微波技术与天线实验2利用HFSS仿真分析矩形波导

合集下载

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计【摘要】本文主要介绍了基于HFSS软件的矩形微带天线仿真与设计。

在详细阐述了研究背景、研究目的和研究意义。

接着对HFSS软件进行了介绍,并解释了矩形微带天线的原理。

然后介绍了设计流程和仿真结果分析,分析了天线性能并提出了优化方案。

在总结了研究成果,展望未来研究方向并提出了结论建议。

本文通过HFSS软件对矩形微带天线进行仿真和设计,为提高天线性能提供了重要参考,具有一定的实用价值和研究意义。

【关键词】HFSS、矩形微带天线、仿真、设计、天线性能、优化、原理、设计流程、结果分析、研究成果、展望未来、结论建议、研究背景、研究目的、研究意义1. 引言1.1 研究背景本文旨在通过对HFSS软件介绍、矩形微带天线原理、设计流程、仿真结果分析和天线性能优化等内容的探讨,对基于HFSS矩形微带天线的仿真与设计进行研究,从而提高微带天线的性能和应用效果。

这对于推动无线通信技术的发展,提升通信系统的性能和稳定性具有重要的意义。

1.2 研究目的研究目的是通过基于HFSS矩形微带天线仿真与设计,探索提升天线性能的方法和技术。

具体包括优化天线结构设计,提高频率带宽和增益,降低回波损耗和辐射损耗,以满足不同应用场景下对天线性能的要求。

通过对矩形微带天线原理的深入研究,结合HFSS软件的应用,将为天线设计领域的发展带来重要的参考价值。

通过本研究,旨在为提高通信系统的传输质量和覆盖范围提供有效的技术支持,推动无线通信技术的不断创新和发展。

1.3 研究意义矩形微带天线是一种常见的微波天线结构,具有简单的制作工艺、较宽的工作频带和良好的方向性等优点,因此在通信领域得到广泛应用。

本文基于HFSS软件对矩形微带天线进行仿真与设计,旨在深入研究其性能特点与优化方法,为微波通信系统的设计与优化提供参考。

本研究的意义主要表现在以下几个方面:研究矩形微带天线的仿真与设计可以深入理解其工作原理和特性,为进一步优化性能提供基础。

HFSS波导仿真 实验

HFSS波导仿真 实验
W Re(P) n dS 。 S
详细的计算方式见下页。
第三十二页,共33页。
谢谢
第三十三页,共33页。
第八页,共33页。
矩形波导TE10模的电磁场分布
TE10 模, Ez 0 。
Hz
H10
cos x e z
a
Ey
j
kc2
a
H10
sin
x
a
e
z
Hx
kc2
a
H10
sin
x
a
e
z
Ex Ez H y 0
其中,kc10
a

j
,而
k2
k2 c10
k2 ( / a)2 ,H10 是与激励源
有关的待定常数。
HFSS波导仿真 实验
第一页,共33页。
基于HFSS的金属波导电磁特性仿真实验
实验目的
• 了解HFSS仿真的基本原理、操作步骤 • 会利用HFSS对金属波导的导波特性进行仿真
• 画出波导内模式的电磁场分布,
• 理解波导中的模式、单模传输、色散与截止频率
第二页,共33页。
基于HFSS的金属波导电磁特性仿真实验
新建工程
设置求解类型
设计模型
设置材料类型
设置边界条件
设置端口激励
求解设置: 求解频率,扫频设置
剖分细化网格


扫频分析
求解
结果是否收敛 是
是否需要扫频

数据后处理:
查看参数,场分布等
第六页,共33页。
计算结果,项目的后处理
HFSS界面
第七页,共33页。
矩形波导示意图
矩形波导的结构如图1,波导内传播的电磁波可分为TE模和TM模。

