柔性直流输电与高压直流输电的优缺点

合集下载

低压直流供电与柔性直流输电及超高压直流输电的探讨

低压直流供电与柔性直流输电及超高压直流输电的探讨

低压直流供电与柔性直流输电及超高压直流输电的探讨摘要:目前直流电在我国电力系统应用有低压直流、柔性直流输电和超高压直流输电。

低压直流主要用于发电厂和变电站的二次回路中,柔性直流输电正应用于智能电网,而超高压直流用于远距离电能输送或系统联网。

低压直流也广泛应用于电子计算机电路中。

关键词:低压直流供电;柔性直流输电;超高压直流输电前言通过对直流电路重要性的了解;低压直流在电子等各行各业的应用;直流在电力系统中的二次回路中的应用、在柔性直流输电的应用以及在超高压特高压直流输电的应用的分析,提出直流电基础学习的重要性。

一、低压直流在电子领域的应用直流广泛用于电子电路、计算机等电路。

电子电路、通信电路、计算机电路等所用直流一般是几伏或几十伏。

如直流在晶体管放大电路中它主要作为集电极和基极的工作电源。

机床控制电路也广泛应用直流。

二、直流在电力系统中的应用2.1直流在二次回路中的应用传统的电力系统继电保护、控制回路、信号回路等二次回路中,广泛应用着直流电,它们所用直流电源电压一般是220V。

随着电力系统自动化水平的提高,在微机保护装置和微机自动装置电路中所用直流电压一般是几毫伏、几伏或几十伏电压。

低压直流还作为厂站应急电源。

2.2在柔性直流输电的应用“柔性”直流输电是采用先进的大功率电力电子器件组成的电压源换流器(VSC),其换流器采用IGBT绝缘栅双极型晶体管,它可以依据电网需要,灵活快捷地改变电能输送的大小和方向,并提供更优质的电能质量。

多端柔性直流输电系统模块化多电平(MMC)技术,可灵活接入多个站点的风能、太阳能、地热能、小水电等清洁能源,通过一个大容量、长距离的电力传输通道,到达多个城市的负荷中心。

这为新能源并网、大型城市供电以及孤岛供电等场合提供了一种有效的解决方案。

我国是从2006年开始研究,2011年上海南汇柔性直流输电工程投运,其电压±30kV,输出电流300A,输出功率18MVA。

柔性交直流输电系统的设计与运行优化

柔性交直流输电系统的设计与运行优化

柔性交直流输电系统的设计与运行优化随着电力需求的日益增长和可再生能源的广泛应用,柔性交直流输电系统作为一种能够高效、可靠地传输电能的技术逐渐引起了人们的重视。

本文将探讨柔性交直流输电系统的设计原理和运行优化方法,从而为构建可持续、高效的电力系统提供理论支撑。

一、柔性交直流输电系统的设计原理柔性交直流输电系统是一种通过交流和直流电输送电能的系统,其核心是柔性交直流变流器技术。

该技术通过将交流电转换为直流电,再经过逆变器将直流电转换为交流电,实现电能的传输与转换。

与传统的交流输电系统相比,柔性交直流输电系统具有以下设计原理:1. 多端口设计:柔性交直流输电系统具有多个直流和交流端口,通过合理配置这些端口,可以实现多个电源和负载的灵活连接和电能传输。

这种多端口设计可以提高系统的灵活性和可靠性。

2. 柔性电压调节:柔性交直流输电系统可以根据不同负载和电源的电压需求进行调节,从而优化电能传输效率。

通过控制变流器的输出电压和频率,可以实现对负载电压的精确控制,提高能源利用率。

3. 频率变换技术:柔性交直流输电系统可以通过变换交流电的频率实现电能的传输与转换。

通过调整变流器的频率,可以实现交流电的输送和转换,从而实现不同频率的电力之间的互相转换。

二、柔性交直流输电系统的运行优化方法为了实现柔性交直流输电系统的高效、稳定运行,需要采取一系列优化方法,包括功率控制、电能调度和电压控制等。

1. 功率控制:柔性交直流输电系统中的功率控制是保证系统稳定运行的关键。

通过控制变流器的输出功率,可以实现对负载电流和电压的精确控制。

同时,采用逆变器技术可以实现对输电电流的调节,从而实现电能的稳定输送和转换。

2. 电能调度:柔性交直流输电系统中的电能调度是为了实现系统内多个电源和负载之间的协调运行。

通过合理配置电能的输入和输出,可以实现系统中电能的均衡分配,从而提高系统的效率和可靠性。

3. 电压控制:柔性交直流输电系统中的电压控制是为了保证负载电压的稳定性和系统的安全性。

2024年柔性直流输电市场发展现状

2024年柔性直流输电市场发展现状

2024年柔性直流输电市场发展现状引言柔性直流输电(Flexible Direct Current Transmission,简称FDCT)作为一种新型的输电技术,具有多种优势,如高效、低损耗和灵活性等。

