风电系统PWM并网变流器
pwm变流器工作原理

pwm变流器工作原理PWM变流器工作原理PWM变流器是一种电力变流器,它可以将交流电源转换成直流电源,同时可以控制输出电压和电流的大小,从而实现对电机或其他负载的控制。
PWM变流器的工作原理是通过PWM技术来实现的。
PWM技术是指在固定周期内,通过改变占空比来控制输出电压和电流的大小。
占空比是指周期内高电平时间与周期时间之比,用百分数表示。
PWM变流器的核心部件是IGBT(绝缘栅双极型晶体管)和MOSFET(金属氧化物半导体场效应晶体管)。
它们可以在高频下切换,从而实现将交流电源转换成直流电源。
同时,PWM变流器还需要控制电路来控制IGBT或MOSFET的开关,从而实现对输出电压和电流的控制。
PWM变流器的控制电路通常包括控制器和驱动器。
控制器负责产生PWM信号,而驱动器则负责将PWM信号转换成IGBT或MOSFET的控制信号。
控制器通常采用微型控制器或FPGA(现场可编程逻辑门阵列)等芯片来实现,而驱动器则采用光耦隔离技术,将PWM信号和IGBT或MOSFET的控制信号隔离开来,从而保证系统的安全性和可靠性。
PWM变流器的主要应用领域是电机控制。
在电机控制中,PWM 变流器可以控制电机的转速和转矩,并且可以实现反向转动、刹车等功能。
此外,PWM变流器还可以用于电热器、LED灯等负载的控制。
PWM变流器是一种重要的电力变流器,它可以将交流电源转换成直流电源,并实现对输出电压和电流的控制。
它的工作原理是通过PWM技术来实现的,采用IGBT或MOSFET来实现电源转换,同时需要控制电路来控制输出电压和电流的大小。
PWM变流器在电机控制等领域有广泛的应用,具有重要的意义。
直驱式风力发电系统

第一章双PWM型变流电路简介本文讨论克驱式风电系统的一种电力变换装拓扑结构,选取背靠背双PWM型变流电路为研究对彖.直驱式风电系统结构原理如图1-1所示。
风轮电机图1-1永磁同步电机直驱式风力发电系统并网结构图双脉宽调制(pulse-width modulation, PWM)变流器是由2个电压源型变流器(voltage source converter, VSC)背靠背连接构成,2 VSC直流侧通过直流母线并联,两极直流母线Z间并联滤波电容器以提高直流电压的电能品质。
由于该电路结构是完全镜面对称的,文献中称这种结构为背靠背连接。
背靠背双PWM变流器以其控制功能灵活、交流侧功率因数可调和直流电压可控等诸多优点,在轻型直流输电、统潮流控制器和柔性功率调节器等柔性交流输电技术领域中获得了广泛的应用。
该电路拓扑结构如图1-2所示,整流和逆变部分都采用PWM三相桥实现,这种结构的优点:输入电流为正弦波,减少了发电机的铜耗和铁耗;发电机功率因数可调节为1,且能够与大阻抗的同步发电机相联接。
凤轮图1-2三相电压型PWM逆变器的拓扑结构第二章双PWM变流器动态数学模型三相桥式拓扑结构构中交流侧采用三相对称的无中线连接方式, 图中L代表交流侧滤波电感参数,R为电感中的寄生电阻,图中直流电压源1}血代表并网变流器直流母线电压,同时也是与发电机转了绕组相连的变流器直流母线电压。
为建立三相电压源型并网变流器的数学模型,根据其其拓扑结构,首先作以下假设:1.电网电动势为平稳的纯正弦波电动势(e a,e b,e c)o2・主电路开关元器件为理想开关,无损耗。
3・三相参数是对称的。
4・网侧滤波电感L是线性的,且不考虑饱和。
以A相为例,当VI导通V2关断时,直流电源Ude正极直接加到节点a处,由图可知,U M1 =U dc/2;当V2导通VI关断时,直流电源Ude负极接于节点a处,同理可知,=-U dc/2,同理易知节点b和c也是根据上下MOS管V5、V6 )导通情况决定其电位的,由此可见,三相中任一相输出的相电压都有正负两个电平,因此这种结构的逆变器称为三相两电平逆变器。
风力发电并网逆变器控制策略分析

风力发电并网逆变器控制策略分析风力发电并网逆变器控制策略分析风力发电并网逆变器控制策略是风力发电系统中至关重要的一部分,它负责将风力发电机产生的交流电转换为与电网同频率、同相位的电能,并将其注入电网中。
这篇文章将通过逐步思考的方式介绍风力发电并网逆变器控制策略。
首先,风力发电机产生的交流电通常具有不稳定的频率和相位。
由于电网的频率和相位要求非常严格,因此逆变器需要先对输入的交流电进行稳定化处理。
这一步骤通常包括使用滤波器来去除交流电中的谐波和电压波动,从而得到稳定的交流电。
接下来,逆变器需要将稳定的交流电转换为直流电。
为了实现这一转换过程,通常使用整流器来将交流电转换为直流电。
整流器可以采用半控制或全控制技术,具体选择哪种技术取决于系统的需求和设计。
一旦交流电转换为直流电,逆变器需要将其转换回交流电,并与电网同步。