微波专业技术与天线实验3利用HFSS仿真分析矩形波导

微波专业技术与天线实验3利用HFSS仿真分析矩形波导

微波技术与天线实验报告实验名称:实验3:利用HFSS仿真分析矩形波导学生班级:学生姓名:学生学号:实验日期:2011年月日一、 实验目的学会HFSS 仿真波导的步骤,画出波导内场分布随时间变化图,理解波的传播与截止概念;计算传播常数并与理论值比较。

二、 实验原理矩形波导的结构如图1,波导内传播的电磁波可分为TE 模和TM 模。

x yz图 1矩形波导1) TE 模,0=z E 。

coscos z z mn m x n y H H e a b γππ-= 2cos sin x mn c z n m x n y E H b a bj k e γπππωμ-= 2sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=-2sin cos z x mn c m m x n y H H e k a a bγλπππ-= 2cos sin z y mn c n m x n y H H e k ba b γλπππ-= 其中,c kmn H 是与激励源有关的待定常数。

2) TM 模Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。

注意:对于mn TM 和mn TE 模,m, n 不能同时为零,否则全部的场分量为零。

mn TM 和mn TE 模具有相同的截止波数计算公式,即c k (mn TM )=c k (mn TE )所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即c λ(mn TM )=c λ(mn TE )=222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛b n a mc f (mn TM )=c f (mn TE )对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ<c λ)的模式才能在波导中传播。

由公式可以看出矩形波导的c f ,c λ不仅与波导的尺寸a, b 有关,还和模指数m, n 有关。

当a, b 一定时,随着f 的改变,矩形波导可以多模传播,也可以单模传播,甚至也可以处于截止状态。

射频和微波工程实践入门、用HFSS仿真微波传输线和元件

射频和微波工程实践入门、用HFSS仿真微波传输线和元件

用HFSS仿真微波传输线和元件第一章用HFSS仿真微波传输线和元件 01.1 Ansoft HFSS概述 01.1.1 HFSS简介 01.1.2 HFSS的应用领域 (1)1.2 HFSS软件的求解原理 (1)1.3 HFSS的基本操作介绍 (3)1.3.1 HFSS的操作界面和菜单功能介绍 (3)1.3.2 HFSS仿真分析基本步骤 (4)1.3.3 HFSS的建模操作 (5)1.4 HFSS设计实例1——矩形波导的设计 (10)1.4.1 工程设置 (10)1.4.2 建立矩形波导模型 (11)1.4.3 设置边界条件 (12)1.4.4 设置激励源wave port (14)1.4.5 设置求解频率 (15)1.4.6 计算及后处理 (15)1.4.7 添加电抗膜片 (17)1.5 HFSS设计实例2——E-T型波导的设计 (23)1.5.1 初始设置 (23)1.5.2 建立三维模型 (24)1.5.3 分析设置 (27)1.5.4 保存工程 (27)1.5.5 分析 (27)1.5.6 生成报告 (28)1.6 HFSS设计实例3——H-T型波导的设计 (31)1.6.1 创建工程 (31)1.6.2 创建模型 (32)1.6.3 仿真求解设置 (36)1.6.4 比较结果 (37)1.7 HFSS设计实例4——双T型波导的设计 (39)1.7.1 初始设置 (39)1.7.2 建立三维模型 (40)1.7.3 分析设置 (43)1.7.4 保存工程 (44)1.7.5 分析 (44)1.7.6 生成报告 (45)1.8 HFSS设计实例5——魔T型波导的设计 (47)1.8.1 建立匹配膜片与金属杆 (48)1.8.2 分析设置 (48)1.9 HFSS设计实例6——圆波导的设计 (52)1.9.1 初始设置 (52)1.9.2 建立三维模型 (53)1.9.3 分析设置 (55)1.9.4 保存工程 (56)1.9.5 分析 (56)1.9.6 生成报告 (57)1.10 HFSS设计实例7——同轴线的设计 (64)1.10.1 初始设置 (64)1.10.2 建立三维模型 (65)1.10.3 分析设置 (68)1.10.4 保存工程 (69)1.10.5 分析 (69)1.10.6 生成报告 (70)1.11 HFSS设计实例8——微带线的设计 (77)1.11.1 初始设置 (77)1.11.2 建立三维模型 (78)1.11.3 建立波导端口激励 (79)1.11.4 分析设置 (80)1.11.5 保存工程 (80)1.11.6 分析 (81)1.11.7 生成报告 (82)1.11.8 产生场覆盖图 (82)1.12 HFSS设计实例9——单极子天线的设计 (85)1.12.1 创建工程 (85)1.12.2 创建模型 (85)1.12.3 设置变量 (89)1.12.4 设置模型材料和边界参数 (90)1.12.5 设置求解频率和扫描范围 (93)1.12.6 设置辐射场 (93)1.12.7 确认设置并分析 (93)1.12.8 显示结果 (94)1.13 HFSS设计实例10——方形切角圆极化贴片天线的设计 (98)1.13.1 设计原理及基本公式 (99)1.13.2 创建工程和运行环境设定 (99)1.13.3 创建模型 (99)1.13.4 求解设置 (100)1.13.5 有效性验证和仿真 (100)1.13.6 输出结果 (100)1.13.7 设置变量与参数建模 (102)1.13.8 创建参数分析并求解 (102)1.13.9 优化求解 (104)1.13.10 输出优化后的结果 (105)1.14 参考文献 (108)第一章用HFSS仿真微波传输线和元件1.1 Ansoft HFSS概述1.1.1 HFSS简介Ansoft HFSS (全称High Frequency Structure Simulator, 高频结构仿真器)是Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,可以对任意的三维模型进行全波分析求解,先进的材料类型,边界条件及求解技术,使其以无以伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术使其成为高频结构设计的首选工具和行业标准,已经广泛地应用于航空、航天、电子、半导体、计算机、通信等多个领域,帮助工程师们高效地设计各种高频结构,包括:射频和微波部件、天线和天线阵及天线罩,高速互连结构、电真空器件,研究目标特性和系统/部件的电磁兼容/电磁干扰特性,从而降低设计成本,减少设计周期,增强竞争力。