随着电力需求的不断增长和可再生能源的迅速发展,柔性直流输电市场正逐渐展现出巨大的潜力。

本文将对柔性直流输电市场的发展现状进行分析和探讨。

主要内容1. 柔性直流输电技术简介柔性直流输电技术是一种将输电线路由传统的交流形式转变为直流形式的技术。

该技术利用高压直流输电(High Voltage Direct Current,简称HVDC)系统,通过转换站将交流电转换为直流电进行输送。

相较于传统的交流输电方式,柔性直流输电可以实现更高效率和更远距离的电能传输。

2. 柔性直流输电市场发展趋势柔性直流输电市场正逐渐蓬勃发展,并且呈现出以下几个主要的发展趋势:•可再生能源促进发展:随着可再生能源的快速发展,如风能和太阳能等,柔性直流输电正成为将这些能源从产地输送到用电地点的理想选择。

柔性直流输电系统可以实现大规模清洁能源的长距离传输。

•输电效率提高:与高压交流输电相比,柔性直流输电系统的输电效率更高。

因为直流电在输送过程中的能量损失较小,可以大幅度降低电力传输过程中的能量损耗,提高输电效率。

•电网稳定性提升:柔性直流输电系统具备快速响应和调节电网负荷等特点,可以提高电网的稳定性。

在能源供需波动较大的情况下,柔性直流输电系统可以有效地平衡能源供给和需求,提高电网的可靠性和稳定性。

3. 柔性直流输电市场的挑战柔性直流输电市场的发展也面临着一些挑战,主要包括以下几个方面:•技术难题:柔性直流输电技术相对较新,还存在一些技术难题,如电能转换效率、电气设备可靠性和环境适应能力等问题,需要进一步解决和改进。