为了实现这一步骤,逆变器通常采用PWM(脉宽调制)技术。
PWM技术可以通过控制逆变器的开关器件,调整输出电压的幅值和频率,使其与电网同步。
然而,仅仅与电网同步是不够的,逆变器还需要满足一些其他的要求。
首先,逆变器需要根据电网的需求调整输出功率。
这通常需要使用电流控制技术,通过调整逆变器的输出电流,使其满足电网的功率需求。
其次,逆变器还需要实现无功功率控制。
无功功率是指电网中的虚功,它是维持电网电压稳定的重要因素。
逆变器可以通过调整输出电流的相位,来控制无功功率的注入。
最后,逆变器还需要实现对电网中的故障和异常事件的保护。
例如,当电网发生短路或过载时,逆变器需要能够及时切断与电网的连接,以确保系统的安全运行。
综上所述,风力发电并网逆变器控制策略包括稳定化处理、整流、PWM技术、功率控制、无功功率控制以及系统保护等多个步骤。
通过合理地设计和控制逆变器,可以实现风力发电系统与电网的有效并网,从而实现可靠、稳定的电力供应。
风力发电网侧变流器控制策略研究

风力发电网侧变流器控制策略研究摘要风力发电作为一种有效的可再生能源利用形式,近年来越来越受到关注,网侧变流器在风电机组运行过程中一直扮演着很重要的角色。
本文围绕网侧变流器的控制展开研究,以带LCL型滤波器的三相电压型PWM变流器(LCL-VSC)拓扑作为网侧变流器研究对象。
首先在平衡电网条件下建立了LCL-VSC的三相静止和两相旋转坐标系下的数学模型,为控制策略分析和控制系统设计提供了理论依据。
提出了风力发电应用中具有LCL滤波器的网侧变流器的一种多环控制结构,该结构采用电压外环外加三个逐层利用的电流内环,实现稳定的直流电压以及电流的前馈解耦和单位功率因数控制。
同时,给出了基于复功率理论的电容电压估计方法,减少了传感器数量。
为了在电网不平衡条件下对LCL-VSC有效的控制,必须计算不平衡的正负序相位。
本文提出了一种新颖的基于电网不平衡的锁相思路,既可以计算正序相位角也可以计算负序相位角,用于LCL--VSC的不平衡控制。
这种方案的主要思路是:先从不平衡电网中提取出正负序分量,然后对正负序三相电压采用SFR-SPLL分别锁相,计算出正负序相位角。
建立了在不平衡电网条件下LCL-VSC的数学模型,三相静止和两相旋转坐标系下的数学模型。
给出了基于LCL滤波器的不平衡电流指令算法。
按照不同的控制要求,可以分别实现了电网不平衡时网侧电流对称控制,或者抑制直流侧二次纹波控制。
完成了15kVA的LCL-VSC实验样机平台的搭建和调试。
通过仿真和实验结果验证了理论分析与设计的正确性。
关键词:风力发电;LCL;VSC;不平衡;多环控制Research on Control Strategy of Grid-side Converterfor Wind Power GenerationABSTRACTThe wind power generation is a kind of effective renewable energy source, which is received more and more attention in recent years. The grid-side converter plays a very important role in the wind power generation. This thesis does some research on control strategy of the grid-side converter, taking three-phase voltage source PWM converter with LCL filter (LCL-VSC) as the object of study. Firstly, under the balanced voltage condition, LCL-VSC mathematical model is established in the three-phase static and two-phase rotate coordinates, to provide the theory for the control strategy analysis and the control system design.Then a multiloop control scheme is proposed for LCL-VSC. Within this scheme, 3 cascaded inner current loops along with an outer voltage loop are used to achieve stable dc-link voltage, currents decoupling and