矩形波导转微波谐振腔同轴天线的仿真设计

矩形波导转微波谐振腔同轴天线的仿真设计

•理论与设计•矩形波导转微波谐振腔同轴天线的仿真设计闫新胜12!赵连敏刘甫坤吴大俊贾华单家芳1!•中国科学院等离子体物理研究所,安徽合肥230031; 2.中国科学技术大学,安徽合肥230026)摘要:矩形波导转谐振腔同轴天线是微波等离子体镀膜系统的重要组件之一。

借助仿真模拟软件,以中心频率915MHz 仿真设计了两种矩形波导同轴天线转换器。

其一是垂直结构,同轴天线与矩形波相交;其二是相切弧结构,同轴天线内导体以相切的弧线向矩形波导过渡。

仿真分析了两种结构的适用范围&分析表明,加销钉的垂直结构在100MHz带宽范围内,反射系数小于一10dB,同轴内导体的直径需不大于波导宽度的1/10;优化后的相切弧结构在100MHz带宽范围内,反射系数小于一10dB同轴内导体直径需不小于波导宽度的1/4&关键词:波导转换;HFSS仿真模拟;反射系数中图分类号:TN812;TN814文献标志码:A文章编号:1002-8935(2019)03-0055-04doi:10.16540/11-2485/tn.2019.03.13Design and Simulation of Rectangular Waveguide toMicrowave Resonant Coaxial AntennasYAN Xin-sheng1'2,ZHAO Lian-min1,LIU Fu-kun1,WU Da-jun1,JIA Hua1,SHAN Jia-fang1(1.Institute of Plasma Physics,Chinese Academy of Sciences,Hefei230031,China;2.University of Science and Technology of China,Hefei230026,China)Abstract:The rectangular waveguide to resonant cavity coaxial antenna is an important component of themicrowaveplasmacoatingsystem.Twokindsofrectangularwaveguidetocoaxialantennaconverters withthecenterfrequencyof915MHzweredesignedandsimulated.Thefirstisaverticalstructure the coaxialantennaintersectsperpendicularly withtherectangular waveguide;whilethesecondisatangent arcstructure the inner conductor of the coaxial antenna transitions to the rectangular waveguide witha tangentarc.Theapplicationscopeofthetwostructureswassimulatedandanalyzed.Theanalysisshows thatthereflectioncoe f icientoftheverticalstructure withthepinislessthan—10dB within100MHz bandwidth whenthediameterofthecoaxialinnerconductorisnotgreaterthanonetenthofthewaveguide width,meanwhile the reflection coefficient of the optimized tangent arc structure is less than—10dB with-n100MHz bandwidth when the coaxial inner conductor diameteris notlessthan a quarter ofthe waveguidewidth.Keywords:Waveguideconversion HFSSsimulation Reflectioncoe f icient在微波系统中,矩形波导和同轴波导是常用的两种传输结构&矩形-同轴波器可现两者的,在微波测试、雷统中都有重要的应用&矩波同线矩-同波转换以及同轴内伸的发线构成&目前多种形式的微波等离子体镀膜设备就是利用这种波导转同轴天线的集成设计来耦合微波能量*1—4+&矩形波同线的设计要:矩波的微波能量有效地向同轴天线转换,传输损耗低,反射系数效率高[5]&1理论基础传统论模型以悬空式波导变换为研究对象,其结构是[6—7+:在矩形波导的宽边开孔,插入同波导的内&内线的作用,矩同轴变换,内导体作为接收天线,激励起同轴波2019-03导中的TEM模式;同轴向矩形变换,内导体作为发线,激励起矩形波的TE10模&结构如图1所示&图中,h是同轴内伸进入矩形波导的;l同内线矩波的距离;为同轴波导的内导体的半径&图1波导变换结构根据R E Collin「8+,由正弦电流近似理论得到线的阻抗实部为:R=役0sin2("101#tan2(K。

电磁场与微波技术实验2矩形波导仿真与分析

电磁场与微波技术实验2矩形波导仿真与分析

实验二 矩形波导仿真与分析一、实验目的:1、 熟悉HFSS 软件的使用;2、 掌握导波场分析和求解方法,矩形波导高次模的基本设计方法;3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。

二、预习要求1、 导波原理。

2、 矩形波导模式基本结构,及其基本电磁场分析和理论。

3、 HFSS 软件基本使用方法。

三、实验原理由于矩形波导的四壁都是导体,根据边界条件波导中不可能传输TEM 模,只能传输TE 或TM 模。

这里只分析TE 模(Ez=0)对于TE 模只要解Hz 的波动方程。

即采用分离变量,并带入边界条件解上式,得出TE 模的横向分量的复振幅分别为(1)矩形波导中传输模式的纵向传输特性①截止特性波导中波在传输方向的波数β由式9 给出222000220z z c z H H k H x y ∂∂++=∂∂式7000220002200020002()cos()sin()()sin()cos()()sin()cos()()cos()sin()z x c c z y c c y x H c x y H c H n m n E j j H x y k y k b a b H m m n E j j H x y k x k a a b E m m n H j H x y Z k a a b E n m n H j H x y Z k b a b ωμωμπππωμωμπππβπππβπππ∂⎧==⎪∂⎪⎪∂==-⎪∂⎪⎨⎪=-=⎪⎪⎪==⎪⎩式822222c c k k ππβλλ=-=-式9式中k 为自由空间中同频率的电磁波的波数。

要使波导中存在导波,则β必须为实数,即k 2>k 2c 或λ<λc(f >f c ) 式10如果上式不满足,则电磁波不能在波导内传输,称为截止。

故k c 称为截止波数。

矩形波导中TE 10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。

由于TE 10模的截止波长最长且等于2a,用它来传输可以保证单模传输。

基于HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计报告矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.0528.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16,0.05Box pecMSLine -3.1125,-8,0.794 2.49 , -8 ,0.05Box pecPort -3.1125,-16,-0.052.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。