•经济可行性:虽然柔性直流输电具有诸多优势,但是其建设和运营的成本相对较高,需要对投资回报作出准确评估,以确保项目的经济可行性。

电力系统中的柔性直流输电技术研究与应用

电力系统中的柔性直流输电技术研究与应用

电力系统中的柔性直流输电技术研究与应用随着能源需求的增长和可再生能源的快速发展,电力系统的可靠性和效率成为了迫切的问题。

在过去,交流输电是占主导地位的,但是随着电力系统的复杂性和功率需求的不断增加,柔性直流输电技术逐渐崭露头角并得到广泛关注。

柔性直流输电技术是一种能够有效提高电力系统稳定性和可靠性的新型电力传输方式。

相较于传统的交流输电方式,柔性直流输电技术具有以下优势:1. 技术先进性:柔性直流输电技术采用了高压高功率电力电子器件,能够实现高效能的电力传输。

通过电力电子设备对电压和频率进行控制,可以快速调整电力流向和功率分配,提高系统的稳定性和可控性。

2. 低损耗和高效率:相较于交流输电方式,柔性直流输电技术在长距离传输时损耗更低。

由于直流电流不会产生电感和电容的功耗,输电损耗更小,能够有效降低能源浪费和环境污染。

3. 技术应用广泛性:柔性直流输电技术可以灵活适应不同的传输需求和能源分布情况。

在大规模可再生能源开发和分布式能源系统中,柔性直流输电技术可以提供更加稳定可靠的电力传输,实现能源的高效利用。

在实际应用中,柔性直流输电技术已经取得了一系列的成果。

首先,在长距离高容量输电方面,柔性直流输电技术可以实现大容量电力的长距离传输,有效解决了传统交流输电的限制。

通过减少输电损耗,提高输电效率,柔性直流输电技术能够为电力系统提供更稳定可靠的电力供应。

其次,在可再生能源领域的应用方面,柔性直流输电技术在风能和太阳能等可再生能源开发中具有广阔的应用前景。

由于可再生能源的不稳定性和间歇性,柔性直流输电技术可以实现对电力流量的精确控制,将多余的电力注入电网,并实现电力的平衡调度。

这不仅提高了可再生能源的利用率,还增强了电网的稳定性和可靠性。

同时,柔性直流输电技术在城市供电和电力互联网的建设中也发挥着重要作用。

通过柔性直流输电技术,电力系统可以实现更好的电力管理和智能化控制。

通过对电力流向和负荷需求的精确监测和控制,可以实现电力需求的动态分配和优化,提高供电的质量和可靠性。

对柔性直流输电技术的相关要点分析

对柔性直流输电技术的相关要点分析

对柔性直流输电技术的相关要点分析摘要:柔性直流输电是有广泛应用前景的输电技术,而且也有比较先进的技术。

能够在国家能源结构方面进行调整,让区域能源实现互联发展。

能够进行自换相,如果没有换相失败的时候,也可以向弱交流系统供电。

如果缺乏无功补偿,可以设置常规直流的补偿功率为50%到60%,另外,整个占地面积比较大。

有比较低的谐波水平,这也决定了柔性直流输电,也不会有更多的滤波。

如果在海上风电和海上石油平台方面也会有大的发展。

由于电的波动性也会比较大,也会有比较强的间歇性,针对调整这些间歇性的问题,可以更快的去调节能量。

针对柔性直流输电技术的特点和发展现状问题,也总结出了柔性直流输电技术的应用领域,更好地对未来柔性直流发电技术发展前景进行了分析。

关键词:柔性直流输电;技术要点;技术分析柔性直流输电能够构成多端直流电网,而且也不需要去改变直流的电压极性,如果只改变直流电压的方向,可能在常规反送的时候去改变电压,对于柔性直流输电并不用改变电压方向和电流方向,因此构成了直流网和只是电流调节。

对于直流电网的实际意义是要实现能量流的双向流动与双向控制,并且提高大功率电力电子性能,从而保证能量流自动调节,这种设计也比较小型化。

一、柔性直流输电的现状优势目前,人们越来越重视以晶闸管换流器为核心的高压直流输电技术。

柔性直流输电的主要优势是可以降低高压输电走廊的建设成本,并且对相位交流电网的柔性进行关联,让负荷中心可以进行远距离大功率的输电。

常规直流输电技术有非常多的优势,柔性直流输电技术也有其独有的特点。

1.孤岛特性常规高压直流输电技术要求受端电网是强电网,受端电网应当提供电压作为支撑方,从而保证输电的稳定性。

在一开始建设常规直流电的时候,由于交流电网容量会比较大,高压直流输电一般都是作为小部分来进行补充,没有比较明显的问题。

我国新能源建设都得到了蓬勃发展,新能源需要借助直流线路输到东部负荷中心,交流端容量无法更好地支撑大量的直流线路输入。

柔性直流输电

柔性直流输电

柔性直流输电技术目录简介 (1)原理 (2)战略意义 (3)应用前景展望 (4)常规直流输电与柔性直流输电的对比 (5)一、常规直流输电技术 (5)二、柔性直流输电技术 (6)三、常规直流输电技术和柔性直流输电技术的对比 (7)四.运行方式 (8)简介柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。

基于电压源换流器的高压直流输电(VSC-HVDC)技术由加拿大McGill大学的Boon-Teck Ooi 等人于1990年提出,是一种以电压源换流器、自关断器件和脉宽调制(PWM)技术为基础的新型输电技术,该输电技术具有可向无源网络供电、不会出现换相失败、换流站间无需通信以及易于构成多端直流系统等优点。

李岩,罗雨,许树楷,周月宾等.柔性直流输电技术:应用、进步与期望.《南方电网技术》,2015讲述了柔性直流输电技术是构建灵活、坚强、高效电网和充分利用可再生能源的有效途径,代表着直流输电的未来发展方向,已成为新一代智能电网的关键技术之一。

概述了国内外柔性直流输电工程的现状以及柔性直流输电技术在交流电网的异步互联、风电场并网、海上平台供电和城市负荷中心供电等领域的应用情况;重点介绍了世界第一个多端柔性直流输电工程——南澳多端柔性直流输电示范工程的研发情况,尤其是其技术难点;指出了直流输电混合化,高电压大容量化,直流输电网络化和直流配电网等未来柔性直流输电技术发展的主要方向;提出了柔性直流输电系统亟待解决的关键问题,诸如具有直流短路故障电流清除能力的电压源换流器拓扑结构,高压直流断路器技术和直流电网运行的基础理论及控制保护技术。

柔性直流输电系统中两端的换流站都是利用柔性直流输电,由换流器和换流变压设备,换流电抗设备等进行组成。

其中最为关键的核心部位是 VSC ,而它则是由流桥和直流电容器共同组成的。

系统中,综合考虑它的主电路的拓扑结构及开关器件的类型,能够采用正弦脉宽调制技术,将此类技术在调制参考波与三角载波进行数据的对比,在后者数据相对较小的情况下,就会发生触发下桥臂开关导通并关断下桥臂。