feedforward, as well as the unity power factor control. With this scheme, the capacitor voltage estimation is performed with complex power theory resulting the omission of the transducers for the capacitor voltage measurement.To control the LCL-VSC effectively under unbalanced grid condition, the positive and negative sequence phase should be calculated. This thesis proposed a novel phase locked loop (PLL) based on the unbalanced grid condition, which may calculate the positive sequence phase angle and the negative sequence phase angle, used for LCL-VSC unbalanced control. The main idea of this method is first to draw the posive and negative sequence components under the unbalanced grid condition, then to get the phases of positive and negative sequence with the SFR-SPLL separately.The LCL-VSC mathematical model for unbalanced control is established under unbalanced grid condition. The reference current algorithm is given based on the LCL-VSC. For different purposes, it can be realized either symmetrical grid-side current or constant DC-side voltage without twice order ripple.Finally, a 15kVA LCL-VSC experimental system is established. The simulation and the experimental result verify the theoretical analysis and the design.Keywords: Wind power generation; LCL; VSC; unbalance; Multi-loop control目录第一章绪论 (1)1.1论文的研究背景和选题意义 (1)1.1.1风力发电及其意义 (1)1.1.2国内外风电产业发展概况 (1)1.1.3风力发电变流器的产业现状 (2)1.1.4论文的选题意义 (3)1.2风力发电中的网侧变流器研究现状 (3)1.2.1风力发电中的电气系统 (3)1.2.2网侧变流器的拓扑结构 (5)1.2.3网侧变流器控制策略的研究现状 (6)1.3本论文的主要目标和主要工作 (8)第二章基于LCL-VSC网侧变流器建模与控制 (9)2.1引言 (9)2.2三相LCL-VSC数学模型 (10)2.2.1三相静止(a , b, c)坐标系下的数学模型 (11)2.2.2两相静止坐标系(D, Q)下的数学模型 (12)2.2.3两相旋转坐标系(d, q)下的数学模型 (14)2.3LCL-VSC多环控制策略 (14)2.3.1系统控制结构 (17)2.3.2并网电流指令算法 (18)2.3.3电流控制器设计与稳定性校验 (20)2.3.4直流电压环控制器设计 (25)2.3.5基于复功率理论的电容电压估计 (26)2.4多环控制策略仿真与分析 (27)2.4.1电流环仿真 (28)2.4.2电压环仿真 (30)2.5总结 (30)第三章电网不平衡及其关键问题研究 (31)3.1引言 (31)3.2三相电网不平衡 (32)3.2.1电网不平衡理论分析 (32)3.2.2不平衡系统的研究方法 (33)3.2.3正负序检测 (35)3.3软件锁相环(SSFR-SPLL)及其设计 (41)3.3.1基本原理 (41)3.3.2PLL模型的简化 (43)3.3.3参数计算 (44)3.4基于双SFR_SPLL在不平衡电网中的应用 (48)3.4.1基本结构 (48)3.4.2仿真分析 (49)3.5总结 (51)第四章LCL-VSC不平衡控制策略 (52)4.1引言 (52)4.2不平衡电网下VSC数学模型 (52)4.2.1三相静止坐标系(a-b-c)下的数学模型 (53)4.2.2同步旋转坐标系(d, q)下的数学模型 (55)4.3电网不平衡时电流指令算法 (58)4.4双矢量电流控制策略研究 (61)4.4.1系统控制结构 (61)4.4.2抑制网侧负序电流的控制策略 (62)4.4.3抑制直流侧二次纹波的控制策略 (63)4.5仿真分析 (64)4.6总结 (65)第五章系统设计及实验分析 (66)5.1LCL-VSC样机设计 (66)5.1.1主电路参数选择 (67)5.1.2IPM模块选择 (67)5.1.3控制模块处理器的选择 (68)5.1.4功能模块电路设计 (69)5.1.5试验系统软件设计 (72)5.2系统实验结果分析 (75)5.2.1平衡电网VSC控制 (75)5.2.2不平衡电网与锁相环 (76)5.2.3不平衡电网VSC双电流环控制 (77)第六章总结与展望 (79)6.1总结 (79)6.2展望 ................................................................... 错误!未定义书签。
风电并网逆变器

双馈风电机变流器
双馈风电机结构与原理
双馈风电机变流器结构 双馈风电机变流器控制
双馈风电机结构与原理
双馈风电机结构与原理
变流器由发电机侧变流 器(AC/DC)和网侧变流 器(DC/AC)共同组成。
双馈电机与绕线式异步电机类似;其定、转子都能向 电网馈电,故简称双馈电机;变速恒频控制方案是由 和转子相连变流器实现;通过改变励磁(转子电流) 频率,可改变电机的转速,达到调速的目的;
永磁同步风电机变流器的控制
网侧变流器控制目标 1.与电网功率交换时,输出波形是正旋波,谐波 小,满足功率因素的要求; 2.保证直流母线电压的稳定,直流母线电压的稳 定是两个PWM变流器正常工作的前提 3.控制发电机侧变流器和网侧变流器的有功功率 传输平衡,并根据电网运行要求,与电网实现 指定无功功率交换。
两种变流器比较
交流励磁双馈式风电系统的变流器,连接 于电网与可控励磁电流所在的转子绕组之 间。 无刷双馈式风电系统的变流器,连接于电 网与可控励磁电流所在的定子控制绕组之 间。
永磁同步风电机变流器控制
网侧变流器控制策略
当发电机侧变流器与网侧变流器传输功率不平衡时, 会导致电容电压的改变。
为了保持直流电压 恒定,采用了电压 外环,电流内环的 控制方法。
由于d轴分量与q轴分量 存在耦合,所以采用前 馈解耦的控制方法,是 的d轴与q轴解耦。
永磁同步风电机变流器控制
机侧变流器控制目标 根据永磁同步电机的数学模型,通过控制永磁 电机定子侧的电压电流,实现对定子侧磁链的 控制来实现对永磁同步电机的控制。
两种变流器比较
结构 直驱式风电系统的变流器接于定子绕组与 电网之间,功率输送是单向的,即只能从 发电机定子绕组流入电网。因此可以考虑 采用低成本的不控或半控器件。
风电系统PWM并网变流器

第二章风电系统PWM并网变流器2.1直驱风力发电变流系统概述直驱型风力发电机组需要做全功率的变流器变换"其交/直整流既可以采用IGBTPWM整流器,也可以采用二极管不控整流与升压斩波"后者使用的大功率IGBT开关管少,因而性价比更高"本文研究的MW 级风力发电变流系统采用二极管不控整流,升压斩波与两重并网逆变器的功率变换拓扑结构"通过控制升压斩波器的输入电流以控制有功功率,调节无功则通过控制作为电网接口的电压型PWM变流器"系统变流部分拓扑如图2一1所示"图2一1直驱风力发电变流系统拓扑结构发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM变换中产生的高频谐波"系统结构具有以下特点:1.电机采用多极永磁同步结构:实现了电机的低速运转,无齿轮箱:不需励磁,无滑环和电刷;大大减少了系统的机械维护成本"2.电机与整流桥均采用六相结构,可减小电压脉动并降低对直流侧滤波电容量的要求"3.升压斩波器和并网逆变器采用并联多重化结构,一方面分担电流;另一方面采用合理的调制模式可以有效地抑制高频谐波"4.PWM变流器直流侧中点接地使三相电流独立控制,且对多重化结构能抑制环流,同时由于对直流电压中点的箱位降低了对直流母线绝缘性能的要求;而将直流电压分为两个独立变量,在控制上必须增加一个直流电压控制环或直流电压补偿器,加大了控制难度,且由于中线的连接,引入了零序电流"5.