(1)、菜单栏File>>save as,输入0841,点击保存。

(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。

(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创立GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4) 介质基片:点击,:x:-14.05,y:-16,z:0。

dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

矩形波导天线的HFSS仿真

矩形波导天线的HFSS仿真

矩形波导天线的HFSS仿真1 天线的主要参数时变的电流和被加速的电荷都可以产生辐射,辐射产生的电磁能量能够在空间中传播。

天线能够定向辐射和接收电磁波能量。

天线按照工作性质可以分为发射天线和接收天线;按照用途可以分为通信天线、雷达天线、广播天线和电视天线等;按照波段可以分为长波天线、中波天线和短波天线等。

一般常见的天线结构为线天线、环天线、面天线、喇叭天线、介质天线、微带天线和裂缝天线等。

为了实现特定的工程任务,天线经常也组成天线阵列。

1.1 方向图天线的空间辐射在不同方向是不同的,可以用方向性函数(,)f θ?来描述。

根据方向性函数绘制的天线辐射(或接收)场强-振幅-方向三维特性的图形简称为方向图。

工程也常采用两个互相正交主平面上的剖面图来描述天线的方向性,一般为俯视图和水平面方向图。

绘制某一平面的方向图时,可以采用极坐标方式。

方向图一般呈花瓣状,所以也称为波瓣图,其中最大的波瓣称为主瓣,其余的称为副瓣或旁瓣。

方向图主瓣上两个半功率电平点之间的夹角称为主瓣宽度或半功率波束宽度。

电场最大值Emax 所在的波瓣称为主瓣。

在Emax 的两边,电场下降到最大值2时,对应功率为最大方向的一半,这两个辐射方向之间的夹角即为主瓣宽度。

1.2 方向性系数发射天线的方向性系数表征天线辐射的能量在空间分布的集中能力,定义为相同辐射情况下,天线在给定方向的辐射强度与平均辐射强度之比:220(,)(,)E D E θ?θ?= (1-1)式中,(),E θ?是该天线在(),θ?方向下某点的场强,0E 是全方向点源天线在同一点产生的场强。

一般情况下关心的均为最大辐射方向的方向系数。

接收天线的方向性系数表征天线从空间接收电磁能量的能力,即在相同来波场强的能量下,天线在某方向接收时向负载输出功率与点源天线在同方向接收是向负载输出功率之比。

发射天线的方向性系数和接收天线的方向性系数虽然在定义上不同,但数值上是一样的。

增益:如果将式(1-1)定义的方向性系数中的辐射功率改为天线的输入功率,即考虑天线本身的能量转换效率,则该定义为增益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验3:利用HFSS仿真分析矩形波导
一、实验原理
矩形波导的结构(如图1),尺寸a×b, a>b,在矩形波导内传播的电磁波可分为TE模和TM模。

图1 矩形波导
1)TE模,0
=
z
E。

cos cos z
z mn
m x n y
H H e
a b
γ
ππ
-
=
2
cos sin
x mn
c
z
n m x n y
E H
b a b
j
k

πππ
ωμ-
=
2
sin cos z
y mn
c
j m m x n y
E H e
k a a b
γ
ωμπππ
-
=-
2
sin cos z
x mn
c
m m x n y
H H e
k a a b
γ
λπππ
-
=
2
cos sin z
y mn
c
n m x n y
H H e
k b a b
γ
λπππ
-
=
其中,
c
k22
m n
a b
ππ
⎛⎫⎛⎫
⎪ ⎪
⎝⎭⎝⎭
+mn
H是与激励源有关的待定常数。

