纯低温余热发电技术
纯低温水泥窑余热发电技术

纯低温水泥窑余热发电技术是直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入No.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到AQC炉汽包,PH炉汽包和No.1闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入No.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
主机设备性能特点:一、余热锅炉: AQC炉和PH炉AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
低沸点工质的有机朗肯循环纯低温余热发电技术

低沸点工质的有机朗肯循环纯低温余热发电技术引言我国水泥厂的余热发电,先后经历高温余热发电、带补燃炉的中低温余热发电和纯低温余热发电3个阶段。
纯低温余热发电与带补燃的中低温余热发电相比,具有投资省、生产过程中不增加粉尘、废渣、N 0。
和S0。
等废弃物排放的优点。
本文介绍以色列奥玛特(0RMAT)公司利用低温热源的有机朗肯循环(0 rganic RankineCyck,简称()RC)纯低温余热发电技术。
该技术有别于常规技术,其特点是:不是用水作为工质,而是使用低沸点的有机物作为工质来吸收废气余热,汽化,进入汽轮机膨胀做功。
1.低沸点的有机物在一个大气压下,水的沸点足100℃,而一些有机物的沸点却低于水的沸点,见表l。
有机物的沸点与压力之间存在着对应关系,以氯乙烷为例,见表2。
水的沸点与压力之间对应关系见表3。
由表2和表3町见,氯乙烷的沸点比水低,蒸气压力很高。
根据低沸点有机工质的这种特点,就可以利用低温热源来加热低沸点工质,使它产生具有较高压力的蒸气来推动汽轮机做功。
2 ORC纯低温余热发电在地热发电方面的应用0RC纯低温余热发电技术在我国地热发电方面已得到初步应用,我国目前已经勘测发现的地热田均属热水型热储。
热水型资源发电采用的热力系统主要有两种,即扩容(闪蒸)系统和双工质循环系统。
西藏羊八井地热电站,热水温度145℃,采用二次扩容热力系统,汽轮机(青岛汽轮机厂设计制造D3一1.’7/0.5型地热汽轮机发电机组)单机容量3000W,3 000W/min,一次进汽压力182kPa,温度115℃,二次进汽压力54kPa,温度81℃,额定排汽压力为10kPa。
双工质循环系统中,地热水流经热交换器,把地热能传递给另一种低沸点丁质,使之蒸发产生蒸气,组成低沸点工质朗肯循环发电。
双工质循环机组,其热效率高,结构紧凑。
我国的小型双工质循环系统地热电站——辽宁营口熊岳试验电站的装机容量2×J00KW,利用地热水(水温75℃)发电,于1977年1 1月投入运行。
低温余热发电循环技术

低温余热发电循环技术一、低温余热发电低温余热发电技术是通过回收低于300~400℃的中低温的废蒸汽、烟气所含的低品位的热量来发电,它将低品位的或废弃的热能转化为高级能源——电能。
二、低温余热发电循环技术1、朗肯循环朗肯循环一般指蒸汽郎肯循环,适用于烟气高于350℃以上的余热。
在朗肯循环中,水在锅炉(或余热锅炉)中被加热,产生高温和高压蒸汽。
该蒸汽流过汽轮机时急剧膨胀后冷却至低温、低压的尾气,该汽轮机驱动一台发电机发出电力。
