磁共振成像(MRI)基本知识及临床应用

T1加权像(T1 weighted image,T1WI) 在SE 序列中,选用短TR(通常小于500ms)、短TE
(通常小于30ms)所获得图像的影像对比主要
由T1信号对比决定,此种图像称为T1加权像。
T1WI 突出组织T1弛 豫
短TR(200-500ms) 短TE(<20ms)
☉通过调节TR和TE的长短可分别获得反映组织的T1、T2 及质子密度特性的MR图像。
☉其中T1WI具有较高的信噪比,适于显示解剖结构,也 是增强扫描的常用序列; ☉T2WI则更易于显示水肿和液体,而病变组织常含有较 多水分,在T2WI上显示为高信号,因而更易于显示病 变; ☉PDWI常可较好地显示出血管结构。
(longitudinal relaxation)
横向磁化开始消失—横向驰豫 (transverse relaxation)
(2)纵向驰豫
高能级(指向下)质子逐个回到低能级(指向上),纵向磁化 增加并复原
纵向弛豫
也称为T1弛豫,是指90度脉冲中止后,在主 磁场的作用下,纵向磁化矢量开始恢复,直 至恢复到平衡状态的过程。
重建MRI图像
三、MRI的物理学基本知识
1、人体MR成像的物质基础
原子的结构
电子:负电荷 中子:无电荷
质子:正电荷
原子核总是绕着自身的轴旋转--自旋 ( Spin )
原 子 核 自 旋 产 生 核 磁
所有的原子核都可产生核磁吗?
质子为偶数,中子为偶数 不产生核磁
质子为奇数,中子为奇数 质子为奇数,中子为偶数
90度 脉冲
T1曲线
(T1 curve)
以时间为横轴,以纵向磁化为纵轴绘制的一条曲线 T1曲线向上走行
磁共振成像原理与检查技术(医学影像技术)

骨关节系统疾病诊断
关节病变
磁共振成像能够清晰地显示关节 软骨、肌腱、韧带等结构,对于 诊断关节炎、肌腱炎等关节病变
具有很高的准确性。
骨骼肿瘤
磁共振成像可以发现骨骼肿瘤的存 在,并评估肿瘤的性质、范围和程 度,为制定治疗方案提供依据。
脊柱疾病
对于腰椎间盘突出、颈椎病等脊柱 疾病,磁共振成像能够提供详细的 病变信息,有助于医生制定合适的 治疗方案。
。
04
CATALOGUE
磁共振成像的优缺点
优点
软组织对比度高
磁共振成像能够提供高分辨率 的软组织图像,有利于观察和
诊断各种软组织病变。
无辐射损伤
磁共振成像不涉及X射线或放射 性核素等放射性物质,因此对 患者的身体无辐射损伤。
任意平面成像
磁共振成像可以在任意平面进 行成像,有助于多角度观察病 变,提高诊断的准确性。
液体衰减反转恢复序列(FLAIR)
用于检测脑部病变,特别是对脑白质病变和脑脊液的显示效果较好。
扩散加权成像(DWI)
用于检测组织中的水分子扩散运动,常用于脑部和腹部疾病的诊断。
功能成像序列
1 2
灌注加权成像(PWI)
用于评估组织血流灌注情况,常用于脑缺血的诊 断。
磁敏感加权成像(SWI)
用于检测组织磁敏感性的差异,常用于脑部疾病 的诊断。
脑部肿瘤
神经退行性疾病
利用磁共振成像技术可以清晰地显示 肿瘤的位置、大小和形态,有助于医 生对脑部肿瘤进行诊断和评估。
如阿尔茨海默病、帕金森病等,磁共 振成像技术可以观察到脑部结构和功 能的异常,有助于这些疾病的早期诊 断和病情监测。
脑血管疾病
磁共振血管成像技术可以无创地评估 脑血管状况,发现脑血管狭窄、动脉 瘤等病变,对于诊断和预防脑血管疾 病具有重要意义。
磁共振成像系统工作原理和作用机理

