圆弧滑动法计算

圆弧滑动法计算
圆弧滑动法计算

------------------------------------------------------------------------

计算项目:等厚土层土坡稳定计算 1

------------------------------------------------------------------------

[计算简图]

[控制参数]:

采用规范: 通用方法

计算目标: 安全系数计算

滑裂面形状: 圆弧滑动法

不考虑地震

[坡面信息]

坡面线段数 2

坡面线号水平投影(m) 竖直投影(m) 超载数

1 0.000 12.300 0

2 20.000 0.000 0

[土层信息]

上部土层数 1

层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十

字板强度增十字板羲强度增长系全孔压

(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数

1 12.300 19.800 --- 0.000 25.000 --- --- --- --- --- --- ---

下部土层数 1

层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十

字板强度增十字板羲强度增长系全孔压

(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数

1 10.000 19.800 --- 0.000 25.000 --- --- --- --- --- --- ---

不考虑水的作用

[计算条件]

圆弧稳定分析方法: 瑞典条分法

土条重切向分力与滑动方向反向时: 当下滑力对待

稳定计算目标: 给定圆心、半径计算安全系数

条分法的土条宽度: 1.000(m)

圆心X坐标: 0.000(m)

圆心Y坐标: 12.300(m)

半径: 12.300(m)

------------------------------------------------------------------------

计算结果:

------------------------------------------------------------------------

滑动圆心 = (0.000,12.300)(m)

滑动半径 = 12.300(m)

滑动安全系数 = 0.939

起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力

X 附加力Y 下滑力抗滑力

(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

--------------------------------------------------------------------------------------

------------------------------

0.000 0.946 2.206 0.95 0.00 25.00 230.09 0.00 0.00 0.00

0.00 0.00 8.86 107.21

0.946 1.892 6.631 0.95 0.00 25.00 228.71 0.00 0.00 0.00

0.00 0.00 26.41 105.94

1.892

2.838 11.096 0.96 0.00 25.00 225.95 0.00 0.00 0.00

0.00 0.00 43.48 103.39

2.838

3.785 15.631 0.98 0.00 25.00 221.73 0.00 0.00 0.00

0.00 0.00 59.74 99.57

3.785

4.731 20.270 1.01 0.00 2

5.00 215.97 0.00 0.00 0.00

0.00 0.00 74.82 94.47

4.731

5.677 25.053 1.04 0.00 25.00 208.56 0.00 0.00 0.00

0.00 0.00 88.32 88.10

5.677

6.623 30.033 1.09 0.00 25.00 199.29 0.00 0.00 0.00

0.00 0.00 99.74 80.45

6.623

7.569 35.279 1.16 0.00 25.00 187.90 0.00 0.00 0.00

0.00 0.00 108.52 71.53

7.569 8.515 40.896 1.25 0.00 25.00 173.95 0.00 0.00 0.00

0.00 0.00 113.89 61.31

8.515 9.462 47.049 1.39 0.00 25.00 156.76 0.00 0.00 0.00

0.00 0.00 114.74 49.81

9.462 10.408 54.040 1.61 0.00 25.00 135.02 0.00 0.00 0.00

0.00 0.00 109.29 36.97

10.408 11.354 62.588 2.06 0.00 25.00 105.71 0.00 0.00 0.00

0.00 0.00 93.84 22.69

11.354 12.300 78.673 4.85 0.00 25.00 44.38 0.00 0.00 0.00

0.00 0.00 43.52 4.06

总的下滑力 = 985.172(kN)

总的抗滑力 = 925.517(kN)

土体部分下滑力 = 985.172(kN) 土体部分抗滑力 = 925.517(kN) 筋带的抗滑力 = 0.000(kN)

圆形弧形计算公式

在做工程造价时,有些时候工程量的计算是没必要计算的那么准确的,那么一小点工程量对总造价是没什么太大的影响的.比如楼主所说的弧形阳台的面积,主要是阳台弧形那部分的面积,其实楼主可以采用一个细线沿弧形阳台的外边线测量一下,然后根据图纸的比例和线的长度计算出实际的弧长,然后利用公式就可以求出弧形那部分的面积了F=1/2*[r*(L-C)+C*h] 其中L代表的是弧长,C代表的是弦长,h代表从圆弧部分到弦的最长垂直距离.在计算弧形梁时可以采用同样的办法计算出梁的实际长度,答案就出来了. 圆弧面积公式: 0.5*×弧长×半径 或 圆面积×圆心角÷360度 用扇形面积减三角形面积 扇形面积公式_s=1/2 L*r S-面积L-弧长r-圆的半径 关键就是圆弧所对圆的R要知道 C=2r+2πr×(a/360) S=πr2×(a/360) r—扇形半径 a—圆心角度数 球的体积公式: V球=4/3 π r^3 球的面积公式: S球=4π r^2 ***************************************************************** 附:推导过程(可能会看不懂(涉及到了大学的微积分),就当学点知识吧,呵呵) 1.球的体积公式的推导 基本思想方法: 先用过球心的平面截球,球被截面分成大小相等的两个半球,截面⊙叫做所得半球的底面.