斩波器输出之后加入了制动单元"当电网电压突然跌落时,由于风轮机的机械惯性,传递功率不变而使并网电流突增"此时使制动单元IGBT导通,旁路PWM变流器,电阻能耗制动,降低并网电流"待电网电压恢复后再断开制动单元开关管,系统正常运行"6.PWM变流器网侧采用LCL滤波,实现了风电变流系统与电网的隔离:既滤除PWM变换的高频谐波,又滤除电网尖峰信号对功率变换系统的干扰"变流系统控制主要针对斩波器和逆变器"斩波器通过调节输入电流控制系统传输的有功功率"因为斩波器输出侧直流电压由PWM变流器控制恒定,所以控制输入电流时,调节IGBT开关管的占空比即控制了升压斩波器的输出电流,进而控制输入风能的功率"对变速恒频系统,斩波器输入电压会随风速的变化而改变"为了控制系统的有功功率,其输入电流指令也必然会相应的改变"所以快速的动态跟随性是斩波器的重要指标"网侧逆变器有两个控制要求,其一要求控制直流侧电压恒定,其二要求控制并网输出电流谐波畸变(THD)小,且保持单位功率因数(unitypowerfactor),以控制系统无功功率为零"当然在必要的情况下,也应可以向电网发出需要的感性无功或容性无功"而网侧逆变器由于与风轮机和同步发电机隔离,其主要控制目标是保持良好的抗扰性能"当然在系统指令改变时,PWM变流器也应具有快速的动态响应"2.2PwM变流器的分类及其拓扑从电力电子技术的发展来看,变流器较早应用的一种形式就是AC 心C变换装置,即整流器"它的发展经历了由不控整流器(二极管整流)!相控整流器(采用半控开关器件,如晶闸管)到PwM整流器(采用全控开关器件,如IGBT)的发展历程"传统的相控整流器,应用的时间较长,技术也较为成熟,但存在以下问题:图2一1直驱风力发电变流系统拓扑结构发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM 变换中产生的高频谐波"并网变流器作用(l)晶闸管换相引起网侧电压波形畸变;(2)网侧谐波电流对电网产生谐波污染;(3)深控时功率因数很低;(4)闭环控制时动态响应慢;虽然二极管整流器改善了网侧功率因数,但是仍会产生网侧谐波电流而污染电网,另外二极管整流的不足还在于直流侧电压的稳定性差"针对上述不足,PWM整流器已对传统的相控及二极管整流器进行了全面改进"其关键性的改进在于用全控型功率开关管取代了半控型功率开关管或二极管,以PWM斩控整流取代了相控整流或不控整流,功能上也已经远远超过了最初的整流,所以名称也渐渐演变成变流器"PWM变流器可以取得以下优良性能:(l)网侧电流近似正弦波;(2)网侧功率因数控制(如单位功率因数控制);(3)电能双向传输;(4)较快的动态响应;(5)可进行并网逆变;目前已设计出多种的PWM变流器,电压型和电流型是最基本的分类方法"这两种类型的PWM变流器无论是在主电路结构!PWM信号发生以及控制策略等方面均有着各自的特点,并且两者存在着电路上的对偶性"电压型的PWM变流器研究和应用较多,因此本文主要介绍电压型PWM变流器(VSR)"1.单相半桥!全桥VSR拓扑图2一2分别示出了vsR单相半桥和单相全桥主电路拓扑结构I.4>"两者交流侧具有相同的电路结构,其中交流侧电感主要用以滤除网侧电流谐波"由图2一2(a)可看出,单相半桥VSR拓扑只有一个桥臂采用了功率开关,另一桥臂则由两电容串联组成,同时串联电容又兼作直流侧储能电容;单相全桥VSR拓扑结构则如图2一2(b)所示,它采用了具有4个功率开关的/H0桥结构"值得注意的是:电压型PWM 变流器主电路功率开关必须反并联一个续流二极管以缓冲PWM过程中的无功电能"比较两者,显然半桥电路具有较简单的主电路结构,!1.功率开关数只有全桥电路的一半,因而造价相对较低,常用于低成本!小功率应用场合"进一步研究表明,在相同的交流侧电路参数条件下,要使单相半桥VSR以及单相全桥VSR获得同样的交流侧电流控制特性,半桥电路直流电压应是全桥电路直流电压的两倍,因此单相半桥VSR 的直流侧电压利用率低,功率开关管耐压要求相对提高,另外,为使半桥电路中电容中点电位基本不变,还需引入电容均压控制,可见单相半桥VSR的控制相对复杂"2.三相桥式VSR拓扑结构图2-3为三相桥式VSR拓扑结构,其交流侧采用三相对称的无中线连接方式,采用6个功率开关管,这是一种最常用的三相电压型PWM整流器,广泛应用于电力系统的有源滤波和谐波补偿,以及作为大功率拖动设备的前端整流。
直驱风力发电系统双PWM变流器控制技术

维 护 复 杂 的齿 轮 箱 ,使 风 轮 机 直 接 驱 动 永磁 发 电 机 , 高 了系统 的 可靠 性 和稳 定性 [ 使 用永 磁 同步 提 1 1 。
发 电机 , 略 了双 馈 电机 中 的滑 环 和 碳 刷 , 需 要 省 不
系统进 行 MA L /i uik建模 仿真 。 T ABSm l n 通过 仿真结