磁共振成像系统工作原理和作用机理磁共振成像(Magnetic Resonance Imaging,MRI)作为一种非侵入性的医学成像技术,已经在临床诊断中占据了重要地位。
它通过利用人体内的原子核在外加磁场和射频场的作用下产生共振吸收和放射能量的特性,实现对人体组织的成像。
本文将对磁共振成像系统的工作原理和作用机理进行深度探讨,并探讨其在医学领域中的应用。
1. 外加磁场对人体原子核的影响我们需要了解外加磁场对人体内原子核的影响。
在磁共振成像系统中,通过巨大的外部磁场(一般为1.5T或3.0T)作用下,人体内的氢原子核会产生磁偶极矩,使得它们在外磁场的作用下产生能级分裂,进而产生共振吸收和放射能量的现象。
2. 射频脉冲的作用与成像原理我们需要了解射频脉冲对原子核的作用。
在磁共振成像系统中,射频脉冲会给氢原子核施加能量,从而使得原子核进入激发态。
当射频脉冲停止后,原子核会放出能量,并通过检测这些能量的放射信号,系统可以得到关于人体内部组织结构和功能的信息,进而实现成像。
3. MRI成像的优势和应用领域磁共振成像系统的工作原理决定了其在医学领域中具有独特的优势。
相比于传统的X射线成像技术,MRI不需要使用有害的辐射,因此对患者没有伤害。
MRI在描绘软组织和结构的能力方面也优于CT扫描。
由于这些优势,MRI在神经学、骨科、心脏学等领域都有着重要的应用,为医生提供了更准确的诊断信息,对于疾病的早期发现和诊断起到了关键作用。
4. 个人观点和总结对于磁共振成像系统的工作原理和作用机理,我个人认为其非侵入性、高分辨率和多参数成像的特点,使得它在医学诊断和研究中具有重要价值。
随着技术的不断进步,MRI成像技术将会越来越广泛地应用于医学领域,并为人们的健康提供更多帮助。
通过本文的深度探讨,相信读者对磁共振成像系统的工作原理和作用机理有了更深入的理解。
希望本文可以帮助读者更好地认识和了解MRI技术,并对其在医学中的应用产生更深刻的思考。
磁共振成像技术在医学方面的应用

磁共振成像技术在医学方面的应用一、磁共振成像技术的概述磁共振成像技术(Magnetic Resonance Imaging,MRI)是一种现代医学影像检查技术。
它利用强磁场和射频波产生的信号来制得人体内部的三维图像,可以在不开刀的情况下全面、准确地了解人体结构、功能和病理变化。
MRI和传统的X线影像、CT等影像技术相比具有无辐射、分辨力高、对软组织和病理变化的检出率高、适用于各个部位等优点,因此成为现代医学影像技术中最为重要的一种。
另外,MRI临床应用的可观性及信息量已超过其他医学成像技术,如超声、X线、CT等。
二、磁共振成像技术在医学方面的应用1. 头颅和脑部成像:MRI可以检查脑血管病变、脑肿瘤、病理性痴呆、脑炎、脑卒中、病毒性质心包炎等。
MRI还可以显示脑部解剖结构和病理解剖变化、观察脑梗塞及再灌注过程等。
2. 颈部成像:可以检查下颌骨和上颈椎、甲状腺、甲状旁腺、喉、咽喉、口咽、喉癌和喉囊等,通过MRI不仅可以清晰切片,而且可以直观地展示邻近组织之间的关系。
3. 胸部和心脏成像:MRI可以检查心肌病、心脏瓣膜病、冠状动脉疾病、先天性心脏病、心包炎、心肌炎、肺癌、肺栓塞、肺气肿、支气管扩张、纵隔肿瘤等,还可以观察心脏的大小、形态、结构及功能。
4. 腹部和盆腔成像:MRI可以检查胃癌、肝癌、胰腺癌、胆管炎、胆囊炎、肾炎、肾结石、淋巴结转移、输卵管堵塞、子宫肌瘤、卵巢囊肿、前列腺癌等疾病。