从汽轮机排出的尾气被具有环境温度的空气,或被来自冷却水池或冷却塔中的冷却水冷却成水。
凝结水接着被泵入锅炉重复上述过程。
这种简单的朗肯循环框图如图一所示。
朗肯循环电厂的效率较差,即使是容量最大、采用朗肯循环的最新型的燃煤电厂,一般来说其循环效率都超不过35%(目前国内亚临界参数燃煤电厂的循环效率已达38%,超临界和超超临界参数的燃煤电厂的循环效率分别可达40和43%左右),也就是说燃料燃烧产生的总热量中仅有35%被转换成了热能。
这65%的能量损失是由于一系列的原因造成的。
其中约15%的能量损失是由于燃料中的水分、炉墙的热辐射、排烟损失和自耗电所造成的。
朗肯循环是目前槽式太阳能热电站中广泛采用的动力循环模式, 用太阳热加热集热器中的导热油,经过换热产生蒸汽, 驱动汽轮机带动发电机发电代表性的电站有美国的SEGS 系列电站, 西班牙的Andaso l 系列电站等。
2、有机朗肯循环有机朗肯循环采用高分子量有机工质(如正戊烷), 相变温度低, 可以从温度较低的热源吸热, 并转化为电能。
主要优点是运行温度较低, 可以将槽式集热温度由390°降到304°,降低集热损失; 采用有机工质, 电站可以建在缺水的沙漠地区。
有机朗肯循环系统的主要缺点是循环效率低, 气温较高时比蒸汽循环低15% ~ 25% ,同时成本较高。
3、卡琳娜循环卡琳娜循环系统适合中低温余热利用,是实现200℃以下热电转换最有效的途径。
水泥窑第一代纯低温余热发电技术

水泥窑第一代纯低温余热发电技术核心提示:第一代余热发电技术填补了我国水泥行业的空白,为我国发展这项技术奠定了基础并积累了宝贵的经验,相当于上世纪九十年代初的新型干法窑水平,投资、发电能力、运行的稳定性等都存在一定的问题。
一、水泥窑第一代纯低温余热发电技术的定义及特征1.水泥窑第一代纯低温余热发电技术:在不影响水泥熟料产量、质量,不降低水泥窑运转率,不改变水泥生产工艺流程、设备,不增加熟料电耗和热耗的前提下,采用0.69MPa~1.27MPa—280℃~340℃蒸汽将水泥窑窑尾预热器排出的350℃以下废气余热、窑头熟料冷却机排出的350℃以下废气余热转化为电能的技术。
第一代纯低温余热发电技术除上述定义外还同时具有如下两个或两个以上的特征:1)冷却机仅设一个用于发电的抽废气口;2)汽轮机主蒸汽温度不可调整,随水泥窑废气温度的变化而变化;3)窑头余热锅炉、窑尾余热锅炉给水系统为串联系统;4)采用额外消耗化学药品或电能的锅炉给水除氧系统。
二、水泥窑第一代纯低温余热发电技术的构成1.技术要点利用水泥窑窑尾预热器排出的350℃以下废气设置一台窑尾预热器余热锅炉(简称SP锅炉)、利用水泥窑窑头熟料冷却机排出的350℃以下废气设置一台熟料冷却机废气余热锅炉(简称AQC炉)、为余热锅炉生产的蒸汽配置蒸汽轮机、发电系统主蒸汽参数为0.69~1.27MPa—280~340℃、每吨熟料余热发电能力为3140kJ/kg熟料——28~32kwh。
2.热力系统构成模式水泥窑第一代余热发电技术热力系统构成模式主要有如下三种:其一:单压不补汽式中低温发电技术。
其二:复合闪蒸补汽中低温发电技术。
其三:多压补汽式中低温发电技术。
3.技术特点上述三种模式没有本质的区别,共同的特点:其一、将窑头熟料冷却机排出的350℃总废气分为两个部分自冷却机中抽出,其中:在冷却中部设一个抽废气口抽出400℃以下废气,将这部分废气余热用于发电;在冷却机尾部设一个抽废气口抽出120℃以下废气,这部分废气直接排放。
