高中数学专题讲义-等差数列的通项公式与求和

高中数学专题讲义-等差数列的通项公式与求和
高中数学专题讲义-等差数列的通项公式与求和

【例1】 等差数列{}n a 的前n 项和为n S ,若70a >,80a <,则下列结论正确的是( )

A .78S S <

B .1516S S <

C .130S >

D .150S >

【例2】 数列{}n a 的前n 项和2(1)n S n n =≥,求它的通项公式.

【例3】 数列{}n a 的前n 项和24n S n n =-,n n b a =,则数列{}n b 的前n 项和n T =_______.

【例4】 数列{}n a 的前n 项和24n S n n =-,则1210||||||a a a +++=L _______.

【例5】 设等差数列的前n 项的和为n S ,且1284S =,20460S =,求28S .

【例6】 设等差数列的前n 项的和为n S ,且416S =,864S =,求12S .

典例分析

等差数列的通项公式与求和

【例7】 有两个等差数列{}n a ,{}n b ,

其前n 项和分别为n S ,n T ,若对n +∈N 有72

23

n n S n T n +=

+成立,求

5

5

a b .

【例8】 在等差数列{}n a 中,1023a =,2522a =-,n S 为前n 项和,

⑴求使0n S <的最小的正整数n ; ⑵求123n n T a a a a =++++L 的表达式.

【例9】 等差数列{}n a 的前m 项和m S 为30,前2m 项和2m S 为100,则它的前3m 项和3m

S 为_______.

【例10】 等差数列{}n a 中,125a =,917S S =,问数列的多少项之和最大,并求此最大值.

【例11】 已知二次函数()()222103961100f x x n x n n =+-+-+,其中*n ∈N .

⑴ 设函数()y f x =的图象的顶点的横坐标构成数列{}n a ,求证:数列{}n a 为等差数列;

⑵ 设函数()y f x =的图象的顶点到y 轴的距离构成数列{}n d ,求数列{}n d 的前n 项和n S .

【例12】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项

及公差.

【例13】 设等差数列{}n a 的公差为d ,10a >,且9100,0S S ><,求当n S 取得最大值时n 的

值.

【例14】 已知等差数列{}n a 中,150a =,2d =-,0n S =,则n =( )

A .48

B .49

C .50

D .51

【例15】 已知{}n a 是等差数列,且253,9a a ==,1

1

n n n b a a +=

,求数列{}n a 的通项公式及{}n b 的前n 项和n S .

【例16】 在各项均不为0的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --等

于( )

A .2-

B .0

C .1

D .2

【例17】 设数列{}n a 满足1a 6=,24a =,33a =,且数列{}1n n a a +-()n *∈N 是等差数列,

求数列{}n a 的通项公式.

【例18】 已知22()2(1)57f x x n x n n =-+++-,

⑴ 设()f x 的图象的顶点的纵坐标构成数列{}n a ,求证{}n a 为等差数列. ⑵ 设()f x 的图象的顶点到x 轴的距离构成{}n b ,求{}n b 的前n 项和.

【例19】 已知数列{}n a 是等差数列,其前项和为n S ,347,24a S ==.

⑴ 求数列{}n a 的通项公式;

⑵ 设,p q 是正整数,且p q ≠,证明221

()2

p q p q S S S +<+.

【例20】 在等差数列{}n a 中,1023a =,2522a =-,n S 为前n 项和,

⑴求使0n S <的最小的正整数n ; ⑵求123n n T a a a a =++++L 的表达式.

【例21】 有固定项的数列{}n a 的前n 项和22n S n n =+,现从中抽取某一项(不包括首相、

末项)后,余下的项的平均值是79.

⑴求数列{}n a 的通项n a ;

⑵求这个数列的项数,抽取的是第几项.

【例22】 已知23123()n n f x a x a x a x a x =+++???+,123n a a a a ???,,,,成等差数列(n 为正偶

数).又2(1)f n =,(1)f n -=-,⑴求数列的通项n a ;⑵试比较12f ??