5. 骨骼成像:MRI可以检查关节炎、骨质疏松、骨髓炎、肌肉骨骼疾病、骨肉瘤等疾病。
三、磁共振成像技术的优势和缺点1. 优点:(1)分辨率高。
MRI其对软组织、心肌、脑等的成像分辨率非常之高,可以观察到其他成像手段所无法识别的部位。
(2)优良的空间分辨力。
MRI的空间分辨率并不依赖于成像方向,所以可以非常直观地反映所检查区域的解剖结构及病理变化。
(3)安全使用。
MRI成像没有辐射,对人体安全,没有任何创伤。
2. 缺点:(1)昂贵。
磁共振DWI的应用[业界优制]
![磁共振DWI的应用[业界优制]](https://img.taocdn.com/s3/m/fbdeb55f16fc700aba68fc47.png)
扶风书屋
32
SWI对创伤的程度能做出更准确的诊断, 对预后能提供有价值的信息,并对指导 治疗和康复有帮助
扶风书屋
33
16岁,女,系统性红斑狼疮
扶风书屋
34
海 绵 状 血 管 瘤
扶风书屋
35
扶风书屋
36
25y,男,长期偏头痛 DAV发育性静脉瘤
扶风书屋
37
静脉窦血栓形成
扶风书屋
38
急性脑梗
片 ,ADC值低于脑脊液,DWI呈高信号
扶风书屋
20
扶风书屋
表皮样囊肿
21
扶风书屋
蛛网膜囊肿
22
六、弥漫性轴索损伤
也称剪力伤,患者通常出现昏迷。CT难 于发现病变。
颅脑突然加速、减速或旋转,损伤累及 轴索、穿支动脉的损伤,引起多发小灶 出血。
损伤部分:皮髓交界区,胼胝体,上部 脑干背外侧
7
扶风书屋
亚
急
性
期
脑
梗
死
(10d)
8
慢 性 期 脑 梗 塞 (3 月)
扶风书屋
9
三、脑出血
超急性 急性期 亚急性 亚急性晚 慢性期
期
早期
期
T1WI 稍低或 等、低 高 等
高
极低
T2WI 稍高 极低 极低
高
高
DWI 高
极低
低
高
低
扶风书屋
10
超
急
性
出
扶风书屋
血
11
急性期及 亚急性早 期出血
扶风书屋
磁共振扩散加权成像
( diffusion weighted imaging ,DWI )
脑功能成像的MRI原理及其应用

南京军区福州总医院 医学影像中心
扫描应用序列
单次激发自旋回波平面成像(EPI)序列。
南京军区福州总医院 医学影像中心
定量分析各向异性程度的参数
FA(各向异性分数,Fractional Anisotropy): 最常用,临床应用中主要用来反映发育过程中脑 白质的髓鞘化程度或变性病中纤维束的破坏。FA 值的范围为0~1,0代表最大各向同性的弥散,1 代表假想状况下最大各向异性的弥散。
DWI临床应用
中枢神经系统
超急性期和急性期脑缺血 感染 脱髓鞘病变 肿瘤
南京军区福州总医院 医学影像中心
化脓性感染:脓腔于DWI呈均匀高信号,ADC降 低——弥散受限,与脓液的高粘滞度和脓肿的 多细胞性有关。
对细菌性脑膜炎并发的硬膜下(外)积脓和炎 性渗出物有鉴别诊断意义,从而有利于指导临 床治疗。
自由水比固体组织有极高的弥散系数,导致 信号大量丢失,在DWI上呈明显低信号。
南京军区福州总医院 医学影像中心
DWI成像序列
SE-EPI(单次激发多层面自旋回波-回波平 面加权成像)序列,即在自旋回波序列的基础上 在3个互相垂直的方向上于180度脉冲前后分别施 加成对的弥散敏感梯度脉冲。
优点:1、明显减少成像时间;
南京军区福州总医院 医学影像中心