水泥厂中低温纯余热发电技术及其应用

环保减排
减少温室气体和其他污染物的 排放,减轻对环境的压力,符 合绿色低碳的发展趋势。
提高能源利用效率
将原本被浪费的余热转化为电 能,提高了能源的利用效率。
增加经济效益
通过回收利用余热,为企业创 造额外的经济效益,提高市场
竞争力。
技术挑战
技术成熟度
尽管技术上可行,但该技术在实际应用中的 成熟度有待进一步提高。
发电技术。
纯余热发电技术通常采用热电转 换、热光转换等新型能源转换技
术,将余热直接转换为电能。
纯余热发电技术具有高效、环保、 节能等优点,是未来能源利用的
重要方向之一。
03
水泥厂中低温余热发电技术应用
余热发电技术在水泥厂中的应用
水泥厂余热资源丰富
经济效益显著
水泥生产过程中产生大量余热,这些 余热可用于发电,降低能源消耗。
技术发展前景广阔
随着环保要求的提高和能源结构的调整,纯余热 发电技术在水泥厂中的应用前景十分广阔。
3
促进产业升级
纯余热发电技术的应用有助于水泥产业升级,提 高能源利用效率,推动行业绿色发展。
04
水泥厂中低温纯余热发电技术优势与
挑战
技术优势
高效节能
利用水泥厂排放的余热进行发 电,减少对新鲜燃料的依赖,
02
水泥厂中低温余热发电技术原理
余热发电技术概述
余热发电技术是指利用工业生产过程中产生的余热,通过热能转换和发电技术,将 其转化为电能的技术。
余热发电技术具有高效、环保、节能等优点,是工业节能减排的重要手段之一。
余热发电技术可根据不同的工业领域和生产工艺,采用不同的热能转换方式和发电 技术。
中低温余热发电技术原理
新型干法水泥窑纯低温余热发电技术推广实施方案

新型干法水泥窑纯低温余热发电技术推广实施方案根据新型干法水泥窑纯低温余热发电技术的特点和推广目标,提出以下实施方案:一、技术研发1.成立专业团队:组建由水泥生产技术、热能利用技术、电力工程等方面的专家和研究人员组成的团队,负责相关技术的研发和改进。
2.确定研发目标:明确开发新型干法水泥窑纯低温余热发电技术的核心问题,确定研发目标和技术指标。
3.技术改进和创新:结合国内外先进技术和经验,对传统水泥窑低温余热发电技术进行改进和创新,提高发电效率和能源利用率。
4.试验和验证:在实际水泥生产中建立试验装置,进行试验验证和数据收集,评估新技术在不同情况下的适用性和可行性。
二、示范工程建设1.确定示范项目:选择具备一定规模和条件的水泥生产企业作为示范项目,推广新型干法水泥窑纯低温余热发电技术。
2.设计和建设:由专业设计机构进行整体设计,确保发电系统与水泥生产系统的协同运行,确保发电设施的安全、稳定和高效运行。
3.技术指导和培训:提供相应的技术指导和培训,确保施工人员的技术水平,保证示范工程建设的顺利进行。
4.运行和监控:配备专业的运行和监控人员,确保示范工程的正常运行和设备的安全可靠性。
三、政策支持1.优惠政策:制定相关优惠政策,给予示范项目税收减免、贷款支持和高额补贴等政策支持,降低企业推广新技术的经济负担。
2.奖励措施:对于推广应用新型干法水泥窑纯低温余热发电技术的企业,给予一定的奖励措施,鼓励更多的企业积极参与推广。
3.法律法规:加强相关法律法规的制定和完善,保障新技术推广应用的合法权益,减少推广过程中的法律风险。
四、宣传推广1.宣传活动:通过举办专题研讨会、技术交流会和经验分享会等形式,宣传新型干法水泥窑纯低温余热发电技术的特点和优势,号召更多的企业参与推广。
