第5章GIS数据库-空间数据模型

合集下载

空间数据组织与管理课件(PPT 56页)

空间数据组织与管理课件(PPT 56页)

空间数据库
• 空间数据库的组成
– 栅格数据库
• 栅格数据包括航空遥感影
像数据和DEM数据

– 矢量数据库
像 • 矢量数据则包括各种空间
实体数据(图形和属性数
据)
空间数据库 空间对象
图形
属性
空间数据库组成
数字 高程 模型
空间数据管理
• 空间数据的基本特征
– 空间特征
• 每个空间对象都具有空间坐标,即空间对象隐含了空间分布特 征,因此数据库应对空间数据建立空间索引
空间数据管理
• 通用数据库管理系统在管理空间数据时,面临的 问题:
– GIS中空间数据记录是变长的(存储的坐标点的数目随 空间对象的变化而变化),而一般数据库都只允许把 记录的长度设定为固定长度。另外,在存储和维护空 间数据拓扑关系方面,DBMS也存在着缺陷
矢量数据的管理
• 对于矢量数据,其位置数据和属性数据通常是分 开组织的
• 拓扑数据结构一方面虽然方便了空间数据查询和空间分析,但 另一方面也给空间数据的一致性和完整性维护增加了复杂度
• 如拓扑的面状实体仅记录组成它的弧段标识,因而进行查找、 显示和分析操作时都需要操作和检索多个数据文件
– 多尺度与多态性
• 不同观察比例尺具有不同的尺度和精度,同一地物在不同情况 下也会有形态差异
基本操作 – 地理信息表达复杂,表达单个地理实体需多个文件、多条记录,
或许包括大地网、特征坐标、拓扑关系、空间特征量测值、属性 数据的关键字以及非空间专题属性等 – 具有高度内部联系的GIS数据记录需要复杂的安全维护系统,为 了保证空间数据库的完整性,保护数据文件的完整性,保护系列 必须与空间数据一起存储,否则一条记录的改变就会使其他数据 文件产生错误

地理信息系统空间数据库

地理信息系统空间数据库

三、关系模型
用二维表来表达实体和实体之间的联系。使得设 计、操纵较为容易。
四、三种传统数据模型的比较
§4.3 空间数据库概念模型设计 —语义模型和面向对象模型
• 传统数据模型的弱点: (1)以记录为基础的结构不能很好面向用户
传统模型-记录;现实世界-事务、实体。有时不对应。
(2)不能以自然对象(Object):实体的抽象(基本元素),封装了数据和操作集 的实体。
• 消息(Message):请求 对象执行某一操作或回答 某些信息的要求。
• 类:描述一组对象的共同特征。类和实体是抽象与具 体的关系。
3. 对象的性质
• 封装:
• 继承:某类对象可以自然地拥有另一类对象的某些特 征和功能。不必重复实现,减少代码。
2. 概念模型(空间特征,关系描述)
(1)空间特征:点、线、面、体四种基本类型; (2)实体在空间、时间、属性三方面存在联系: • 空间联系:空间位置、分布、关系、运动等; • 时间联系:客体随时间变化,可构成时态数据库; • 属性关系:属性多级分类中的从属关系、聚类关系、相
关关系。
3. 空间数据库的数据模型设计
层次、网状显式地描述关系,但不自然;关系模型联系隐 含,必须检索全部记录才能确定。
(3)语义贫乏
用单一结构描述描述“交互”、“从属”、“构成”等众 多联系,语义上无法区别。
(4)数据类型太少
只提供常用的简单数据类型,不能自定义新的数据类型。
一、语义数据模型
-实体联系模型(E –R模型)
• 提供三种语义概念:
(1)实体:客观存在的起独立作用的客体。 (2)联系:实体间的相互作用或对应关
系:1:1,1:N,M:N, (3)属性:对实体和联系特征的描述。