当顺磁性对比剂(Gd-DTPA)首次快速、大 量通过毛细血管网时,组织血管腔内的磁 敏感性增加,引起局部磁场的变化,进而 引起邻近氢质子共振频率发生变化使质子 自旋失相位,从而导致T2或T2*值的减低, 反映在磁共振影像上则是信号强度降低。
功能磁共振成像技术在脑科学中的应用

功能磁共振成像技术在脑科学中的应用随着科学技术的不断发展,脑科学的研究也越来越深入。
功能磁共振成像技术(fMRI)作为一种非侵入性的神经影像学技术,为脑科学领域提供了新的研究手段。
本文将探讨功能磁共振成像技术在脑科学中的应用。
第一部分:功能磁共振成像技术的基本原理功能磁共振成像技术是一种通过测量脑血液流量变化来反映神经活动的影像学技术。
简单来说,当某一个区域的神经元活跃时,会产生一些代谢产物和血供需求的变化。
这些变化会引起该脑区域周围的血流量增加,也就是所谓的脑血氧水平(BOLD)信号。
通过对这种BOLD信号的分析,可以确定哪些区域的神经元在进行活跃,达到测量神经活动的目的。
由于该技术不需要通过扫描或插入任何设备到脑内,因此对于研究脑科学非常有用。
第二部分:功能磁共振成像技术在神经人类学中的应用功能磁共振成像技术在神经人类学中的应用非常广泛。
通过对不同人类学群体进行比较,研究人员可以探讨脑区功能和结构在不同的族群、文化和语言之间的差异。
例如,在一次研究中,研究人员使用功能磁共振成像技术研究中文和英文母语者的加工方式的差异。
他们发现英文母语者在处理音频刺激时,会激活大量的左侧语言处理区域,而中文母语者则主要使用右侧的海马区域。
此外,功能磁共振成像技术还被用来研究不同的神经精神疾病。
例如,在一项研究中,研究人员使用fMRI来观察焦虑症患者的脑活动。
他们发现,焦虑症患者在面临压力时,会出现更多的大脑活动和血流。
第三部分:功能磁共振成像技术在研究意识、情绪和决策中的应用另一个广泛使用功能磁共振成像技术的领域是研究意识、情绪和决策。
通过观察大脑不同区域的BOLD信号变化,研究人员可以确定意识状态下大脑的哪些区域活跃、情绪是如何在大脑中加工和决策过程是如何进行的。
例如,在一项研究中,研究人员使用fMRI来研究决策过程中的风险偏好和奖励反应。
他们发现,人们对风险估计的过程在大脑中是通过下丘脑和扣带回(ACC)这两个区域互相竞争而进行的。
磁共振成像

列的1 /ETL(echo train length,ETL) 。
TSE序列特点:
因回波链上每个回波的时间和幅度不同,反 映组织的对比也不一样,一般将所需的某一回 波的数据线排列在K空间中心,这一回波时间称 为有效回波时间(TEeff),而其它回波的数据 线则排列在K空间的周围部分。
磁共振成像技术的临床应用进展(主要有五个方面) 磁共振水成像技术 (MR 磁共振血管成像 hydrography)
MR弥散成像-对水分子的布郎运动非常敏感,评
价水分子中质子的移动,能使缺血<2h的水肿脑
细胞显示异常的信号。
MR灌注成像-能动态显示脑组织内的血容量、血
流量和流速,能早期显示脑血流灌注缺损区。
磁共振波谱成像(MRS):
能够无创检测生理和生化代谢,提供
生物体内化学组织部分的信息资料。临
床常用的原子核是31P和1H。
磁 共 振 成 像
(magnetic resonance imaging, MRI)
磁共振成像为近二十年来飞速发展起来的一种医学成像 技术,具有多平面、多方位、多参数成像的特点,为组织的 解剖、病理、代谢及流动提供一种全新的无创的评价方法。 核磁共振的“核”即即氢原子核;“磁”即一个强大的静磁