???与3的大小,

并说明理由.

【例23】 设1a ,d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,

满足56150S S +=则d 的取值范围是 .

【例24】 设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,

n 等于( )

A .6

B .7

C .8

D .9

【例25】 在等比数列{}n a 中,若公比4q =,且前3项之和等于21,则该数列的通项公式

n a = .

【例26】 已知{}n a 是公差不为零的等差数列,11a =,且1a ,2a ,3a 成等比数列.

⑴求数列{}n a 的通项; ⑵求数列{}

2n a 的前n 项和n S .

【例27】 已知数列{}n a 满足10a =,22a =,且对任意m ,n *∈N 都有

22121122()m n m n a a a m n +-+-+=+-

⑴求3a ,5a ;

⑵设2121n n n b a a +-=-()n *∈N 证明:{}n b 是等差数列;

⑶设12121()n n n n c a a q -+-=-(0)q n *∈N ≠,,求数列{}n c 的前n 项和n S .

【例28】 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于( )

A .10

B .12

C .15

D .30

【例29】 已知等差数列{}n a 的前n 项和为n S ,且满足

32

132

S S -=,则数列{}n a 的公差是( )

A .1

2

B .1

C .2

D .3

【例30】 若{}n a 为等差数列,n S 是其前n 项和,且1122π

3

S =

,则6tan a 的值为( )

A B .C .D .

【例31】 已知等差数列1,,a b ,等比数列3,2,5a b ++,则该等差数列的公差为( )

A .3或3-

B .3或1-

C .3

D .3-

【例32】 已知数列{}n a 的通项公式3

log ()1

n n

a n n =∈+*N ,设其前n 项和为n S ,则使4n S <-成立的最小自然数n 等于( )

A .83

B .82

C .81

D .80

【例33】 等差数列{}n a 中,35a =-,61a =,此数列的通项公式为 ,设n S 是数列{}

n a 的前n 项和,则8S 等于 .

【例34】 设集合W 由满足下列两个条件的数列{}n a 构成:

2

1;2

n n n a a a +++< ②存在实数M ,使n a M ≤.(n 为正整数) ⑴在只有5项的有限数列{}n a ,{}n b 中,其中11a =,22a =,33a =,44a =,55a =, 11b =,24b =,35b =,44b =,51b =;试判断数列{}n a ,{}n b 是否为集合W 的元

素;

⑵设{}n c 是等差数列,n S 是其前n 项和,34c =,18n S =证明数列{}n S W ∈;并写出M 的取值范围;

⑶设数列{}n d W ∈,且对满足条件的常数M ,存在正整数k ,使k d M =. 求证:123k k k d d d +++>>.

【例35】 已知数列{}n a 满足:10a =,2

12

21,12,2n n n n a n n a a -+???=?++???为偶数为奇数,2,3,4,n =L .

⑴求345,,a a a 的值;

⑵设121n n b a -=+,1,2,3,n =L ,求证:数列{}n b 是等比数列,并求出其通项公式;

⑶对任意的2m ≥,*m ∈N ,在数列{}n a 中是否存在连续的2m 项构成等差数列?若存在,写出这2m 项,并证明这2m 项构成等差数列;若不存在,说明理由.

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+=

2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n

高中数学等差数列求和公式分析

高中数学等差数列求和公式分析 在数学的学习中等差求和公式是学习的重点的内容,而且哟U币极爱哦多的公式需要学生记忆,下面本人的本人将为大家带来等差求和公式的介绍,希望能够帮助到大家。 高中数学等差数列求和公式 公式Sn=(a1+an)n/2 Sn=na1+n(n-1)d/2;(d为公差) Sn=An2+Bn;A=d/2,B=a1-(d/2) 和为Sn 首项a1 末项an 公差d 项数n 通项 首项=2×和÷项数-末项 末项=2×和÷项数-首项 末项=首项+(项数-1)×公差 项数=(末项-首项)(除以)/公差+1 公差=如:1+3+5+7+……99公差就是3-1 d=an-a 性质: 若m、n、p、q∈N ①若m+n=p+q,则am+an=ap+aq ②若m+n=2q,则am+an=2aq 注意:上述公式中an表示等差数列的第n项。 高中数学一次函数知识点