高压直流输电与交流柔性输电总结

高压直流输电与交流柔性输电总结

5、直流输电应用在哪些场合? 地下或水下电缆; 远距离大容量输电; 交流系统的联网; 在上联电力系统中控制潮流;轻型直流输电。 6、直流输电存在哪些问题? 1) 晶闸管换流器换流时消耗大量功率,每个换流站均 需装配无功补偿设备, 2) 直流输电利用大地(海水)为回路带来了技术问题 (腐蚀问题、变压器饱和问题) 3) 直流断路器无电流流过零点,灭弧问题难以解决 4) 换流器对交流侧来说,除了是一个负荷或电源以外, 还是一个谐波电流源,所以为保证换流站交流导线 电压畸变率在允许范围内,必须装设平波电抗器和 直流滤波器, 5) 换流站运行维护复杂,对运行人员的要求较高, 7、直流输电系统中,逆变器相失败的原因有哪些?
8、换流变压器与普通变压器相比有何特点?如何选择 容量和电抗? 1) 具有较大,哦,我漏电抗(限制过大的短路电流, 损坏换流阀)而且 3 项漏抗平衡度要求高(减少非 特征谐波) 3.直流输电双机系统按构成方式,分为哪 3 类,各有什 2) 需要更高的绝缘裕度(换流变压器阀侧供组和套管 么特点? 是在交流电压和直流电压共同作用下,工作的) 双极两端中性点接地方式 3) 增波问题,换流变压器在运行中会流过特征谐波和 利用正负 2 极导线和两端换流站正负 2 极相连构成直流 非特征谐波 侧的闭环回路,保留了单极系统的大地或海水回流方式, 4) 有载调压范围宽, (补偿换流器变压器交流侧电压 节省一根导线的优点。正常运行时回路电路不平衡电流 变化) 数值不大,大大减轻了大地或海水做回流电路所引起的 5) 直流偏磁严重(交直流线路耦合、换流阀触发角不 金属设施的腐蚀问题,当任意极发生故障,在故障隔离 平衡,接地极电位升高等原因导致,换流变压器侧 后,健全极可以用大地或海水作为回流电路,保持输送 和网侧供组中有直流) 一半的电力。 , 6) 实验复杂(除型式试验和侧行实验外还要进行直流 两极端中性点接地方式, 方面的实验) 不以大地或海水做回流电路, ,避免了金属设施腐蚀问 9、平波电抗器的作用有哪些?平波电抗器感量选用原 题,但其中一级发生故障时,迫使健全极短暂停止送电 则是什么? 双极中性线方式 1) 抑制直流电压的谐波分量,减小对临近高频通道的 利用 3 根导线构成直流侧回路,两换流站中性点之间用 干扰 导线连接,做中性线,并一端接地。中性线不仅避免了 2) 直流电流小时保证电流不间断,防止过电压, 以大地或海水作为回流电路所带来的腐蚀问题,而且允 3) 直流线路短路或逆变器换相失败时,以致故障电流 许单机运行, 上升率,降低故障电流的幅值 4.何谓直线输电交流输电的等价距离?它与哪些因素有 4) 已知线路电容和换流站电流端容性设备通过换流 关? 阀的放电电流,防止由直流线路或直流开关站所产 等价距离:旨在输送功率相同和可靠性相当的条件下, 生的陡波冲击进入阀厅 直流输电方式与交流输电方式相比,当输电距离达到一 5) 调整直流测电路串联谐振频率,使之避开基波和 2 定长度时,直流线路节省的那部分不建设费用,刚好补 次谐波频率 偿直流交换站比交流变电站增加的那部分费用, ,即交 电感量选用原则: 流输电与两端设备的总费用相等。这个距离就称为等价 ①限制故障电流的上升率;②平抑直流电流的级器的 等价距离与交流和直流输电线路的造价,交流变电站和, 参数,统筹考虑,并进行费用的优化;⑤避免与直流滤 直流换流站的造价等一系列经济指标有关。 波器,直流线路,中性点电容器,换流变压器等在 50、

柔性直流输电与高压直流输电的优缺点

柔性直流输电与高压直流输电的优缺点

柔性直流输电与高压直流输电的优缺点(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除柔性直流输电一、常规直流输电技术1. 常规直流输电系统换流站的主要设备。