(l)第一步:分割. 用一组平行于底面的平面把半球切割成层. (2)第二步:求近似和. 每层都是近似于圆柱形状的“小圆片”,我们用小圆柱形的体积近似代替“小圆片”的体积,它们的和就是半球体积的近似值. (3)第三步:由近似和转化为精确和. 当无限增大时,半球的近似体积就趋向于精确体积. 2.定理:半径是的球的体积公式为:. 3.体积公式的应用 求球的体积只需一个条件,那就是球的半径.两个球的半径比的立方等于这两个球的体积比. 球内切于正方体,球的直径等于正方体的棱长;正方体内接于球,球的半径等于正方体棱长的倍(即球体对角钱的一半);棱长为的正四面体的内切球的半径为,外接球半径为. 也可以用微积分来求,不过不好写 ================================================================ ====== 球体面积公式: 可用球的体积公式+微积分推导 定积分的应用:旋转面的面积。好多课本上都有,推导方法借助于曲线的弧长。 让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2。求球的表面积。 以x为积分变量,积分限是[-R,R]。 在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长。 所以球的表面积S=∫<-R,R>2π×y×√(1+y'^2)dx,整理一下即得到S=4πR^ 求各种图形的面积公式 圆πR^2 椭圆πab 长方形ab 圆内接四边形根号下((s-a)(s-b)(s-c)(s-d) )

瑞典圆弧法简要原理介绍

圆弧滑动面条分法 条分法常用于基坑边坡土方整体滑动的稳定验算。 (1) 基本原理 瑞典圆弧滑动面条分法,是将假定滑动面以上的土体分成n个垂直土条,对作用于各土条上的力进行力和力矩平衡分析,求出在极限平衡状态下土体稳定的安全系数。该法由于忽略土条之间的相互作用力的影响,因此是条分法中最简单的一种方法。 边坡破坏时,土坡滑动面的形状取决于土质,对于粘土,多为圆柱面或碗形;对于砂土,则近似平面。阻止滑动的抗滑力矩与促使滑动的滑动力矩之比,即为边坡稳定安全系数K,可得: 式中:——滑动圆弧的长度; ——滑动面上的平均抗剪强度; R——以滑动圆心O为圆心的滑动圆弧的半径; W——滑动土体的重量; d——W作用线对滑动圆心O的距离; A——滑动面积。 如K>1.0表示边坡稳定;K=1.0边坡处于极限平衡状态;K<1.0则边坡不稳定。 按上述原理进行计算,首先要确定最危险滑动圆弧的形状,即首先要找出最危险滑动圆弧的滑动圆心O,然后找坡角圆即可画出最危险滑动圆弧。欲找出K值最小的最危险滑动圆弧,可根据不同的土质采用不同的方法: a.内摩擦角的高塑性粘土

这种土的最危险滑动圆弧为坡脚圆,可按下述步骤求其最危险滑动圆弧的滑动圆心。 (a) 由此表,根据坡角查出坡度角和坡顶角。 (b) 在坡底和坡顶分别画出坡底角和坡顶角,两线的交点O,即最危险滑动圆弧的滑动圆心。 b.内摩擦角的土 这类土的最危险滑动圆弧的滑动圆心的确定,如下图所示,按下述步骤进行: (a)按上述步骤求出O点; (b)由A点垂直向下量一高度,该高度等于边坡的高度H,得C点,由C点水平向右量一距离,使其等于 4.5倍H而得D点,连接DO; (c)在DO延长线上找若干点,作为滑动圆心,画出坡脚圆,试算K值,找出K值较小的E点; (d)于E点画DO延长线的垂线,再于此垂线上找若干点作为滑动圆心,试算K值,直至找出K值最小的O′点,则O′点即最危险滑动圆弧的滑动圆心。 用上述方法计算,需要经过多次试算才能达到目的。目前,已可用电子计算机迅速地找出滑动圆心。(2) 圆弧滑动面条分法计算方法 当边坡由成层土组成时,则土的重力密度γ和抗剪强度τ都不同,需分别进行计算。 按条分法计算时,先找出滑动圆心O画出滑动圆弧,然后将滑动圆弧分成若干条,每条的宽度 ,R为滑动半径。 任一分条的自重Wi,可分解为平行圆弧方向的切力Ti,和垂直圆弧的法向力Ni。同时,在滑动圆弧面上还存在土的内聚力c。Ti即滑动力,Ti与滑动半径R的乘积,即滑动力矩。内聚力c和摩阻力( 为土的内摩擦角)即抗滑力,c和与滑动半径R的乘积cR和R即抗滑力矩。因此,边坡稳定安全系数可按下式计算:

八大处计算书圆弧滑动法

工况1:天然状态 ------------------------------------------------------------------------ 计算项目:等厚土层土坡稳定计算 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数 2 坡面线号水平投影(m) 竖直投影(m) 超载数 1 2.300 10.000 0 2 10.000 0.000 1 超载1 距离2.000(m) 宽5.000(m) 荷载(30.00--30.00kPa) 270.00(度) [土层信息] 上部土层数 2 层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十 字板? 强度增十字板羲? 强度增长系全孔压 (m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数 1 5.000 25.000 --- 28.000 29.000 --- --- --- --- --- --- --- 2 5.000 20.000 --- 18.000 18.000 --- --- --- --- --- --- --- 下部土层数 1 层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十 字板? 强度增十字板羲? 强度增长系全孔压 (m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数 1 2.000 25.000 --- 28.000 29.000 --- --- --- --- --- --- --- 不考虑水的作用 [计算条件] 圆弧稳定分析方法: 瑞典条分法