一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限;

高考数学第2讲数列求和及综合问题

第2讲数列求和及综合问题 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真题感悟 1.(2020·全国Ⅰ卷)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=________. 解析法一因为a n+2+(-1)n a n=3n-1, 所以当n为偶数时,a n+2+a n=3n-1, 所以a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41, 所以a2+a4+a6+a8+a10+a12+a14+a16=92. 因为数列{a n}的前16项和为540, 所以a1+a3+a5+a7+a9+a11+a13+a15=540-92=448.① 因为当n为奇数时,a n+2-a n=3n-1, 所以a3-a1=2,a7-a5=14,a11-a9=26,a15-a13=38, 所以(a3+a7+a11+a15)-(a1+a5+a9+a13)=80.② 由①②得a1+a5+a9+a13=184. 又a3=a1+2,a5=a3+8=a1+10,a7=a5+14=a1+24,a9=a7+20=a1+44,a11=a9+26=a1+70,a13=a11+32=a1+102,

所以a 1+a 1+10+a 1+44+a 1+102=184,所以a 1=7. 法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1, 由累加法得a n +2-a 1=3(1+3+5+…+n )-n +1 2 =32(1+n )·n +12-n +12=34n 2+n +1 4, 所以a n +2=34n 2+n +1 4+a 1. 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15 =a 1+? ????34×12+1+14+a 1+? ????34×32+3+14+a 1+? ?? ?? 34×52+5+14+a 1+ ? ????34×72+7+14+a 1+? ????34×92+9+14+a 1+? ?? ??34×112 +11+14+a 1+ ? ???? 34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 7 2.(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1. 所以S 6=-1×(1-26)1-2 =-63. 法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63.

高中数学必修5《等差数列求和公式》教学设计

《等差数列求和公式》教学设计 知识与技能目标:掌握等差数列前n 项和公式,能较熟练应用等差数列前n 项和公式求和。 过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。教学重点与难点:等差数列前n 项和公式是重点。获得等差数列前n 项和公式推导的思路是难点。 教学策略:用游戏的方法调动学生的积极性教学用具:flash ,ppt课堂系统部分:整节课分为三个阶段: 问题呈现阶段探究发现阶段公式应用阶段 问题呈现1:有10袋金币,在这10袋中有一袋金币是假的,已知,真金币的重量是2两/个, 而假币的重量是1两/个。 问:只给一个电子秤,而且只能秤一次,找出哪一袋金币是假的? S = 10 + 9 + + 2 + 1 2S =11+11+ +11+11问题1:1+2+ +8+9+10=? S =1+2+ +9+102S =11?10=110110S ==552动画演示: 由刚刚的计算我们已经知道,从10袋里面拿出 的金币数共55个,如果这10袋都是真币,那么 电子秤显示的数据应该是: (两) 55?2= 110 而实际显示的的数字是:102(两) 可见比全是真币时少了8两 又因为,每个假币比真币轻1两 所以,可知在电子秤上有8个假币 那么,第8袋全是假币。 设计说明:

这道题的设计新颖之处在于摆脱了以往以高斯算法引出的模式,用一道智力题,激发学生的学习兴趣。 动画的演示更能较直观地表现出本题的思维方式 承上启下,探讨高斯算法. 问题呈现2: 泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国 皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大 理石砌建而成的主体建筑叫人心醉神迷,成为世界七 大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。 传说陵寝中有一个三角形图案,以相同大小的圆宝 石镶饰而成,共有100层(见左图),奢靡之程度, 可见一斑。 你知道这个图案一共花了多少宝石吗? 2:图案中,第1层到第21层一共有多少颗宝石? 也就是联想到“首尾配对”摆出几何图形, , 如何将图与高斯的逆序相加结合起来, 让 , 将两个三角形拼成平行四边形. (1+21) ?21s = 212 设计说明: ?源于历史,富有人文气息. ?图中算数,激发学习兴趣. 这一个问题旨在让学生初步形成数形结合的思想, 这是在高中数学学习中非常重要的思想方法. 借助图形理解逆序相加, 也为后面公式的推导打下基础. 探究发现: 问题3:如何求等差数列{a n }的前n 项和S n ?