GIS数据库

GIS数据库

GIS数据库是一种基于地理信息系统(GIS)的数据管理系统。

它主要用于存储、管理和处理地理信息数据,包括地理位置、地图、空间分析、地球物理参数等。

在数据的收集、处理和分析方面有着非常重要的作用,广泛应用于公共管理、城市规划、土地管理、资源管理等领域。

一、的基本概念是一种基于GIS技术的数据库管理系统,主要用于存储、管理和处理地理信息数据。

主要由数据存储系统、数据管理系统、数据处理系统和数据分析系统等四个部分组成。

数据存储系统是由数据存储设备、数据存储介质和数据存储软件等组成的,主要负责存储地理信息数据。

数据管理系统主要用于管理地理信息数据,包括数据的导入、导出、备份、恢复等操作。

数据处理系统主要用于对地理信息数据进行处理和分析,包括数据的查询、分析、统计等操作。

数据分析系统主要用于对地理信息数据进行分析和决策,如城市规划、土地管理、资源管理等方面。

二、的优势在数据管理、数据处理和数据分析方面都有着非常显著的优势。

首先,在数据管理方面,能够对地理信息数据进行统一、规范的管理,保证数据的完整性和安全性。

其次,在数据处理方面,能够对数据进行快速、高效的处理,实现数据分析和挖掘,为科学决策提供有效支持。

最后,在数据分析方面,能够对地理信息数据进行空间分析、仿真和预测,为公共管理、城市规划等领域提供数据支持。

三、的应用领域在公共管理、城市规划、土地管理、资源管理等领域有着广泛的应用。

在公共管理方面,可以用于电力、水利、交通等行业的设施管理和故障诊断,提高公共设施的服务质量。

在城市规划方面,可以用于城市基础设施的规划和管理,提高城市规划和管理的科学性和有效性。

在土地管理和资源管理方面,可以用于土地利用规划、土地利用变更审核、自然资源调查等工作,保障土地资源的合理利用和可持续发展。

四、的发展趋势随着GIS技术的不断发展和进步,的发展也趋向于更加高效、智能化和集成化。

首先,在数据管理方面,将采用更加复杂、灵活的数据模型来管理地理信息数据,为数据管理和使用提供更加高效、有效的支持。

地理信息系统概论

地理信息系统概论

说明:本提纲只为复习时使用,很多东西都比较简略的提及,不是只背这个就完事的,要结合书和讲义一起看。

不是投机取巧的工具。

学完了要在心里默念,谢谢师兄:)~~(师妹们尤其应该如此^_^)更重要的是,要认真的学~~第一章地理信息系统概论1.1地理信息系统的基本概念数据:指某一目标定性、定量描述的原始资料,包括数字、文字、符号、图形、图像以及它们能转换成的数据等形式。

信息:是向人们或机器提供关于现实世界新的事实的知识,是数据、消息中所包含的意义,它不随载体物理设备形式的改变而改变。

(客观性,实用性,传输性,共享性)信息系统:是具有数据采集、管理、分析和表达数据能力的系统,它能够为单一的或有组织的决策过程提供有用的信息。

类型:事物处理系统、管理信息系统、决策支持系统、人工智能和专家系统。

地理信息:是指表征地理圈或地理环境固有要素或物质的数量、质量、分布特征、联系和规律的数字、文字、图像和图形等的总称。

地理信息是有关地理实体的性质、特征和运动状态的表征和一切有用的知识,它是对地理数据的解释。

位置是其最显著的标志。

特征是定位特征、多维结构特征、动态变化特征。

地理数据:各种地理特征和现象间关系的符号化表示。

有空间位置、属性特征、时态特征三部分。

1.2地理信息系统及其类型地理信息系统:是以地理空间数据库为基础,采用地理模型分析方法,适时提供多种空间的和动态的地理信息,为地理研究和地理决策服务的计算机技术系统。

三大类型:专题地理信息系统、区域信息系统、地理信息系统工具。

地理信息系统的构成:计算机硬件系统+计算机软件系统+空间数据+系统开发、管理和使用人员计算机硬件系统:输入/输出设备、中央处理单元、存储器等计算机软件系统:计算机系统软件、地理信息系统软件和其他支持软件、应用分析软件空间数据:某个已知坐标系中的位置、实体间的空间关系、与几何位置无关的属性系统开发、管理和使用人员1.3地理信息系统的功能概述五个核心问题:位置(Locations):在某个特定的位置有什么。