弧长的公式、扇形面积公式

【本讲教育信息】 一. 教学内容: 弧长及扇形的面积 圆锥的侧面积 二. 教学要求 1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。 2、了解圆锥的侧面积公式,并会应用公式解决问题。 三. 重点及难点 重点: 1、弧长的公式、扇形面积公式及其应用。 2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。 难点: 1、弧长公式、扇形面积公式的推导。 2、圆锥的侧面积、全面积的计算。 [知识要点] 知识点1、弧长公式 因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是 ,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”, 例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。 (2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。 知识点2、扇形的面积 如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角 为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。 又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。 知识点3、弓形的面积 (1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。 (2)弓形的周长=弦长+弧长

(3)弓形的面积 如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。 当弓形所含的弧是劣弧时,如图1所示, 当弓形所含的弧是优弧时,如图2所示, 当弓形所含的弧是半圆时,如图3所示, 例:如图所示,⊙O的半径为2,∠ABC=45°,则图中阴影部分的面积是()(结果用表示) 分析:由图可知由圆周角定理可知∠ABC=∠AOC,所以∠AOC=2∠ABC=90°,所以△OAC是直角三角形,所以 , 所以 圆周长弧长圆面积扇形面积 公 式 (2)扇形与弓形的联系与区别 图 示 面 积 知识点4、圆锥的侧面积

弧长计算公式及扇形面积计算公式

教学目标 知识与技能经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题 过程与方法经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力;了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力. 情感态度与价值观经历探索弧长及扇形面积计算公式.让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力. 重点经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形面积计算公式;会用公式解决问题. 难点探索弧长及扇形面积计算公式;用公式解决实际问题. 教学流程设计 活动流程图活动内容和目的 (一)复习、引出问题回顾旧知,提出相关新问题 (二)分析、探究、得出公式学生通过观察、探究得出弧长及扇形面积公式 (三)公式应用弧长及扇形面积公式的应用 (四)应用、练习利用公式解决数学问题 (五)小结归纳所学知识 (六)作业布置适当的作业,加深对知识的理解 教学过程设计 问题与情景师生行为设计意图 【活动一】复习,引出问题 1.半径为R的圆的周长是多少?圆周长可以看作是多少度的圆心角所对的弧? 2.1°圆心角所对弧长是多少?2°呢?……n°呢? 老师提出问题,学生思考并回答回顾旧知识,提出新问题 【活动二】观察,得出弧长公式: 在半径为R的图中,n°的圆心角所对的弧长为: 并直接应用公式进行有关的练习让学生观察,师生共同推导出弧长公式,并能正确应用公式进行计算理解弧长与圆心角、半径之间的关系,探索弧长的计算公式,并运用公式进行计算 【活动三】提问:1、什么是扇形?2、半径为R的圆的面积是多少? 类比【活动一】【活动二】,由扇形面积与圆的面积的关系,得出扇形面积公式为:

弧长计算公式及扇形面积

课题: 课型:新授课 教学目标: 1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力; 2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题,训练学生的数学应用能力; 3.使学生了解计算公式的同时,体验公式的变式,使学生在合作与竞争中形成良好的数学品质. 教学重点: 经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形的面积计算公式;会利用公式解决问题. 教学难点: 探索弧长及扇形的面积计算公式;用公式解决问题. 教学准备: 多媒体课件、几何画板软件. 教法学法: 多媒体教学、演示教学和自主探究法 教学过程: 一、创设情境,引入新课. 师:今天大家是怎么来上学的? 生:自行车/电动车/步行/坐十路车. 师:看来咱们班多数同学一天的学习生活都是从车轮开始的. 生发出会心的笑声. 师:大家看这辆自行车,它的车轮的半径是30cm,车轮转动一周,车子将会前进多少?

生:60πcm . 师:这实际上就是利用圆的周长公式计算的,那圆的面积公式是什么?圆的圆心角是多少度? 生:若圆的半径是r ,则面积是2S r π=,圆的圆心角是360°. 师:看得出来同学们对一整个圆已经是相当的了解了,我们今天要来把圆剖析一下,来研究一下“弧长及扇形的面积”(板书课题). 设计意图:激发学生的求知欲望,肯定学生的合理答案. 二、师生互动,探究新知 活动1 探索弧长公式 师:我们知道车轮转动一周是360°,那如果车轮转动180°,车子将会前进多少厘米? 生:30πcm .因为车轮转动180°,是转动了半圈,所以车子前进的距离是圆周长的一半. 师:那如果车轮转动了90°,车子将会前进多少厘米? 生:15πcm .因为车轮转动90°,是转动了四分之一圈,所以车子前进的距离是圆周长的一半. 师:那如果车轮转动1°呢?转动n °呢? 小组研讨交流、计算. 师参与、辅助、组织学生阐述解决问题的方法. 生:因为圆的周长所对的圆心角是360°,所以车轮转动1°,车子将前进圆周长的 1 360 ;车轮转动n °,车子前进的距离是车轮转动1°时的n 倍,也就是圆周长的360n .所以,当车轮转动1°时,车子前进 11 2306360180 r πππ?=?=cm; 当车轮转动n °时,车子前进2303601806 n n n r πππ?=?=cm. 师:同学们能不能通过以上探究总结一下在半径为R 的圆中,n °的圆心角所对的弧长l 的计算公式是什么? 学生思考. 生: 180 n l r π= . 师:是的,这里同学们要特别注意,公式中的n 表示的是1°的圆心角的倍数,所以不写单位;如图所示?AB 的弧长记作: ?180 l n AB r π=.请同学们记住这个公式. 学生识记公式. 设计意图:关于弧长的计算,我从一个生活中的实际问题出发,设计了5个小问题,从具体到抽象,让小组的同学讨论分