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

等差数列求和公式的

等差数列求和公式的 问题1:著名数学家高斯10岁时,曾解过一道题:1+2+3+…+100=?你们知道怎么解吗? 问题2:1+2+3+…+n=? 在探求中有学生问:n是偶数还是奇数?教师反问:能否避免奇偶讨论呢?并引导学生从问题1感悟问题的实质:大小搭配,以求平衡 设=1+2+3+…+n ,又有= + + +…+1 = + + +…+ ,得= 问题3:等差数列= ? 学生容易从问题2中获得方法(倒序相加法)。但遇到= = =…=呢?利用等差数列的定义容易理解这层等量关系,进一步的推广可得重要结论:m+n=p+q 问题4:还有新的方法吗? (引导学生利用问题2的结论),经过讨论有学生有解法:设等差数列的公差为d,则= +()+()+…+[ ] = = (这里应用了问题2的结论) 1 ————来源网络整理,仅供供参考

问题5:= = ? 学生容易从问题4中得到联想:= = 。显然,这又是一个等差数列的求和公式。 等差数列的求和对初学数列求和的离学生的现有发展水平较远,教师通过“弱化”的问题1和问题2将问题转化到学生的最近发展区内,由于学生的最近发展区是不断变化的,学生解决了问题2,就说明学生的潜在的发展水平已经转化为其新的现有发展水平,在新的现有发展水平基础上教师提出了问题3,学生解决了问题3,他们潜在的发展水平已经转化为其新的现有发展水平,在此基础上教师提出了问题4,这个案例的设计体现教师搭“脚手架”的作用不可低估,教师自始至终都应坚持“道而弗牵,强而弗抑,开而弗达”(《礼记·学记》),诱导学生自己探究数学结论, 处理好“放”与“扶”的关系。 ————来源网络整理,仅供供参考 2

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式: 111)1(1+-=+n n n n ; 1111()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? 5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 6.合并求和法:如求22222212979899100-++-+-Λ的和。 7.倒序相加法: 8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 110101011112 -= ++++==k k k k a Λ321Λ个 ] )101010[(9 1 )]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ81 10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ

学习等差数列求和公式的四个层次

学习等差数列求和公式的四个层次 黑龙江大庆实验中学(163311)毕明黎 等差数列前n 项和公式d n n na n a a S n n 2 )1(2 )(11-+ =+= ,是数列部分最重要公式之一,学习 公式并灵活运用公式可分如下四个层次: 1.直接套用公式 从公式d n n na n a a n a a S m n m n n 2 )1(2 )(2 )(111-+ =+= += +-中,我们可以看到公式中出现了五 个量,包括,,,,,1n n S n a d a 这些量中已知三个就可以求另外两个了.从基本量的观点认识公式、理解公式、掌握公式这是最低层次要求. 例1 设等差数列{}n a 的公差为d,如果它的前n 项和2 n S n -=,那么( ).(1992年三南高考试 题) (A)2,12-=-=d n a n (B)2,12=-=d n a n (C)2,12-=+=-d n a n (D)2,12=+-=d n a n 解法1 由于2n S n -=且1--=n n n S S a 知,,12)1(2 2+-=-+-=n n n a n ],1)1(2[121+---+-=-=-n n a a d n n ,2-=d 选(C). 解法2 ,2 ) 1(2 1n d n n na S n -=-+ = 对照系数易知,2-=d 此时由2 1)1(n n n na -=--知,11-=a 故,12+-=n a n 选(C). 例2 设n S 是等差数列{}n a 的前n 项和,已知33 1S 与 44 1S 的等比中项为 55 1S , 33 1S 与 44 1S 的等 差中项为1,求等差数列{}n a 的通项n a .(1997年全国高考文科) 解 设{}n a 的通项为,)1(1d n a a n -+=前n 项和为.2 )1(1d n n na S n -+= 由题意知?????=+=? 241 3 1)51(4131432 54 3S S S S S ,