2.宣传材料:编写相关宣传材料,包括宣传手册、技术指南和案例分析等,向水泥生产企业传播新技术的理念和实践经验。
3.媒体宣传:通过互联网、电视、广播等媒体宣传新技术的推广成果和相关的政策支持,提高新技术的知名度和影响力。
新型干法水泥生产中纯低温余热发电技术的应用

新型干法水泥生产中纯低温余热发电技术的应用对新型干法水泥生产中纯低温余热发电设备组成及工艺流程进行了介绍,并针对不同地区分析了重要参数的选择。
结合实际运行带来的经济效益、环保效益和社会效益来论证纯低温余热发电技术的应用前景。
标签:纯低温;余热发电;经济性;环保性1 概述党的十八大报告中对未来企业发展做出了明确要求:树立科学发展观,加强全过程节约管理,加强节能降耗,推动资源利用方式根本转变,提高能源利用效率和效益,节约集约利用资源,建立节约型社会,推动可持续发展战略。
国家针对近年来水泥行业高速增长中带来的能源消耗高、环境污染重等状况,制定了水泥行业发展规划,鼓励日产2000吨以上水泥熟料干法生产线采用世界先进的纯低温余热发电技术,对水泥生产过程中产生的废气余热进行回收利用。
相对旧式带补燃炉余热发电技术,新型纯低温余热发电技术从经济性、环保性及设备运行可靠性均具有较大优势,在新型干法水泥生产中正在普遍推广和使用。
2 一级闪蒸纯低温余热发电技术介绍2.1 设备组成上图为海螺水泥应用日本川崎技术及关键设备自行研发的纯低温余热发电系统。
整个系统设置一台PH锅炉用于回收预热器出口废气热能,一台AQC锅炉用于回收篦冷机出口废气热能,一台闪蒸器用于调节省煤器出口温度并产生饱和蒸汽作为汽轮机补汽辅助做功,一套锅炉给水系统,一套汽轮发电机及其冷却水系统。
2.2 流程介绍纯低温余热发电热力循环是基本的蒸汽动力循环,即汽、水之间的往复循环过程。
蒸汽进入汽轮机做功后经凝汽器冷却成凝结水,凝结水由凝结泵泵入闪蒸器下集箱与闪蒸器出水汇合后经给水泵升压进入省煤器进行加热,经省煤器加热后的高温水分为三路分别送至AQC锅炉汽包、PH锅炉汽包和闪蒸器内。
进入两锅炉汽包的水在锅炉内循环受热产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功,进入闪蒸器的高温水利用“闪蒸”原理产生一定压力下的饱和蒸汽作为补汽送入汽轮机后几级辅助做功。
做功后的乏汽经凝汽器冷却形成凝结水重新参与热力循环,循环过程中损耗的水由纯水装置制取的纯水进行补充。
纯低温水泥窑余热发电技术

纯低温水泥窑余热发电技术随着能源需求的不断增长和环境保护意识的提高,利用工业生产过程中产生的废热进行发电成为了一种重要的节能减排手段。
纯低温水泥窑余热发电技术就是一种利用水泥窑尾烟余热发电的技术,该技术可以有效地回收和利用水泥窑废热,提高能源利用效率,降低环境污染。
纯低温水泥窑余热发电技术的基本原理是通过水泥窑尾烟中的余热来加热工作介质,驱动汽轮机发电。
在水泥生产过程中,水泥窑是一个重要的热能消耗设备,其尾烟中含有大量高温废热。
传统的废热利用方式主要是通过余热锅炉回收烟气中的热能,但是由于烟气温度较高,很难直接回收和利用。
纯低温水泥窑余热发电技术的关键是降低工作介质的汽轮机的进汽温度,以适应水泥窑尾烟的低温特点。
一般来说,水泥窑尾烟的温度在200℃-300℃之间,低于传统发电厂中汽轮机的进汽温度。
为了解决这个问题,纯低温水泥窑余热发电技术采用了一种特殊的工作介质,即有机朗肯循环工质。
有机朗肯循环工质是一种适用于低温热源的工作介质,其蒸汽在较低的温度下就可以达到较高的压力,从而驱动汽轮机发电。