瑞典圆弧法简要原理

1.圆弧滑动面条分法 条分法常用于基坑边坡土方整体滑动的稳定验算。 (1) 基本原理 瑞典圆弧滑动面条分法,是将假定滑动面以上的土体分成n个垂直土条,对作用于各土条上的力进行力和力矩平衡分析,求出在极限平衡状态下土体稳定的安全系数。该法由于忽略土条之间的相互作用力的影响,因此是条分法中最简单的一种方法。 边坡破坏时,土坡滑动面的形状取决于土质,对于粘土,多为圆柱面或碗形;对于砂土,则近似平面。阻止滑动的抗滑力矩与促使滑动的滑动力矩之比,即为边坡稳定安全系数K,可得: 式中:——滑动圆弧的长度; ——滑动面上的平均抗剪强度; R——以滑动圆心O为圆心的滑动圆弧的半径; W——滑动土体的重量; d——W作用线对滑动圆心O的距离; A——滑动面积。 如K>1.0表示边坡稳定;K=1.0边坡处于极限平衡状态;K<1.0则边坡不稳定。 按上述原理进行计算,首先要确定最危险滑动圆弧的形状,即首先要找出最危险滑动圆弧的滑动圆心O,然后找坡角圆即可画出最危险滑动圆弧。欲找出K值最小的最危险滑动圆弧,可根据不同的土质采用不同的方法: a.内摩擦角的高塑性粘土

这种土的最危险滑动圆弧为坡脚圆,可按下述步骤求其最危险滑动圆弧的滑动圆心。 (a) 由此表,根据坡角查出坡度角和坡顶角。 (b) 在坡底和坡顶分别画出坡底角和坡顶角,两线的交点O,即最危险滑动圆弧的滑动圆心。 b.内摩擦角的土 这类土的最危险滑动圆弧的滑动圆心的确定,如下图所示,按下述步骤进行: (a)按上述步骤求出O点; (b)由A点垂直向下量一高度,该高度等于边坡的高度H,得C点,由C点水平向右量一距离,使其等于 4.5倍H而得D点,连接DO; (c)在DO延长线上找若干点,作为滑动圆心,画出坡脚圆,试算K值,找出K值较小的E点; (d)于E点画DO延长线的垂线,再于此垂线上找若干点作为滑动圆心,试算K值,直至找出K值最小的O′点,则O′点即最危险滑动圆弧的滑动圆心。 用上述方法计算,需要经过多次试算才能达到目的。目前,已可用电子计算机迅速地找出滑动圆心。(2) 圆弧滑动面条分法计算方法 当边坡由成层土组成时,则土的重力密度γ和抗剪强度τ都不同,需分别进行计算。 按条分法计算时,先找出滑动圆心O画出滑动圆弧,然后将滑动圆弧分成若干条,每条的宽度 ,R为滑动半径。 任一分条的自重Wi,可分解为平行圆弧方向的切力Ti,和垂直圆弧的法向力Ni。同时,在滑动圆弧面上还存在土的内聚力c。Ti即滑动力,Ti与滑动半径R的乘积,即滑动力矩。内聚力c和摩阻力( 为土的内摩擦角)即抗滑力,c和与滑动半径R的乘积cR和R即抗滑力矩。因此,边坡稳定安全系数可按下式计算:

弧长的计算公式

高庙王中学双案教学设计 学科数学年级九时间 11.27 总序 号 51 课题 弧长的计算公式 主备人甄守鲁 授课人甄守鲁 教学目标 和 学习目标1、经历探索弧长计算公式的过程,会推导弧长的计算公式 2、会运用弧长计算公式计算有关问题 教学重点 教学难点 目标2 师生互动过程 教学内容和学生活动教师活动一、创设情境引入新课 某圆拱桥的半径是30m,桥拱AB 所对的圆心 角∠AOB=90°,你会求桥拱AB的长度吗?(精确到 0.1m) 出示课本中小亮的做法,让学生判断正误 二、探索活动 1、探索弧长计算公式 ⑴1°的圆心角所对的弧长是多少? 分析:1°的圆心角所对的弧长是圆周长的 360 1 ,即 180 360 2R Rπ π = ⑵n°的圆心角所对的弧长是多少? 分析:n°的圆心角所对的弧长是1°的圆心 角所对的弧长的n倍,即 180 R n l π = ⑶引导学生用“方程的观点”去认识弧长计算 公式,弧长计算公式 180 R n l π =,揭示了R n l, ,这3 个量之间的一种相等关系。在R n l, ,这3个量中, 如果知道其中的两个量,就可以由弧长计算公式, 求出另一个量。 出示问题,让学 生自主探索 强调:公式中的 n不带单位,n 表示1°的圆心 角所对的弧长的 倍数