高中数学数列求和

第四节数列求和 [备考方向要明了] 考什么怎么考 熟练掌握等差、等比数 列的前n项和公式. 1.以选择题或填空题的形式考查可转化为等差或等比数列的数列 求和问题,如2012年新课标全国T16等. 2.以解答题的形式考查利用错位相减法、裂项相消法或分组求和法 等求数列的前n项和,如2012年江西T16,湖北T18等. [归纳·知识整合] 数列求和的常用方法 1.公式法 直接利用等差数列、等比数列的前n项和公式求和 (1)等差数列的前n项和公式: S n= n(a1+a n) 2=na1+ n(n-1) 2d; (2)等比数列的前n项和公式: S n= ?? ? ??na1,q=1, a1-a n q 1-q = a1(1-q n) 1-q ,q≠1. 2.倒序相加法 如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[探究] 1.应用裂项相消法求和的前提条件是什么? 提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后抵消. 2.利用裂项相消法求和时应注意哪些问题?

提示:(1)在把通项裂开后,是否恰好等于相应的两项之差; (2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项. 5.分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [自测·牛刀小试] 1. 11×4+14×7+17×10+…+1 (3n -2)(3n +1) 等于( ) A.n 3n +1 B.3n 3n +1 C .1-1 n +1 D .3-1 3n +1 解析:选A ∵1(3n -2)(3n +1)=13????1 3n -2-13n +1, ∴ 11×4+14×7+17×10+…+1 (3n -2)(3n +1) =13?? ? ???1-14+????14-17+???? 17-110+…+ ??????13n -2-13n +1=13????1-13n +1=n 3n +1 . 2.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321 64,则项数n 等于( ) A .13 B .10 C .9 D .6 解析:选D ∵a n =2n -12n =1-1 2n , ∴S n =????1-12+????1-122+…+????1-1 2n =n -????12+12 2+ (12)

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

等差数列求和练习题

等差数列前和练习题 编制:纪登彪时间:2014/9/5 1.已知数列{an}为等差数列,Sn是它的前n项和.若a1=2,S3=12,则S4=( ) A.10 B.16 C.20 D.24 2. 等差数列{an}的前n项和为Sn,若a2+a6+a7=18,则S9的值是( ) A.64 B.72 C.54 D.以上都不对 3. 设数列{an}为等差数列,其前n项和为Sn,已知a1+a4+a7=99,a2+a5+a8=93,若对任意n∈N*,都有Sn≤Sk成立,则k的值为( ) A.22 B.21 C.20 D.19 4. 已知{an}是等差数列,Sn为其前n项和,n∈N*,若a3=16,S20=20,则S10的值为________. 5. 已知an=n的各项排列成如图的三角形状: 记A(m,n)表示第m行的第n个数,则A(21,12)=________. a1 a2 a3 a4 a5 a6 a7 a8 a9 ………………………… 6. 设等差数列{an}的前n项和为Sn且S15>0,S16<0,则,,…,中最大的是( ) A. B. C. D. 7. 已知{an}是等差数列,Sn为其前n项和,若S21=S4000,O为坐标原点,点P(1,an),点Q(2011,a2011),则·等于( ) A.2011 B.-2011 C.0 D.1 8. 将正偶数集合{2,4,6…}从小到大按第n组有2n个偶数进行分组,第一组{2,4},第二组{6,8,10,12},第三组{14,16,18,20,22,24},则2010位于第( )组. A.30 B.31 C.32 D.33 9. 数列{an},{bn}都是等差数列,a1=0,b1=-4,用Sk、Sk′分别表示等差数列{an}和{bn}的前k项和(k是正整数),若Sk+Sk′=0,则ak+bk=________. 10.已知数列{an}的前n项和为Sn,点(n,Sn)(n∈N+)在函数f(x)=3x2-2x的图象上. (1)求数列{an}的通项公式; (2)设bn=,求数列{bn}的第n项和Tn. 11、数列中,,且满足