利用有机朗肯循环工质,纯低温水泥窑余热发电技术可以在较低温度下实现高效发电。
同时,有机朗肯循环工质具有较好的工作稳定性和热传导性能,能够适应水泥窑尾烟的特殊工作环境。
纯低温水泥窑余热发电技术的优势主要体现在以下几个方面:1. 节能减排:利用水泥窑废热发电可以有效地回收和利用废热资源,实现能源的高效利用。
同时,该技术可以减少水泥生产过程中的二氧化碳等污染物的排放,降低环境污染。
2. 经济效益:纯低温水泥窑余热发电技术可以将水泥生产过程中的废热转化为电能,实现了能源的自给自足。
通过发电销售,可以带来可观的经济效益。
3. 应用广泛:纯低温水泥窑余热发电技术具有较好的适应性,可以适用于不同规模的水泥生产线。
同时,该技术还可以与其他余热发电技术相结合,实现多能互补发电。
4. 环保可持续:纯低温水泥窑余热发电技术可以有效地降低水泥生产过程中的能耗和污染物排放,为可持续发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出AQC锅炉的废气进入原有的窑头收尘器收尘后,由原有窑头排风机排放,冷却机剩余的低温余风仍由原路进窑头收尘器。原余风管路系统可做为锅炉的旁通烟道,当锅炉故障或水泥生产不正常时可关闭去AQC锅炉的阀门,气流可不经锅炉而由此旁路系统直接排至窑头收尘器。在冷却机原余风管路上、新设的去锅炉管路上和出锅炉管路上均增设电动百叶阀门,以实现对气流的控制和切换。锅炉和沉降室的烟气总阻力控制小于1000Pa,使改造后的气体流量和压力在窑头排风机的能力允许范围之内。
第四阶段为2005年以后。由于水泥窑纯低温余热发电技术和装备已日臻成熟,国家产业政策明确规定不允许上带补燃炉的余热发电系统,而纯低温余热发电的概念是相对于带补燃炉余热发电技术而命名的,随着带补燃炉余热发电技术被取缔,纯低温余热发电技术被更名为水泥窑低温余热发电技术。自此,水泥余热发电进入了蓬勃发展阶段。
为了同时满足发电与原、燃料烘干的需要,窑尾SP锅炉一般均采用立式锅炉,布置在窑尾预热器后的高温风机之上。窑尾在最上一级(C1级)预热器至窑尾高温风机的下行管道上引出废气管道与SP锅炉相连,锅炉出口烟气温度控制在220℃左右,送到窑尾高温风机进风口的管道上,以满足下道工序烘干原料和燃料的需要。烘干原料和燃料后的废气由原废气处理系统的收尘器净化后排入大气。控制锅炉的烟气阻力≤1000Pa,使系统的阻力在窑尾高温风机的能力允许范围之内。在原预热器出口至高温风机的烟道引出管道、原下行管道以及锅炉出口管道上均增设电动百叶阀门,对气流进行控制和切换,原下行管道可做为锅炉的旁通烟道。当需要提高烘干原料和燃料的烟气温度时,可适当调节下行烟道调节阀,让锅炉出口的低温烟气和C1级出口直接下行的高温烟气混合,提高进窑尾风机(原料磨)的烟温,其调节范围从220℃或更低直至C1级出口温度(即烟气一点不通过SP锅炉),而且SP炉的进口烟道阀和旁路烟道阀,正常设计在窑控制室操作,窑操作可随时根据具体情况调整,既满足了水泥生产的稳定运行,又保证了SP炉的安全。通过旁通烟道的调节作用还可使水泥生产及余热锅炉的运行均达到理想的运行工况。
水泥回转窑纯低温余热发电是一项将水泥窑窑头、窑尾排放的中低温废气余热转化为电能的节能技术,该技术可有效提高水泥生产过程中的能源利用效率,使水泥企业能源利用率提高到95%以上,降低能源消耗,减轻环境热污染,从而实现水泥工业的节能减排,提高企业的经济效益,增强企业的市场竞争力。