摘 要 : 直 驱 风 力 发 电 系统 中,双 P M 变流 器 是 实现 能 量 转换 的 重要 部 件 。文 中 分析 了直 驱 型 风 力 发 电 系统 在 W 原 理 , 了 实现 最 大 风 能捕 获 和提 高 系统 输 出的 电能 质 量 , 机侧 和 网侧 变 流 器 分别 运 用 直 接 转 矩 控 制 ( C) 直 为 在 DT 和 接 功 率控 制 ( C , 其 统 一 协 调 控 制 。 MA L B S l k 中进行 仿 真研 究 , 析 和研 究表 明 , 制 方 案 可有 效地 DP ) 使 在 T A /i i mu n 分 控
第 5期
2 1 0 1年 9月
电
源
e 2 1
J u na fPo e u pl o r lo w r S p y
直驱风力发 电系统 双 P WM变 流器控制技术
姚 兴 佳 , 永 兴 , 庆 鼎 马 郭
( . 阳工业 大 学风 能技 术研 究所 , 阳市 10 2 ;. 阳工 业大 学 电气工程 学院 , 阳 市 10 2 ) 1沈 沈 10 3 2 沈 沈 10 3
究。
)男 , 授 , 士 生 导 师 , , 教 博 主要 从 事 风力 发 电
、 。 … … … … … 、
方面的研究。
较 高 , 积较 小 , 体 目前 得到 广泛 应用 。忽 略 漏磁通 的
风电变流器的多种并网控制方法比较

风电变流器的多种并网控制方法比较引言:风电发电作为可再生能源的重要组成部分,越来越受到关注和推广。
而风电变流器作为风电发电系统中的核心设备之一,起到了将风力发电机产生的交流电能转换为可与电力系统交互的直流电能的重要作用。
在风电变流器的设计中,并网控制方法的选择是至关重要的,不同的并网控制方法会对风电的发电效率、稳定性以及对电力系统的影响产生不同的影响。
本文将对当前常用的风电变流器的多种并网控制方法进行比较,并对其优缺点进行探讨。
一、直接并网控制方法直接并网控制方法是风电变流器中最为简单的一种方式。
其通过将风电发电机输出的交流电能直接与电力系统相连,达到将风能转化为电能并注入电力系统的目的。
该方法主要包括电压控制和频率控制两种方式。
1.1 电压控制电压控制是直接并网控制方法中较为常见的方式。
其通过对风电发电机输出电压进行控制,使其与电力系统的电压保持一致,从而实现风电发电机与电力系统的高效并网。
电压控制的优点在于不需要对电流进行独立控制,因此结构简单,容易实现。
然而,由于电压的波动会对电网稳定性产生影响,因此在实际应用中需要合理设计控制策略,以保证电网的稳定性。
1.2 频率控制频率控制是直接并网控制方法中另一种常见的方式。
其通过对风电发电机输出的频率进行控制,使其与电力系统的频率保持一致,从而实现风电发电机与电力系统的并联。
频率控制的优点在于可以减小电力系统频率的波动,提高电网的稳定性。
然而,由于频率控制需要对电流进行独立控制,因此控制系统的复杂度较高。
二、间接并网控制方法除了直接并网控制方法外,还存在一种称为间接并网控制的方式。
该方法通过使用一个电容器将风电发电机输出直流电能转换为交流电能,再将其与电力系统并联。
间接并网控制方法主要包括无感双闭环控制和模型预测控制两种方式。
2.1 无感双闭环控制无感双闭环控制是间接并网控制方法中较为常用的一种方式。
其通过对风电发电机输出电流进行控制,同时检测电网侧的电流和电压,从而实现风电发电机与电力系统的并联。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章风电系统PWM并网变流器2.1直驱风力发电变流系统概述直驱型风力发电机组需要做全功率的变流器变换"其交/直整流既可以采用IGBTPWM整流器,也可以采用二极管不控整流与升压斩波"后者使用的大功率IGBT开关管少,因而性价比更高"本文研究的MW级风力发电变流系统采用二极管不控整流,升压斩波与两重并网逆变器的功率变换拓扑结构"通过控制升压斩波器的输入电流以控制有功功率,调节无功则通过控制作为电网接口的电压型PWM变流器"系统变流部分拓扑如图2一1所示"图2一1直驱风力发电变流系统拓扑结构发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM变换中产生的高频谐波"系统结构具有以下特点:1.电机采用多极永磁同步结构:实现了电机的低速运转,无齿轮箱:不需励磁,无滑环和电刷;大大减少了系统的机械维护成本"2.电机与整流桥均采用六相结构,可减小电压脉动并降低对直流侧滤波电容量的要求"3.升压斩波器和并网逆变器采用并联多重化结构,一方面分担电流;另一方面采用合理的调制模式可以有效地抑制高频谐波"4.PWM变流器直流侧中点接地使三相电流独立控制,且对多重化结构能抑制环流,同时由于对直流电压中点的箱位降低了对直流母线绝缘性能的要求;而将直流电压分为两个独立变量,在控制上必须增加一个直流电压控制环或直流电压补偿器,加大了控制难度,且由于中线的连接,引入了零序电流"5.