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧 数列求和的七种解法 1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。 2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。例如等差数列的求和公式,就可以用该方法进行证明。 3.错位相减:形如An=Bn?Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q?Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。这种数列求和方式叫做错位相减。 4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。 5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。 6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。 7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜

想证明起到了关键作用。 高中数学解题方法实用技巧 1 解决绝对值问题 主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2 因式分解 根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是: 提取公因式 选择用公式 十字相乘法 分组分解法 拆项添项法 3

高中数学 数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

高中数学数列求和的五种方法

高中数学数列求和的五种方法 一、公式法求和 例题1、设 {a n} 是由正数组成的等比数列,Sn为其前 n 项和,已知a2 ·a4=1 , S3=7,则 S5 等于( B) (A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2 解析: ∵ {a n} 是由正数组成的等比数列 , 且a2 ·a4 = 1, q > 0 , 例题1图 注: 等比数列求和公式图 例题2、已知数列 {a n} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B) (A) 16 (B) 8 (C) 4 (D) 不确定

解析: 由数列 {a n} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {a n} 是等差数列, 由S25= 1/2 ×(a1 + a25)× 25 = 100 , 解得a1+a25 = 8, 所以a1+a25 = a12+a14 = 8。 注: 等差数列求和公式图 二、分组转化法求和 例题3、在数列 {a n} 中, a1= 3/2 , 例题3图(1) 解析: 例题3图(2) 故

例题3图(3) ∵a n>1,∴ S < 2 , 例题3图(4) ∴有 1 < S < 2 ∴ S 的整数部分为 1。例题4、数列 例题4图(1) 例题4图(2) 解析: 例题4图(3)

三、并项法求和 例题5、已知函数 f(x) 对任意x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少? 解析: 由条件可知:f(x)+f(1-x)=1,而x+(1-x)=1, ∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1, ∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。 例题6、数列 {a n} 的通项公式a n=ncos(nπ/2),其前 n 项和为Sn,则 S2012 等于多少? 解析:n 取奇数和偶数分组;答案:1006 。 四、裂项相消法求和 例题7、若已知数列的前四项是 例题7图(1) 则数列前n项和是多少? 解析: 因为通项

初二数学等差数列求和公式

初二数学等差数列求和公式 各科成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家整理了八年级数学等差数列求和公式,希望同学们牢牢掌握,不断取得进步! 公式 Sn=(a1+an)n/2 (首项+末项)X项数2 Sn=na1+n(n-1)d/2; (d为公差) Sn=An2+Bn; A=d/2,B=a1-(d/2) Sn=[2a1+(n-1)d] n/2 和为 Sn 首项 a1 末项 an 公差d 项数n 等差数列公式an=a1+(n-1)d 前n项和公式为:Sn=(a1+an)n/2=na1+n(n-1)d/2 假设m+n=p+q那么:存在am+an=ap+aq 假设m+n=2p那么:am+an=2ap 以上n均为正整数 文字翻译 第n项的值an=首项+(项数-1)公差

前n项的和Sn=首项+末项项数(项数-1)公差/2 公差d=(an-a1)(n-1) 项数=(末项-首项)公差+1 数列为奇数项时,前n项的和=中间项项数 数列为偶数项,求首尾项相加,用它的和除以2 等差中项公式2an+1=an+an+2其中{an}是等差数列 通项 首项=2和项数-末项 末项=2和项数-首项 末项=首项+(项数-1)公差:a1+(n-1)d 项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1 公差= d=(an-a1)/(n-1) 如:1+3+5+7+99 公差就是3-1 将a1推广到am,那么为: d=(an-am)/(n-m) 性质: 假设 m、n、p、qN ①假设m+n=p+q,那么am+an=ap+aq ②假设m+n=2q,那么am+an=2aq(等差中项) 注意:上述公式中an表示等差数列的第n项。 本文就是查字典数学网为大家整理的八年级数学等差数列