第五章 空间分析剖析

第五章 空间分析剖析
区域的质心是目标保持均匀分布的平衡点, 它通过对目标坐标值加权平均求得 。
质心通常是指一个多边形或面积的几何中心。 在有些情况下质心描述的不是几何中心,而是分 布中心,或加权的平均中心。
应用范围极其广泛,如: ✓ 商场选址应该位于具有最佳势能的定位点处。 ✓ 经济的增长极可能发生在高势能地区。
8
几何中心的计算
69.5 70.8 216.2 108.3
查找
101 102 103 104
11
实质是查数据库中植被=“林地 ” 的记录,并显示。
标号
101 102 103 104
植被
林地 农地 工业地 林地
面积
69.5 70.8 216.2 108.3
12
2) 基于空间特性的查询
空间特征的查询可分: (1) 空间几何数据查询 查询空间目标的坐标点、线长、面积、周长及位 置等。 (2) 空间关系查询 基于拓扑关系的查询如邻接性查询、包含性查询、 穿越性查询、落入性查询、方向性查询等。 例:查长江经过哪几个省?
10
1、空间数据查询
1)基于属性(非空间)特征的查询
属性特征的查询主要在属性数据库中完成,这种查询通 常基于标准的SQL查询语言实现,之后按照属性数据和 空间数据的对应关系显示图形。
如:通过对下列数据表中属性“植被”的查找,找到林地。
标号
101 102 103 104
植被
林地 农地 工业地 林地
面积
• 首先求出伊拉克处于那个州;
• 之后求出同伊拉克处于同一州的国家
16
5.4 空间数据的叠合 (置)分析
叠合分析(Overlay Analysis)的概念
叠合分析是在统一空间参照系统的条件下,将两层或多层 地图要素进行叠合产生一个新要素层的操作,其结果将原来 要素分割成新的要素,新要素综合了原来两层或多层要素所 具有的属性。也就是说,叠合分析不仅生成了新的空间关系, 还将输入数据层的属性联系起来产生了新的属性关系。叠合 分析是对新要素的属性按一定的数学模型进行计算分析,进 而产生用户需要的结果或回答用户提出的问题。

空间数据模型基于对象的矢量数据模型与栅格数据模型讲课文档

空间数据模型基于对象的矢量数据模型与栅格数据模型讲课文档

多边形内编号 1 2 3 4 5 6 7
弧数 4 3 4 4 3 1 1
各弧的内编号 1,3,4,6 5,2,1 6,7,9,5 2,9,8,3 8,7,4 10 11
现在二十三页,总共七十九页。
4 拓扑具体编辑过程——确定左右多边形 如果在组成一个多边形时,一条弧是从
首结点到尾结点,则定义为该多边形是 在这条弧的右边;
(a)多边形、弧段、结点(自上到下)
多边形 弧段
P1 a4 a5 a6
P2 a1 a8 a5 P3 a3 a6 a7 P4 a2 a7 a8
弧段 结点
a1 N1 N2
a2 N2 N4
a3 N4 N5 a4 N1 N5
a5 N1 N3
a6 N3 N5
a7 N3 N4 a8 N2 N3
(b)结点、弧段、多边形
处理嵌套多边形比较麻烦
现在八页,总共七十九页。
5 Arcgis软件Shape文件数据模型
Shape文件将空间要素的图形及属性信息以 非拓扑的形式存储在数据集中。要素的几何 形状数据存储成为具有矢量坐标的图形。
Shape文件数据模型是非拓扑的数据库模型。 因此,在数据显示速度上比较快,数据的编 辑也比较容易实现。通过编程的方式很容易 实现对Shape文件的存取操作。这一特性是 其优点,也是缺点。
一、栅格数据模型要素
格网方向
像元大小
西南角格网坐标 (XWS,YWS)
Y:行
X:列
现在二十九页,总共七十九页。
2 混合像元大小处理
方案一
B
.O C A
重要性 法
方案二:缩小栅格单元的面积
现在三十页,总共七十九页。
面积占优法
长度占优法