斩波器输出之后加入了制动单元"当电网电压突然跌落时,由于风轮机的机械惯性,传递功率不变而使并网电流突增"此时使制动单元IGBT导通,旁路PWM变流器,电阻能耗制动,降低并网电流"待电网电压恢复后再断开制动单元开关管,系统正常运行"6.PWM变流器网侧采用LCL滤波,实现了风电变流系统与电网的隔离:既滤除PWM变换的高频谐波,又滤除电网尖峰信号对功率变换系统的干扰"变流系统控制主要针对斩波器和逆变器"斩波器通过调节输入电流控制系统传输的有功功率"因为斩波器输出侧直流电压由PWM变流器控制恒定,所以控制输入电流时,调节IGBT开关管的占空比即控制了升压斩波器的输出电流,进而控制输入风能的功率"对变速恒频系统,斩波器输入电压会随风速的变化而改变"为了控制系统的有功功率,其输入电流指令也必然会相应的改变"所以快速的动态跟随性是斩波器的重要指标"网侧逆变器有两个控制要求,其一要求控制直流侧电压恒定,其二要求控制并网输出电流谐波畸变(THD)小,且保持单位功率因数(unitypowerfactor),以控制系统无功功率为零"当然在必要的情况下,也应可以向电网发出需要的感性无功或容性无功"而网侧逆变器由于与风轮机和同步发电机隔离,其主要控制目标是保持良好的抗扰性能"当然在系统指令改变时,PWM变流器也应具有快速的动态响应"2.2PwM变流器的分类及其拓扑从电力电子技术的发展来看,变流器较早应用的一种形式就是AC心C变换装置,即整流器"它的发展经历了由不控整流器(二极管整流)!相控整流器(采用半控开关器件,如晶闸管)到PwM整流器(采用全控开关器件,如IGBT)的发展历程"传统的相控整流器,应用的时间较长,技术也较为成熟,但存在以下问题:图2一1直驱风力发电变流系统拓扑结构发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM变换中产生的高频谐波"并网变流器作用(l)晶闸管换相引起网侧电压波形畸变;(2)网侧谐波电流对电网产生谐波污染;(3)深控时功率因数很低;(4)闭环控制时动态响应慢;虽然二极管整流器改善了网侧功率因数,但是仍会产生网侧谐波电流而污染电网,另外二极管整流的不足还在于直流侧电压的稳定性差"针对上述不足,PWM整流器已对传统的相控及二极管整流器进行了全面改进"其关键性的改进在于用全控型功率开关管取代了半控型功率开关管或二极管,以PWM斩控整流取代了相控整流或不控整流,功能上也已经远远超过了最初的整流,所以名称也渐渐演变成变流器"PWM变流器可以取得以下优良性能:(l)网侧电流近似正弦波;(2)网侧功率因数控制(如单位功率因数控制);(3)电能双向传输;(4)较快的动态响应;(5)可进行并网逆变;目前已设计出多种的PWM变流器,电压型和电流型是最基本的分类方法"这两种类型的PWM变流器无论是在主电路结构!PWM信号发生以及控制策略等方面均有着各自的特点,并且两者存在着电路上的对偶性"电压型的PWM变流器研究和应用较多,因此本文主要介绍电压型PWM变流器(VSR)"1.单相半桥!全桥VSR拓扑图2一2分别示出了vsR单相半桥和单相全桥主电路拓扑结构I.4>"两者交流侧具有相同的电路结构,其中交流侧电感主要用以滤除网侧电流谐波"由图2一2(a)可看出,单相半桥VSR拓扑只有一个桥臂采用了功率开关,另一桥臂则由两电容串联组成,同时串联电容又兼作直流侧储能电容;单相全桥VSR拓扑结构则如图2一2(b)所示,它采用了具有4个功率开关的/H0桥结构"值得注意的是:电压型PWM变流器主电路功率开关必须反并联一个续流二极管以缓冲PWM 过程中的无功电能"比较两者,显然半桥电路具有较简单的主电路结构,!1.功率开关数只有全桥电路的一半,因而造价相对较低,常用于低成本!小功率应用场合"进一步研究表明,在相同的交流侧电路参数条件下,要使单相半桥VSR以及单相全桥VSR获得同样的交流侧电流控制特性,半桥电路直流电压应是全桥电路直流电压的两倍,因此单相半桥VSR的直流侧电压利用率低,功率开关管耐压要求相对提高,另外,为使半桥电路中电容中点电位基本不变,还需引入电容均压控制,可见单相半桥VSR的控制相对复杂"2.三相桥式VSR拓扑结构图2-3为三相桥式VSR拓扑结构,其交流侧采用三相对称的无中线连接方式,采用6个功率开关管,这是一种最常用的三相电压型PWM整流器,广泛应用于电力系统的有源滤波和谐波补偿,以及作为大功率拖动设备的前端整流。
三相桥式VSR工作原理同单相全桥VSR类似,但是脉冲调制的时候是三相调制3.三电平VSR拓扑图2-4是三电平VSR常见的拓扑结构。
和二电平VSR相比而一言,三电jVSR的主要优点在于:一是对于同样的基波和谐波要求,它的开关频率低得多从而可以大幅度降低开关损耗:二是它适用于更高的交、直流侧电压规模(14]这两点都有利于加大变流机组的容量。