师生互动过程 教学内容和学生活动教师活动三、例题讲解 例1 弯制铝合金框架时,先要按中心线计算框 架的展直长度再下料,计算如图所示框架的展直长 度(精确到1mm) 四、练习 1、已知圆弧的半径为30cm,它所对的圆心角 为70o,求这条圆弧的长度(精确到0.1cm) 2、已知圆的半径为9cm,求20o的圆心角所对 的弧的长度(精确到0.1cm) 3、已知一条弧的长度为πR/4,半径为R,求 这条弧所对的圆心角的度数 4、如图,已知扇形的圆心角为150°,弧长为20π cm,求扇形的半径. 学生小组交流讨 论,然后找一名 学生到黑板上板 演 学生讨论,找学 生到黑板板演

确定边坡滑动面圆心的方法汇总

边坡稳定计算补充资料 路基边坡稳定性验算方法及步骤 (1)路基边坡稳定性验算步骤: ①根据路基土质和可能出现的滑动面形状,选择分析计算方法; ②考虑坡体的工作条件,选取滑动面上的抗剪强度指标,求算安全系数; ③将各种荷载组合下求得的最危险滑动面安全系数与容许值比较,判断路基是否稳定。(2)荷载组合。通常考虑主要组合、附加组合和地震组合三种荷载组合情况: ①主要组合,滑动坡体的重力、汽车荷载,浸水路基常水位时的浮力。 ②附加组合,将主要组合中的汽车荷载改用平板挂车或履带车,或者考虑在最不利时的浮力和渗流力。 ③地震组合:包括滑动坡体的重力和地震力及常水位条件下的浮力。 各种荷载组合均应根据路基工作条件依次验算,各种组合满足要求时路基才是稳定的。 (3)滑动圆弧的形状和位置。大量观测研究表明.路基失稳时滑动面的形状和位置,同路基外形、岩土性质和地层情况等有关。 粘性差的土构成的坡体,滑坍时破坏面多接近平面,常采用直线滑动面法验算。有一定粘性的土坡,其破坏面为曲面,常假设为圆弧滑动面,采用圆弧法进行分析;坡体失稳时的滑动面,必然在剪应力大而抗剪强度低的最薄弱处发生。土质较为均匀的路基边坡破坏时,滑动面常通过坡脚或坡面上的变坡点。常假设几个可能滑动面,所求安全系数值最小的滑动面即为最危险滑动面。该滑动圆弧的圆心,可由以下确定辅助线的方法求得(图4-8)。 方法1: 1)由坡脚E向下引高度为H(H = 填土高+换算土柱高)的竖线,得F点; 2)由F点向右引水平线,在其上截取4.5H,得M点; 3)连接坡脚E与顶点S,求出SE的坡率1:m; 4)根据1:m的值查表4-2得β1和β2; 5)由E点引与SE成β1角的直线,由顶点S引与水平面成β2角的直线,交于I点; 6)接连MI,该直线即为滑动圆弧圆心辅助线。 7)如果路堤填料仅具有粘聚力,则圆心即为I点,如果路堤填料除粘聚力外尚具有摩擦力,则滑动圆弧的圆心将随内摩擦角的增大而向外移(离开路堤)。 方法2 方法2与方法1的做法相似,但H不包括换算土柱高,SE的坡率1:m直接由坡

瑞典圆弧滑动面条分法

基本原理: 瑞典圆弧滑动面条分法,是将假定滑动面以上的土体分成n个垂直土条,对作用于各土条上的力进行力和力矩平衡分析,求出在极限平衡状态下土体稳定的安全系数。该法由于忽略土条之间的相互作用力的影响,因此是条分法中最简单的一种方法。 这里,首先要确定最危险滑动圆弧的形状,即首先要找出最危险滑动圆弧的滑动圆心O,然后找坡角圆即可画出最危险滑动圆弧。欲找出K值最小的最危险滑动圆弧,可根据不同的土质采用不同的方法: ①.内摩擦角0 = ?的高塑性粘土 这种土的最危险滑动圆弧为坡脚圆,可按下述步骤求其最危险滑动圆弧的滑动圆心。 a.由下表3-2,根据坡角查出坡底角和坡顶角。 表3-2 坡底角和坡顶角 坡角坡底角坡顶角坡角坡底角坡顶角 续表 3-2 90° 75° 60° 45°33°47′33° 32° 29° 28° 26° 40° 40° 40° 38° 35° 30° 26°34′ 15° 11°19′ 26° 25° 24° 25° 36° 35° 37° 37° b 在坡底和坡顶分别画出坡底角和坡顶角,两线的交点O,即最危险滑动圆弧的滑动圆心。 ②.内摩擦角0 > ?的土 这类土的最危险滑动圆弧的滑动圆心的确定,如下图所示,按下述步骤进行:

图3-2 最危险滑动圆弧的确定图 a.按上述步骤求出O 点; b.由A 点垂直向下量一高度,该高度等于边坡的高度H ,得C 点,由C 点水平向右量一距离,使其等于倍H 而得D 点,连接DO ; c.在DO 延长线上找若干点,作为滑动圆心,画出坡脚圆,试算K 值,找出K 值较小的E 点; d.于E 点画DO 延长线的垂线,再于此垂线上找若干点作为滑动圆心,试算K 值,直至找出K 值最小的O ′点,则O ′点即最危险滑动圆弧的滑动圆心。 用上述方法计算,需要经过多次试算才能达到目的。目前,已可用电子计算机迅速地找出滑动圆心。 确定出圆心O 点以及K 值大小后利用《建筑基坑支护技术规程》(JGJ120-99)中所规定确定h 0方法: 0sin )(tan cos )(00≥+-++∑∑∑i i i k ik i i i i ik w b q w b q l c θγφθ (3-5) 其中: ik c 、 ik φ——最危险滑动面上第i 土条滑动面上土的固结不排水快剪粘聚力内摩 擦角标准值。 i l ——第i 土条的弧长。 i b ——第i 土条的宽度。 k γ——整体稳定分项系数,应根据经验确定当无经验时可取。 i w ——作用于滑裂面上第土条的重量,按上覆土层的天然土重计算。

弧长 计算公式

弧长计算公式 弧长的定义 在圆周长上的任意一段弧的长度叫做弧长。有优弧劣弧之分。弧长的计算公式 弧长公式:n是圆心角度数,r是半径,a是圆心角弧度。 公式 l = n(圆心角)x π(圆周率)x r(半径)/180 在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=n°πR÷180°。 例:半径为1cm,45°的圆心角所对的弧长为 l=nπR/180 =45×π×1/180 =45×3.14×1/180 约等于0.785(cm) 拓展 扇形面积公式:S(扇形面积)=n(圆心角度数)x π(圆周率)x r²【半径的平方(2次方)】/360 例子 如果已知他的沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图。它是由一个半径

为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图。 补充公式 S扇=nπr*2/360 =πrnr/360 =2πrn/360×1/2r =πrn/180×1/2r 所以:S扇=rL/2 还可以是S扇=n/360πr² (n为圆心角的度数,L为该扇形对应的弧长。) 圆锥母线,弧长,面积计算公式 圆锥的表面积=圆锥的侧面积+底面圆的面积 其中:圆锥体的侧面积=πRL 圆锥体的全面积=πRl+πR2 π为圆周率≈3.14 R为圆锥体底面圆的半径 L为圆锥的母线长我们把连接圆锥顶点和底面圆周上任意一点的线段叫作圆锥的母线 (注意:不是圆锥的高)是展开扇形的边长 n圆锥圆心角=r/l*360 360r/l 弧长=圆周长

土体圆弧滑动经典案例介绍

土体圆弧滑动经典案例介绍 锦润建设集团有限公司高天下吴祝王京 一、发生时间: 2016年11月18日,我公司承建的浦口经济开发区某支河Z0+500-Z0+600段施工过程中,按照设计图纸要求完成了某厂区一侧土方开挖、挡墙基础砼浇筑,工人正进行挡墙墙体施工,下午13时左右,其厂区7.0m高的挡墙发生整体塌陷,塌陷长度约80米,造成河道河底隆起,将已经开挖段的河道涌满,河道挡墙基础隆起抬高至河堤顶标高线以上,也造成河道边的污水管道变形,10KV的高压铁塔倾斜。事故发生后我公司紧急将施工人员及机械撤离现场,安排专人巡视保护现场,禁止无关人员进出,第一时间向监理、业主单位汇报。

二、塌方后现场情况: 1、塌方后地形图: 2、塌方后现场照:

三、地质状况: 目前施工的某河Z0+510-Z0+700段,河道设计宽度10m,河底标高9.00m,现场原地面标高为13.70m,参照建设单位提供的《江苏省地质工程勘察院出具的河道工程地质勘探报告》所述,该段河底位于②-1粉质黏土夹粉土层,厚5米左右,该土层为可塑,局部软塑,不 均质,干强度中低,韧性中低,地基承载力130KPa,黏聚力约为23 KPa,

其下层为②-2土层为粉质黏土夹粉土层,厚10米左右,该土层软塑,局部可塑,干强度中低,韧性中低,地基承载力100KPa,黏聚力约为15-18KPa。 三、塌方原因: 河道工程我单位于2011年底中标,2012年初进场施工,2015年年初对该段河道放样施工并完成了部分工程量,由于此段存在征地拆迁矛盾,未能及时完成,2016年10月我公司开始分段推进。 该厂区高填方标高为22.00m,河道设计底标高9.00m,河堤标高为15.10m,根据现场标高反映厂区在原地表以上回填土高度为8~9米,与河道底高差达13m,且挡墙最高点至河口距离22米(最低点)。而该厂区也采用了与我方河道施工同型号、同一厂家的联锁砌块用于挡墙砌筑,且塌陷区挡墙未见基础处理,该厂区挡墙设计施工未考虑河道设计在先的开挖影响,河道开挖揭开了②-1粉质黏土夹粉土层,在上部强大堆载作用下,②-1、②-2土层濡动,河道侧隆起,上部下陷,形成典型的土体圆弧滑动面,从照片中可见。 四、事后理论计算 邀请设计单位根据《堤防工程设计规范》(GB50286-2013),堤防岸坡稳定分析采用总应力法和有效应力法进行计算,其计算成果为:

弧长公式、扇形面积公式及其应用(含经典习题)

弧长公式、扇形面积公式及其应用(含经典习题)