场和在此静磁场上按时叠加一个小的射频
CT
稍低 敏感 不能 有 有 较低 无 稍低
磁共振硬、软件的改进与发展:
硬件方面:磁体小型化、低磁场设备、专用型 MR 扫描仪。 开放式MR机:常规成像和介入操作兼容。 线圈:全相控阵列线圈、相控阵列线圈 一体化。 与检查床
软件方面:
①超高速、时时重建、超高分辨率显示、将图像显示 分辨率提高至微秒水平。②一次屏气即可完成图像采 集并快速重建。③依次扫描完成采集原始数据后,即 可在工作站进行图像后处理(包括图像分割、图像融
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器噪声的防护
神经肌肉刺激
扶风书屋
10
刺激的设计
• 组块设计(Blocked design)
常用,优点为方便可靠,容易获得兴奋区信号, 缺点为:1.持续和重复给予相同的刺激可引起 受试者注意力改变和对刺激的适应,2.尽管本 设计可用于功能定位,但不能提供脑局部的反 应特点
• 事件相关设计(Event-related design)
扶风书屋
14
BOLD技术在研究领域的应用
• BOLD 已经广泛用于基础研究领域 运动(简单运动和复杂运动)、感觉
(包括听、视觉系统)、语言、记忆、 儿童脑发育等
扶风书屋
15
BOLD技术在临床领域的应用
BOLD在临床也有很广泛的应用前景,如神 经外科手术术前计划和术后评价、难治性癫痫的 定位 、脑康复的评价、慢性疼痛治疗的评价、针 灸穴位治疗机理的研究、药物成瘾病人脑内功能 的研究、无创性Wada试验(语言优势半球定位)、 记忆优势半球的定位、在痴呆研究中的应用等
扶风书屋
19
汉字同音字与同义字脑部fMRI
扶风书屋
20
扶风书屋
21
左手运动
右侧脑膜瘤与手指运动皮层的关系
右手运动
fMRI在外科手术扶计风书划屋制订中的应用
22
左手运动
右侧胶质瘤与手指运动皮层的关系
右手运动
fMRI在外科手术扶计风书划屋制订中的应用
23
Postcentral G. activation during electroacupuncture
扶风书屋
16
A
10-36
B
10-17
7名受试的冠状位平均脑激活图
A:颜色知觉激活图(V4)
B:运动知觉激活图(MT+)
颜色柱表示统计值P
扶风书屋
17
%信号变化率 %信号变化率
LV4
LMT+
2
1
0.8
1.5
0.6
1
0.4
c
0.2
c
0.5
m
0
m
0 1 2 3 4 5 6 7 8 9 10
-0.5
-0.2 1 2 3 4 5 6 7 8 9 10 -0.4 -0.6
扶风书屋
8
• 生理性噪声的修正方法
Navigator(导航) echo correction methods Non-navigator (非导航)echo correction methods
扶风书屋
9
BOLD技术的实现
• 被试的准备和训练 • 刺激的施加(视觉、听觉、嗅觉、体感
觉、痛觉、运动等)
可有效地避免神经元反应减弱,相对提高了实 验的敏感性,可敏感地获得兴奋区局部血氧反 应的曲线
扶风书屋
11
组块设计
事件相关设计
扶风书屋
12
BOLD数据处理
• 图像配准 空间配准 检出并修正运动伪影 将数据编码到三维结构像 按照Talairach图谱进行标准化
扶风书屋
13
BOLD数据处理
• 统计学处理方法 种类繁多(最简单的包括t检验) 常用的软件包括AFNI、Stimulate和SPM 设备配置的工作站也可进行自动处理