9.1.1纯低温余热发电发展历程
我国水泥窑余热发电技术的发展从第一个五年计划开始起步,经过半个多世纪的发展,水泥窑余热发电技术的研究、开发、推广、应用工作经历了4个阶段。
第一阶段为1950年~1989年。这30多年主要参照上世纪三十年代日本引进德国技术在我国东北、华北地区建设的中空窑高温余热发电技术装备,对老厂进行改造,同时在老厂扩建中得到应用。总计投运了约290条中空窑余热发电系统。形成了不同主蒸汽参数、余热锅炉形式、装机容量的高温余热发电窑系统。为我国开展水泥窑中低温余热发电技术及装备的研究开发奠定了坚实基础。
第9章纯低温余热发电技术
9.1概述
随着新型干法水泥煅烧技术的发展,我国的水泥生产技术、装备、管理日渐成熟,目前国内已建成并运行了大量2000t/d以上熟料生产线。新型干法生产线与其他窑型相比在热耗方面显著降低,但是受煅烧工艺的限制,生产过程中仍有大量的中、低温废气余热资源未被充分利用,其中由窑头熟料冷却机和窑尾预热器排出的废气,温度约在350℃左右,带走的热能大约为水泥熟料烧成系统热耗量的35%。
第三阶段为1997年~2005年。推广、改进“带补燃锅炉的水泥窑中低温余热发电技术”和“水泥窑纯低温余热发电技术”。截止2005年底,利用“带补燃锅炉的水泥窑中低温余热发电技术”的水泥厂,国内有23个36条1000~4000t/d预分解窑生产线上安装了28台带补燃锅炉的中温余热发电机组,总装机为45.36MW。与此同时,我国水泥窑纯低温余热发电技术的研发也取得了突破性的进展,利用国产设备和技术先后在13条新型干法窑上,配套建设了装机容量分别为2.0MW、3.0MW、6.0MW、7.5MW的纯低温余热电站。
第二阶段为1990年~1996年。“八五”期间,国家安排了水泥行业科技攻关课题,其一是:“带补燃锅炉的中低温余热发电技术及装备的研究开发”,主要内容为采用国产标准系列汽轮发电机组,回收400℃以下废气余热进行发电。该课题在1996年完成了攻关工作,形成了“带补燃锅炉的水泥窑中低温余热发电技术”;其二是“水泥窑纯低温余热发电工艺及装备技术的研究开发”;其三是“纯低温余热发电技术装备——螺杆式膨胀机研究开发”。根据带补燃锅炉的水泥窑中低温余热发电技术应用的经验,以日本KHI公司为宁国水泥厂4000t/d水泥窑提供的6480kW纯低温余热电站的建设为契机,基本形成了我国水泥窑纯低温余热发电工艺技术装备体系。
水泥回转窑余热发电技术是随着水泥回转窑煅烧技术发展起来的。早在二十世纪初,德、日等国即开始中空回转窑余热发电技术的研究及应用,到七十年代中期,无论是热力系统还是装备都已进入实用阶段,八十年代初期,此项技术的应用达到了高潮,尤其是日本,技术较为成熟。
我国第一台水泥窑余热电站始建于大连水泥厂,日本小野田水泥公司在1922~1923年期间,扩建该厂第二条φ3×60m干法中空窑生产线时,利用日本余热电站技术装备,配套建设了高温余热发电机组,装机容量为3MW,称为“水泥干法中空余热发电窑”。
9.1.2纯低温余热发电技术
1.单压式纯低温余热发电系统
(1)单压系统工艺流程
新型干法水泥生产线上,一般中低温纯余热发电系பைடு நூலகம்的余热回收分为两部分:一是窑尾预热器一级筒出口排出的300~350℃的废气余热;二是窑头熟料篦式冷却机尾部排出400℃以下的废气余热。由于生产需要,生产线的废气余热还将作为生料粉磨系统、煤粉制备系统的烘干热源。