【本讲教育信息】 一. 教学内容: 弧长及扇形的面积 圆锥的侧面积 二. 教学要求 1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。 2、了解圆锥的侧面积公式,并会应用公式解决问题。 三. 重点及难点 重点: 1、弧长的公式、扇形面积公式及其应用。 2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。 难点: 1、弧长公式、扇形面积公式的推导。 2、圆锥的侧面积、全面积的计算。 [知识要点] 知识点1、弧长公式 因为360°的圆心角所对的弧长就是圆周长C =2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的 弧长l的计算公式:,

说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧 长l时,不要错写成。 (2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。 知识点2、扇形的面积 如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形 面积是,由此得圆心角为n°的扇形面积的计 算公式是。 又因为扇形的弧长,扇形面积 ,所以又得到扇形面积的另一个计 算公式:。 知识点3、弓形的面积 (1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。 (2)弓形的周长=弦长+弧长 (3)弓形的面积

知识点4、圆锥的侧面积 圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积 说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。 (2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。 知识点5、圆柱的侧面积 圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积

圆弧滑动法计算

------------------------------------------------------------------------ 计算项目:等厚土层土坡稳定计算 1 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数 2 坡面线号水平投影(m) 竖直投影(m) 超载数 1 0.000 12.300 0 2 20.000 0.000 0 [土层信息] 上部土层数 1 层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十 字板强度增十字板羲强度增长系全孔压 (m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数 1 12.300 19.800 --- 0.000 25.000 --- --- --- --- --- --- --- 下部土层数 1 层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十 字板强度增十字板羲强度增长系全孔压 (m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数 1 10.000 19.800 --- 0.000 25.000 --- --- --- --- --- --- --- 不考虑水的作用 [计算条件] 圆弧稳定分析方法: 瑞典条分法 土条重切向分力与滑动方向反向时: 当下滑力对待

圆弧滑动简单条分法中土条宽度对基坑稳定计算影响的研究

圆弧滑动简单条分法中土条宽度对基坑稳定计算影响的研究 [摘要] 分析土条宽度对圆弧滑动简单条分法基坑稳定计算的影响,并提出计算中值得注意的几个问题。 [关键词] 圆弧滑动简单条分法土条宽度基坑稳定 在中华人民共和国行业标准《建筑基坑支护技术规程》(JGJ120-99)中对基坑支护的定义为“为保证地下结构施工及基坑周边环境的安全,对基坑侧壁及周边环境采用的支挡、加固与保护措施。”显然,基坑支护是建筑行业常见的结构体系,在设计中需要满足稳定和变形的要求。在现有规范和研究中,基坑稳定计算多采用圆弧滑动简单条分法进行[1][2]。而在计算中土条宽度的选取对计算结果有较大的影响,因此分析圆弧滑动简单条分法中土条宽度的影响可为促进基坑稳定计算提供理论基础。 1 .基于圆弧滑动简单条分法的基坑稳定计算 基坑稳定计算采用圆弧滑动简单条分法如图1所示,其中h0为支护的嵌固深度。在进行稳定计算时,首先将滑动体视为若干土条组合成,每个土条的宽度为bi,一般情况下认为每个土条宽度相等,根据假设的滑动面可以确定滑动的圆心和半径,从而得到每个土条在滑动面上的中心点的切线与水平线的夹角θi,根据规范,将与土条宽度无关系的系数视为常数,基坑稳定计算的公式为: (1) 其中A、Bi、C与土条宽度无关,q0表示地面超载,wi表示第i个土条的重量。而基坑稳定的条件就是公式大于0,即固定力矩大于滑动力矩。(见图1) 2. 土条宽度的影响 显然,对于公式(1)采用不同的bi相同情况下可能有不一样的结果。令 另外,以bi/2为土条宽度,在相同情况下,计算基坑稳定性为: 其中α、β分别为原来土条一分为二后两个新土条在滑动面上的中心点的切线与水平线的夹角与原来土条θi的角度差。 由此可得到 显然M-N一般不等于0,而且由于sin和cos函数的特点,该公式正负也不存在必定规律,所以土条宽度与基坑稳定计算无单调联系,即随着土条宽度减少或增大所得到的计算结果中基坑的稳定程度不一定持续增加或降低。

圆弧计算公式

一. 教学内容: 弧长及扇形的面积 圆锥的侧面积 二. 教学要求 1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。 2、了解圆锥的侧面积公式,并会应用公式解决问题。 三. 重点及难点 重点: 1、弧长的公式、扇形面积公式及其应用。 2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。 难点: 1、弧长公式、扇形面积公式的推导。 2、圆锥的侧面积、全面积的计算。 [知识要点] 知识点1、弧长公式 因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是 ,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”, 例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。 (2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。 知识点2、扇形的面积 如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角 为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。 又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。 知识点3、弓形的面积 (1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。 (2)弓形的周长=弦长+弧长 (3)弓形的面积

如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。 当弓形所含的弧是劣弧时,如图1所示, 当弓形所含的弧是优弧时,如图2所示, 当弓形所含的弧是半圆时,如图3所示, 例:如图所示,⊙O的半径为2,∠ABC=45°,则图中阴影部分的面积是()(结果用表示) 分析:由图可知由圆周角定理可知∠ABC=∠AOC,所以∠AOC=2∠ABC=90°,所以△OAC是直角三角形,所以 , 所以 注意:(1)圆周长、弧长、圆面积、扇形面积的计算公式。 圆周长弧长圆面积扇形面积 公 式 (2)扇形与弓形的联系与区别 图 示 面 积 知识点4、圆锥的侧面积