• BOLD的空间分辨率通常可达到3~5mm, 优于其他非创伤性检测方法,如PET等
• BOLD的时间分辨率也较高,但不如EEG 等,它受到许多因素的影响,如神经元血流动力学之间的结合情况、脑活动的 复杂程度等
扶风书屋
6
生理性噪声
• BOLD图像的信号通常很微弱(中央前、 后回等信号较强的区域一般也在4%以下, 细微的兴奋区信号变化通常小于1%)
时间点
时间点
左侧V4
扶风书屋
左侧MT+
18
本研究利用事件相关功能磁共振成像技
术研究了参与颜色知觉和运动知觉的脑
结构,并研究了有关脑区的局部血氧反 应。结果表明:颜色刺激主要激活V4, 但也可一定程度激活MT+;而运动刺激 主要激活MT+,但V4也有一定激活。这 一现象在多数组块设计脑功能成像中未 能得到反映,提示事件相关fMRI技术敏 感度较高
磁共振功能成像的应用
汕大医学院一附院 肖壮伟
扶风书屋
1
• 磁共振功能成像 (fMRI) 是磁共振成像中 迅速发展的领域 • fMRI包括: 弥散加权像(DWI)
灌注成像(PI)
包括外源性和内源性灌注成像 血氧水平依赖法(BOLD)为内源性PI
磁共振波谱分析(MRS)
பைடு நூலகம்
扶风书屋
2
• 血氧水平依赖法(BOLD) 成像是fMRI常用的方 法,可用于无创性地检测脑功能变化情况,其 信号具有较高的敏感性和空间特异性
• 在其他条件(设备硬件、脉冲序列、制 动装置等)稳定的情况下,生理性噪声 为主要的噪声源
• 生理性噪声包括呼吸、心跳、脑脊液搏 动、眼球运动等引起的噪声
扶风书屋
7
呼吸噪声(约0.3Hz) 心跳噪声(约0.9Hz)
图示正常人平静躺在磁体(4.0T, TR=200ms, TE=26ms) 内时脑部信号曲线,可见呼吸和心跳的噪声
扶风书屋
25
右足主动持续背屈 扶风书屋 右足电刺激持续背曲26
右足主动持续背屈
右足电刺激持续背曲
扶风书屋
27
海洛因成瘾者脑部fMRI
扶风书屋
28
Patient YGJ
• Male • Age: 52 years • Right-handed • Native Chinese speaker • Education: 9 years
• 最早的人脑BOLD成像是在1992年使用视觉刺 激(Kwong, Ogawa)和运动任务(Bandettini) 而实现的
• 由于神经元兴奋区血液动力学及代谢的特点, 可导致其静脉血中相对的氧合血红蛋白增加及 去氧血红蛋白减少
扶风书屋
3
BOLD基本原理
动脉血(氧合血红蛋白)
毛细血管
静脉血(去氧血红蛋白+氧合血红蛋白)
神经元兴奋区静脉血中氧合血红蛋白含量高于非兴奋 区静脉血中氧合血红蛋白含量,在T2*图像中信号较 高(2-3%)
扶风书屋
4
BOLD扫描技术
• 梯度回波和自旋回波 • 回波平面成像(EPI)
SE-EPI(信噪比好,适于高场机) GRE-EPI(敏感但伪影重)
• 螺旋扫描技术
扶风书屋
5
BOLD的分辨率
1.0 0.5
0
SII
-0.5
-1.0
Intensity
S1
S2
针刺脑部fMRI
S1
S2
扶风书屋
24
• 图片包括主动持续右足背屈(对应为1)和持 续电刺激(对应为6)
• “>”说明兴奋较强,“<”说明兴奋较弱
• 选用SPM软件处理,所用P值为0.0001
• 图象的左右方向均为:上对应左,下对应右; 左对应左,右对应右