高中数学等差数列教案

课 题: 3.1 等差数列(一) 教学目的: 1.明确等差数列的定义,掌握等差数列的通项公式; 2.会解决知道n d a a n ,,,1中的三个,求另外一个的问题 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 本节是等差数列这一部分,在讲等差数列的概念时,突出了它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么表示等差数列的各点都均匀地分布在一条直线上,为什么两项可以决定一个等差数列(从几何上看两点可以决定一条直线) 教学过程: 一、复习引入: 上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法和前n 项和公式..这些方法从不同的角度反映数列的特点下面 我们看这样一些例子 1.小明觉得自己英语成绩很差,目前他的单词量只 yes,no,you,me,he 5个今天起每天背记10个单词,那么从今天开始,他的单词量逐日增加,依次为:5,15,25,35,… (问:多少天后他的单词量达到3000?) 2.小芳觉得自己英语成绩很棒,她目前的单词量多达她打算从今天起不再背单词

了,结果不知不觉地每天忘掉5个单词,那么从今天开始,她的单词量逐日递减,依次为:3000,2995,2990,2985,… (问:多少天后她那3000个单词全部忘光?) 从上面两例中,我们分别得到两个数列 ① 5,15,25,35,… 和 ② 3000,2995,2990,2980,… 请同学们仔细观察一下,看看以上两个数列有什么共同特征?? ·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列 二、讲解新课: 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) ⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求; ⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,则此数列 是等差数列,d 为公差 2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】 等差数列定义是由一数列相邻两项之间关系而得若一等差数列{}n a 的首项是1a ,公差 是d ,则据其定义可得: d a a =-12即:d a a +=12 d a a =-23即:d a d a a 2123+=+= d a a =-34即:d a d a a 3134+=+= …… 由此归纳等差数列的通项公式可得:d n a a n )1(1-+=

高中数学等差数列求和(1)

2013年7月GAO的高中数学等差数列组卷

高中数学等差数列求和 一.选择题(共25小题) 1.(2013?杭州模拟)数列{a n}中,,则a5+a6等于().C D. 2.(2012?温州一模)已知数列{a n}满足a1=5,,则=() C. 3.(2012?朝阳区一模)已知数列{a n}的前n项和为S n,且,则a5() . cos cos cos 6.(2007?深圳二模)已知数列{a n}的前n项和(n∈N*),则a4等于() .C D. .C 8.已知数列,…是这个数列的第()项. B.1 10.已知数列{a n)的通项公式为,则该数列的前4项依次为() D 14.(2013?天河区三模)已知数列{a n}为等差数列,且a2+a7+a12=24,S n为数列{a n}的前n项和,n∈N,则S13的 n47n

19.(2013?河池模拟)已知等差数列{a n}满足:a1>0,a1+a2+a3+…+a101=0,则使前n项和s n取得最大值的n值为 20.(2012?石家庄一模)已知等差数列{a n}的前n项和为S n,a4+a7+a10=9,S14﹣S3=77,则使S n取得最小值时n 21.(2012?荆州模拟)已知等差数列{a n}的公差d<0,若a4a6=24,a2+a8=10,则该数列的前n项和S n的最大值为 n n123n 23.(2012?广州一模)等差数列{a n}的前n项和为,则常数a=() * 25.(2011?天津)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n为{a n}的前n项和,n∈N*, 二.解答题(共5小题) 26.(2013?资阳一模)知等差数列{a n}的前n项和为S n,且a3=5,S15=225. (Ⅰ)求数列{a n}的通项a n; (Ⅱ)设b n=+2n,求数列{b n}的前n项和T n.

相关文档
最新文档