2)TM模
Z
H=0,由
Z
E的边界条件同样可得无穷多个TM模。

注意:对于
mn
TM和
mn
TE 模,m, n不能同时为零,否则全部的场分量为零。

mn TM 和mn TE 模具有相同的截止波数计算公式,即
c k (mn TM )=c k (mn TE )
=
所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即
c λ(mn TM )=c λ(mn TE )=
2
2
2⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛b n a m
c f (mn TM )=c f (mn TE )
对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ<c λ)的模式才能在波导中传播。

由公式可以看出矩形波导的c f ,c λ不仅与波导的尺寸a, b 有关,还和模指数m, n 有关。

当a, b 一定时,随着f 的改变,矩形波导可以多模传播,也可以单模传播,甚至也可以处于截止状态。

以a=23mm ,b=10mm 的空心矩形波导为例,由截止频率的计算公式
22)()(21b
n
a m f c +=
με
,可以计算GHz f cTE 52.610=,GHz f cTE 04.1320=,GHz f cTE 1501=,所以波导单模工作的频率范围为6.562-13.123GHz 。

二、实验步骤
1、工程设置
打开HFSS,出现新的工程窗口(如图1)。

图1 HFSS工程窗口
(1)设置求解类型Driven Modal(模式激励)。

在菜单中点击HFSS>Solution Type,出现Solution Type窗口,选择Driven Modal(如图2),点击OK。

图2设置求解类型Solution Type窗口
(2)设置模型单位毫米
在菜单栏中点击Modeler>Units,出现Set ModelUnits窗口,选择mm,点击OK(如图3)。

图3 设置模型单位Set Model Units窗口
(3)保存工程命名为waveguide
点击工具栏中的,将工程名字设为waveguide。

2、画波导
点击工具栏中的(Draw box)画矩形波导的长方体模型,在屏幕右
下角出现长方体顶点信息,输入顶点坐标(0,0,0),按回车键;屏幕右下角出现长方体尺寸信息,输入(23,10,50)(如图4),按回车键结束画图过程。

图4画长方体顶点坐标与尺寸设置
在屏幕中间模型列表中的Box1为画出的长方体(如图5),双击Box1,出现Propoties:Project1窗口,将Name一栏的value由Box1改为waveguide (如图6)。

图5
图6
3、设置边界条件
(1)选择波导的四个纵向面。

通过Edit>select>faces,将鼠标设置为选择面的状态(如图7)。

图7 select faces界面
通过按钮(旋转功能)以及ctrl键实现选择多个面,或者通过edit>select>by name(如图8),结合ctrl键选中face10、11、12、9(如图9)。

图8 select by name界面
图9 select face界面
(2)将这四个面设置为理想导体边界。

可以通过点击HFSS>Boundaries>Assign> Perfect E实现,或者点击鼠标右键>Assign Boundary> Perfect E(如图10)。

图10 设置Perfect E边界条件
4、设置激励源wave port
(1)选中波导的一个端口面(垂直于z轴的平面)。

(2)点击HFSS>Excitations>Assign>Wave port,或者点击鼠标右键>assign excitation>wave port(如图11)。

(3)另外一个端口面执行同样的操作。

图11 设置wave port界面
5、设置求解频率
(1)在菜单栏中点击HFSS>Analysis Setup>Add Solution Setup
(2)在求解设置窗口中,设置Solution Frequency:13GHz,其它设为默认值
6、计算及后处理
在菜单栏中点击HFSS>Analyze all
在菜单栏中点击HFSS>Fields>Plot Fields>E,画出电场强度的幅度分布(如图12)。

在Project Manager窗口中,选择dipole>HFSSDesign1>Field Overlays,点击鼠标右键>Animate>OK,可以演示电场强度幅度随着时间变化情况,观察理解电磁波从端口1向端口2传播的过程。

图12 波导中电场强度幅度分布
点击HFSS>Results>Solution Data(如图13),在Matrix Data项中可以查看S 参数以及传播常数Gamma等参数(如图14)。

图13 查看solution data界面
图14 S参数及Gamma。

相关文档
最新文档