圆弧滑动计算方法

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

弧长计算公式

弧长计算公式-CAL-FENGHAI.-(YICAI)-Company One1

弧长计算公式 在圆周长上的任意一段弧的长度叫做弧长。有优弧劣弧之分。 弧长公式:n是圆心角度数,r是半径,a是圆心角弧度。 公式 l = n(圆心角)x π(圆周率)x r(半径)/180 在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=n°πR÷180°。 例:半径为1cm,45°的圆心角所对的弧长为 l=nπR/180 =45×π×1/180 =45××1/180 约等于(cm) 拓展 扇形面积公式:S(扇形面积)=n(圆心角度数)x π(圆周率)x r²【半径的平方(2次方)】/360

如果已知他的沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图。它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图。 补充公式 S扇=nπr*2/360 =πrnr/360 =2πrn/360×1/2r =πrn/180×1/2r 所以:S扇=rL/2 还可以是S扇=n/360πr² (n为圆心角的度数,L为该扇形对应的弧长。) 圆锥的表面积=圆锥的侧面积+底面圆的面积 其中:圆锥体的侧面积=πRL 圆锥体的全面积=πRl+πR2 π为圆周率≈ R为圆锥体底面圆的半径 L为圆锥的母线长我们把连接圆锥顶点和底面圆周上任意一点的线段叫作圆锥的母线 (注意:不是圆锥的高)是展开扇形的边长 n圆锥圆心角=r/l*360 360r/l

弧长计算公式

在圆周长上的任意一段弧的长度叫做弧长。有优弧劣弧之分。 弧长公式:n是圆心角度数,r是半径,a是圆心角弧度。 公式 l = n(圆心角)x π(圆周率)x r(半径)/180 在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=n°πR÷180°。 例:半径为1cm,45°的圆心角所对的弧长为 l=nπR/180 =45×π×1/180 =45××1/180 约等于(cm) 拓展 扇形面积公式:S(扇形面积)=n(圆心角度数)x π(圆周率)x r²【半径的平方(2次方)】/360 如果已知他的沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图。它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图。 补充公式

S扇=nπr*2/360 =πrnr/360 =2πrn/360×1/2r =πrn/180×1/2r 所以:S扇=rL/2 还可以是S扇=n/360πr² (n为圆心角的度数,L为该扇形对应的弧长。) 圆锥的表面积=圆锥的侧面积+底面圆的面积 其中:圆锥体的侧面积=πRL 圆锥体的全面积=πRl+πR2 π为圆周率≈ R为圆锥体底面圆的半径 L为圆锥的母线长我们把连接圆锥顶点和底面圆周上任意 一点的线段叫作圆锥的母线 (注意:不是圆锥的高)是展开扇形的边长 n圆锥圆心角=r/l*360 360r/l 弧长=圆周长 侧面展开图的圆心角求法:n=360r/R=πRr或2πr=nπr/180 n=360r/R 。如果题目中有切线,经常用的辅助线是链接圆心和切点的半径,得到直角,再用相关知识解题。

瑞典圆弧法滑动面的确定

您所在的位置是:课程学习》第四章》第三节曲线滑动面的边坡稳定性分析第三节曲线滑动面的边坡稳定性分析 1、适用范围 土的粘力使边坡滑动面多呈现曲面,通常假定为圆弧滑动面。 圆弧法适用于粘土,土的抗力以粘聚力为主,内摩擦力力较小。边坡破坏时,破裂面近似圆柱形。 2、分析方法 (1)瑞典法(Wolmar Fellenius法) (2)简化的Bishop法 (3)传递系数法 3、圆弧滑动面的分析法 假定滑动面为圆柱面,截面为圆弧,利用 土体极限平衡条件下的受力情况,滑动面 上的最大抗滑力矩与滑动力矩之比: 饱和粘土,不排水剪条件下, 。 4、圆弧滑动面的条分法 (1)瑞典圆弧滑动法假设

①假设圆弧滑动 面确定圆心和半径 ②把滑动土体分成若干条(条分法) ③建立土条的静力平衡方程求解(取单位厚度计算) (2)瑞典圆弧滑动法平衡公式 假设(静定化条件)各土条间的合力Si ,Si+1平行于滑动面,并且相等(Si=Si+1)。 ; ; 建立土条垂直于滑动面的静力平衡方程: ; (3)瑞典圆弧滑动法原理-顶面有开裂 粘性土土坡滑动前,坡顶常常出现竖向裂缝,深度近似采用土压力临界深度, ;裂缝的出现将使滑弧长度由 AC 减小到 ,如果裂缝中积水,还要考虑静 水压力对土坡稳定的不利影响。 5、瑞典圆弧滑动条分法——圆心确定 (1)4.5H 法 计算之前需要先用圆心辅助线法确定滑动圆弧的圆心位置。

( 2)其他辅助方法 -36°线法 (3)最危险滑动面圆心的确定 确定最危险滑动面圆心位置 ①当土的内摩擦角=0时,最危险圆 弧滑动面为一通过坡脚的圆弧,其圆心为D 点。 ②当土的内摩擦角 >0时,最危险圆 弧 滑动面也为一通过坡脚的圆弧, 其圆心在ED 的延长线上。

相关文档
最新文档