常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。

2. 常规直流输电技术的优点。

1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。

2)光触发晶闸管直流输电,抗干扰性好。

大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。

3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。

3. 常规直流电路技术的缺点。

常规直流输电由于采用大功率晶闸管,主要有如下缺点。

1)只能工作在有源逆变状态,不能接入无源系统。

2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。

3)无功消耗大。

输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。

二、柔性直流输电技术1. 柔性直流输电系统换流站的主要设备。

柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。

2. 柔性直流输电技术的优点。

柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。

此外,柔性输电还具有一些自身的优点。

1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。

保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。

2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。

功率变化时,滤波器不需要提供无功功率。

3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柔性直流输电与高压直
流输电的优缺点
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
柔性直流输电
一、常规直流输电技术
1. 常规直流输电系统换流站的主要设备。

常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。

2. 常规直流输电技术的优点。

1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。

2)光触发晶闸管直流输电,抗干扰性好。

大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。

3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。

3. 常规直流电路技术的缺点。

常规直流输电由于采用大功率晶闸管,主要有如下缺点。

1)只能工作在有源逆变状态,不能接入无源系统。

2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。

3)无功消耗大。

输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。

二、柔性直流输电技术
1. 柔性直流输电系统换流站的主要设备。

柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。

2. 柔性直流输电技术的优点。

柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。

此外,柔性输电还具有一些自身的优点。

1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。

保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。

2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。

功率变化时,滤波器不需要提供无功功率。

3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。

4)采用双极运行,不需要接地极,没有注入地下的电流。

3. 柔性直流输电技术的缺点。

系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。

在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。

可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。

三、常规直流输电技术和柔性直流输电技术的对比
1. 换流器阀所用器件的对比。

1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。

2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。

2. 换流阀的对比。

1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,可以输送大功率。

2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,主要包含高次谐波。

故相对于常规直流输电,柔性直流输电换流站安装的滤波装置的容量大大减小。

3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直流输电则采用直流电容器。

3. 换流站控制方式的对比。

1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。

2)功率反向输送能力的对比。

柔性直流输电系统在潮流反转时,只需改变电流方向,而直流电压极性不变,功率反向时系统不停运,这使得柔性直流输电系统改变功率方向时,两端换流站的控制策略不变,更不需要投切交流滤波器或闭锁换流器。

而常规直流输电改变功率方向时需要改变电压极性,而直流电流极性不变,功率反向时,换流站需退出运行,改变控制策略,并且需要对滤波器和无功补偿设备的投切情况进行实时判断。

3)对交流网络的依耐性方面的对比。

柔性直流输电不需要依靠交流系统的能力来维持电压和频率稳定,无需无功补偿,换流器自身可提供无功功率。

而常规直流输电要求受端交流系统具有足够的短路容量,需要外加的换相容量,不能向无源或弱网络送电。

4)有功和无功功率控制方面的对比。

柔性直流输电的有功、无功可以独立控制。

常规直流输电的有功、无功不能独立控制,调节无功需要特殊装置和额外费用,需交流系统或增加无功补偿设备提供换流站消耗的无功功率。

5)电压控制方面的对比。

柔性直流输电本身可以起到STATCOM的作用,稳定交流母线电压,而常规直流输电需要借助无功补偿设备稳定交流母线电压。

6)黑启动能力方面的对比。

柔性直流输电有黑启动能力。

即当一端交流系统发生电压崩溃或停电时,瞬间启动自身的参考电压,向切除电源的交流系统供电,相当于备用发电机,随时向瘫痪的电网供电。

而常规直流输电无黑启动能力。

经过常规直流输电与柔性直流输电的比对发现,随着直流输电技术的飞速发展,以及节能和绿色能源的要求,尤其在可再生能源发电并网和孤岛供电方面,未来以IGBT为代表的柔性直流输电必将成为市场的主流,柔性直流输电尤其是基于电压源型换流器的直流输电将会快速发展,与常规直流输电并存,甚至超过后者。

四.运行方式
实现柔性直流输电系统的3种运行方式:
1)运行方式1
只有直流线路的运行方式。

送端换流站有功类控制器选择频率控制,无功类控制器选择交流电压控制;受端换流站有功类控制器选择直流电压控制,无功类控制器选择交流电压控制或无功功率控制,并且交流电压控制和无功功率控制可以手动切换。

2)运行方式2
交直流并联的运行方式。

送端换流站有功类控制器选择有功功率控制,无功类控制器选择交流电压控制或无功功率控制;受端换流站有功类控制器选择直流电压控制,无功类控制器选择交流电压控制或无功功率控制。

2个站的交流电压控制和无功功率控制均可手动切换。

3)运行方式3
STATCOM运行方式。

2个换流站的直流连接断开,可以分别作为2个独立的STATCOM运行。

有功类控制器选择直流电压控制,无功类控制器选择交流电压控制或无功功率控制。

交流电压控制和无功功率控制可以手动切换。

相关文档
最新文档