不过三电平VSR的缺点也显而易见,-方面其主电路拓扑使用功率开关器件较多;另一方面,它的控制也要比二电一’VSR复杂,尤其需要解决中点电位平衡问题。
2.3三相电压型PWM变流器的工作原理PWM变流器不同于传统意义上的AC/DC整流器,具有网侧功率因数控制、能量双向传输的性能。
当PWM变流器从电网吸取电能时,其运行于整流工作状态,当PWM变流器向电网传输电能时,其运行于逆变工作状态。
单位功率因数控制是指:当PWM变流器运行于整流状态时,网侧电压!电流同相,当PWM变流器运行于逆变状态时,其网侧电压!电流反相"进一步研究表明,PWM变流器其网侧电流及功率因数均可控,因而在风力并网变流器领域有着广泛的应用图2一5给出了三相电压型PWM变流器的典型电路结构"图2一5中共有四个储能元件,三个交流电感L和直流电容C,另外R表示功率开关管损耗等效电阻与交流电感及网侧等效电阻之和,为PWM变流器交流侧等效电阻"交流电感的主要作用为:隔离电网电动势与变流器桥臂交流电压,控制变流器交流侧电压实现四象限运行;滤除交流电流谐波;储能,实现变流器与电网传递无功功率;使变换器具有升压变换(Boost)特性"直流电容的主要作用为:缓冲交流侧与直流负载之间的能量交换,稳定直流电压;使直流侧具有电压源特性,构成电压型PWM变流器;抑制直流侧电压谐波"根据PWM变换电路的原理,直流电压由直流电压闭环控制,桥臂中点电压通过开关管的PWM模式控制,类似于同步电机励磁电压矢量的方向和幅值可控=.6]"图2一6表示电压型PwM 变流器的等效电路图"根据正弦调制和载波比较技术对功率开关管进行PWM调制,可以在桥臂交流侧产生正弦调制的PWM电压波形,如图2-6所示"正弦调制PWM波含与调制波频率相同且幅值成正比的基波分量和与载波相关的高频谐波"这些高次谐波会产生电感电流脉动"忽略PWM高次谐波,如下相量方程(2一1)式成立:其中E为电网电动势相量,U,为桥臂交流电压"!的基波分量的相量而夕表示线电流基波分量的相量"以电网电动势为参考,控制桥臂交流电压相量U!可以控制PWM变流器的运行状态,使其不仅能工作于单位功率因数的整流或逆变状态,也可以根据需要发出超前或滞后的无功"图2一7给出系统相量图"图2一7a)中U!超前E相角占,而电流夕超前云相角少"这里,,90",其有功分量少;与云相位相反,电路工作在逆变状态,实现了能量的回馈;同时电流无功分量了,超前E相角900,表明其具有超前的无功,呈现容性负载特性"图(2一7b)中U!滞后E相角占,而电流I滞后云相角中"这里价<90",其有功分量2"与云相位相同,电路工作在整流状态:同时电流无功分量I;滞后E相角900,表明其具有滞后的无功,呈现感性负载特性"实际上由于可以调节电流幅值的大小和电网电动势与线电流之间的相位差,系统既可以控制交直流侧有功功率的传递,又可以控制变流器从电网吸收或发出的无功功率,方便地实现了四象.限运行"由此可见,要实现PWM变流器运行状态的控制,关键在于网侧线电流的调节"一方面可以通过控制桥臂交流电压来间接控制网侧电流(幅值相位控制);另一方面,也可以通过网侧电流的闭环调节直接控制变流器的网侧电流"2.4三相电压型PWM变流器的数学模型对控制对象的数学建模主要是为了提出相应的控制策略,设计控制参数并分析系统的动!静态特性"本节建立两种数学模型:一般电路拓扑在三相静止坐标系(a-b一c)下的数学模型(包括低频和高频模型),两相旋转坐标系(d一q)下的数学模型"针对图2一8所示的主电路图,图中ea,气,ec为电源电压,ia,心,i.为电源电流,叽,叽,叽为整流前端输出PwM电压一几为直流回路输出电流,瓜为直流负载电流,红为直流滤波电容输入电流,呱为直流母线电压,UN(,为图中N点对O点的电压,尺等效为开关损耗等效电阻和交流侧电感电阻含量之和,凡.为直流侧等效负载电阻,几为直流侧滤波电容值,e:为直流电动势"各电压电流量均为瞬时值,正方向如图2一8所示"为了简化分析作如下假设(l)交流三相电网为理想电压源,即三相对称!稳定!内阻为零;(2)三相回路等效电阻相等,均为尺;(3)各相电感相等,均为入;(4)忽略开关器件的导通压降和开关损耗;(5)忽略分布参数的影响;2:41静止坐标系数学模型所谓静止坐标系数学模型就是根据三相电压型PWM变流器拓扑结构,在三相静止坐标系(a,b,")中,利用电路基本定律对变流器所建立的一般数学进行描述"如图2一6所示,当直流电动势气=o时,直流侧为纯电阻负载,此时三相vsR只能运行于整流模式;当气>Vuc 时候,三相vSR既可运行与整流模式,又可运行于有源逆变模式,此时三相vSR将气所发电能向电网侧输送,有时也称这种模式为再生发电模式;当气<呱时,三相VSR则运行于整流模式"为便于分析,定义三相整流桥开关函数Sa,凡,Sc为:。