DEM_复习整理概要

DEM_复习整理概要

DEM 复习整理1、DEM概念(1)狭义概念:DEM是区域地表面海拔高程的数字化表达。

(2)广义概念:DEM是地理空间中地理对象表面海拔高度的数字化表达。

(3)数学意义:DEM是定义在二维空间上的连续函数H=f(x,y)2、数字高程模型的特点精度恒定性表达多样性更新实时性尺度综合性3、规则格网DEM和TIN的对比4、DEM数据模型从认知角度基于对象的模型、基于网络的模型、基于场的模型从表达角度矢量数据模型镶嵌数据模型组合数据模型5、DEM数据结构(1)、规则格网DEM数据结构a、简单矩阵结构b、行程编码结构c、块状编码结构d、四叉树数据结构(2)、不规则三角网DEM数据结构TIN数据结构:面结构、点结构、点面结构、边结构、边面结构、简单结构(3)、格网与不规则三角网结构混合结构6、DEM数据源特征地形图、航空、遥感影像、野外测量、既有DEM数据 可获得性(x,y,z)、DEM应用目的(分辨率、精度)、数据采集效率、数据量大小、技术熟练程度(1)数据源:地形图覆盖面广,可获取性强,是丰富、廉价的建立DEM的主要数据源。

特点:现势性(经济发达地区往往不满足现势性要求)、存储介质、精度:比例尺、等高线密度、成图方式有关(2)数据源:航空、遥感影像a、现势性好:获取速度快、更新速度快、更新面积大(大范围DEM数据的最有价值来源)b、缺点:受外界影响因素较大,对于精度要求高的DEM难以满足要求,高精度影像获取方法费用昂贵c、相对精度和绝对精度低的遥感影像:Landsat—MSS、TM传感器、SPOTd、高分辨率遥感图像:1米分辨率的IKONOS 0.61米QUICKBIRD(3)数据源:地面测量缺点:工作量大,周期长、更新十分困难,费用较高用途:公路铁路勘测设计、房屋建筑、矿山、水利等对工程精度要求较高的工程项目(4)数据源:既有DEM数据覆盖全国范围的1:100万、1:25万、1:5万数字高程模型7、数据采样方法对比(1)、地形图数据采集方法优点:a地形图易获取、作业设备简单、对操作人员技术要求较低,因而地形图是DEM获取最基本的方法。

地理信息系统中常用的空间数据模型有哪些?

地理信息系统中常用的空间数据模型有哪些?

地理信息系统中常⽤的空间数据模型有哪些?之前在百度知道上看到了这个问题——“地理信息系统中常⽤的空间数据模型有哪些?”今天就针对这个问题做了⼀些整理,看看能不能帮到⼤家。

空间数据模型是指利⽤特定的数据结构来表达空间对象的空间位置、空间关系和属性信息;是对空间对象的数据描述。

空间数据模型是地理信息系统的基础,它不仅决定了系统数据管理的有效性,⽽且是系统灵活性的关键。

⽬前,与GIS设计有关的空间数据模型主要有⽮量模型,栅格模型,数字⾼程模型,⾯向对象模型,⽮量和栅格的混合数据模型等。

前⾯四种模型属于定向性模型,在模型设计时只包括与应⽤⽬标有关的实体及其相互关系,⽽混合模型的设计则包括所有能够指出的实体及其相互关系。

就⽬前的应⽤现状⽽⾔,⽮量模型、栅格模型、数字⾼程模型相当成熟(⽬前成熟的商业化GIS主要采⽤这三类模型),⽽其它模型,特别是混合模型则处于⼤⼒发展之中。

⼀、⽮量模型(vector model)⽮量模型是利⽤边界或表⾯来表达空间⽬标对象的⾯或体要素,通过记录⽬标的边界,同时采⽤标识符(Identifier)表达它的属性来描述空间对象实体。

⽮量模型能够⽅便地进⾏⽐例尺变换、投影变换以及图形的输⼊和输出。

⽮量模型处理的空间图形实体是点(point)、线(line)、⾯(area)。

⽮量模型的基本类型起源于“Spaghetti”模型。

在Spaghetti模型中,点⽤空间坐标对表⽰,线由⼀串坐标对表⽰,⾯是由线形成的闭合多边形。

CAD等绘图系统⼤多采⽤Spaghetti模型。

GIS的⽮量数据模型与Spaghetti模型的主要区别是,前者通过拓扑结构数据来描述空间⽬标之间的空间关系,⽽后者则没有。

在⽮量模型中,拓扑关系是进⾏空间分析的关键。

在GIS的拓扑数据模型中,与点、线、⾯相对应的空间图形实体主要有结点(node)、弧段(arc)、多边形(polygon),多边形的边界被分割成⼀系列的弧和结点,结点、弧、多边形间的空间关系在数据结构或属性表中加以定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档