合金的结晶与相图
合集下载
合金的结构与结晶

时间
A 90 70 50
S
S
A
ab : 液相线 ab : 固相线 L : 液相区 S : 固相区 L+S:液固共存区
b
B
一)匀晶相图(固溶体结晶)
• 组成二元合金的两组元在液态和固态均能无 限互溶的合金所形成的相图称为二元匀晶相图。
1. 相图分析
温 度
L
2.杠杆定理只适合两相区,并 只能在平衡状态下使用
2 合金的平衡结晶过程及其组织
(1)固溶体合金(合金Ⅰ)
成分位于M点以左(即 wSn≤19%)或N点以右(即 wSn≥97.5%)的合金称为固 溶体合金 合金Ⅰ的冷却曲线和结晶过 程如图所示
液态合金缓冷至温度1,开始从L相中结果出α固 溶体。随温度的降低,液相的数量不断减少,α固 溶体的数量不断增加,至温度2合金全部结晶成α 固溶体。温度2~3范围内合金无任何转变,这是匀 晶转变过程。冷却至温度3时,Sn在α中的溶解度 减小,从α中析出β是二次相(βⅡ)。Α成分沿固 溶线MF变化,这一过程一直进行至室温,所以合 金Ⅰ室温平衡组织为(α+ βⅡ )。
不管溶质原子处于溶剂原子的间隙中或者代替了溶 剂原子都会使固溶体的晶格发生畸变,使塑性变形抗力 增大,结果使金属材料的强度、硬度增高。这种通过溶 入溶质元素形成固溶体,使金属材料的强度、硬度升高 的现象,称为固溶强化。
固溶体中的晶格畸变示意图 a)间隙固溶体 b)置换固溶体
三、二元合金相图
合金
( alloy ) 组元 ( element ) 相 ( phase ) 显微组织 ( microscopic structure )
合金的结晶

谢谢观看
从图2-22中可以看出,凡是成分在C点以左(Sb<11%)的合金 称为亚共晶合金,如图2-22中的合金Ⅱ。合金成分在C点以右(Sb> 11%)的合金称为过共晶合金,如图2-22中的合金Ⅲ。
亚共晶和过共晶合金的结晶过程与共晶合金结晶过程不同的是: 从液相线到共晶转变温度之间,亚共晶合金要先结晶出Pb晶体,过共 晶合金要先结晶出Sb晶体,因而它们的室温组织分别为Pb+(Pb+Sb) 和Sb+(Pb+Sb)。
在一定温度下,由一定成分的液相同时结晶出成分一定的两个固相的 过程称为共晶转变。
共晶转变的产物称为共晶体,所构成的相图为共晶相图。 具有这类相图的合金有Pb—Sn、Pb—Sb、Ag—Cu、Al—Si、Zn— Sn等。
3.3 合金的结晶
图2-22所示为铅锑二元合金相图,图中A点是 铅的熔点(327℃);B点是锑的熔点(631℃);C点是共晶点, (温度是252℃,此点的成分是11%Sb+89% Pb),ACB连线为合 金开始结晶温度的上相变点连线,称为液相线,DCE连线是液态 合金结晶终止温度的下相变点连线,称为固相线,同时,二个 相线把相图分成几个区域。
在两相混合物共晶相图中,成分在两相区内的合金结晶后,形成两相 混合物。两相组织的力学性能和物理性能,随合金的成分变化而呈直 线变化,由于共晶合金形成的是致密组织,其强度、硬度均显著提高 ,组织越致密,合金的性能提高的越显著 。
3.3 合金的结晶
2.相图与合金工艺性能的关系
合金的铸造性能与相图的关系如图2-27所示,纯组元或共晶成 分合金的流动性最好,缩孔集中,铸造性能好。相图中液相线与 固相线之间距离越小,液体合金结晶的温度范围越窄,对浇注和 铸造质量越有利,合金的液、固相线温度间隔大时,形成枝晶偏 析倾向也大,同时先结晶的树枝晶阻碍未结晶液体的流动,增加 分散缩孔,所以,铸造合金常选用共晶或接近共晶成分的合金, 如发动机活塞多采用WSi=11%-13%铝硅铸造合金的共晶合金。
二元相图及合金的结晶

潍坊学院教案
有三种类型:
①正常价化合物
组成元素严格按原子价规律结合,成分固定,用分子式表示。
如:Mg2Si、Mg2Sn、Mg3Sb2等。
一般都是金属元素与4、5、6族元素组成,在元素周期表中相距较远,
电负性差较大。
以金属键或离子键结合。
②电子化合物
= 价电子数/ 原子数)组成的具有一定晶根据一定的电子浓度比(C
电
体结构的化合物,不遵守原子价规律,成分可变。
=21/14,β相(b.c.c. 结构);
C
电
=21/13,γ相(复杂立方结构);
C
电
=21/12,ε相(h.p.c.结构)。
C
电
③间隙相与间隙化合物
一般是直径较大的过渡族元素(Fe、Cr、Mo、W、V)和原子直径小的
非金属元素(H、C、N、O、B)组成。
间隙相:r x/r M<0.59,具有简单晶体结构,如:WC、Ti、VC等。
间隙化合物:r x/r M>0.59,具有复杂晶体结构,如:Fe3C、Cr23C6、
Cr7C3等
金属间化合物的性能:熔点高,硬且脆,一般作强化相。
二、二元合金相图
1、合金的结晶特点
也是形核与长大,但有自己的特点:
(1)不是恒温下进行的,有一定的结晶温度范围。
(2)结晶过程中不只有一个固相和液相,而是在不同范围内有不同的相,各相成分也变化。
因此,合金的结晶过程要复杂些,单用一条冷却曲线难以说清楚。
为了
研究合金的结晶过程及合金组织的变化规律,需借用一个工具——相图。
第三章 二元合金的相结构与结晶(包晶相图)4(16)-10-2剖析

α
包晶偏析:因包晶转变 不能充分进行而导致的 成分不均匀现象。
四、包晶转变的实际应用
包晶转变特点:
包晶转变的形成相依附在初生相上形成; 包晶转变的不完全性。(不彻底性)
组织设计:如轴承合金需要的软基体上分布硬质点的组织。 首先形成硬质点,包晶反应形成软固溶体包于其外层
晶粒细化。 包晶反应生成细小化合物,异质形核。
包晶反应的推广
包晶反应(Peritectic) L + 包析反应(Peritectoid) + 合晶反应(Syntectic) L1 + L2
第三章 二元合金的相结构与结晶
§3-1 合金中的相 §3-2 合金的相结构 §3-3 二元合金相图的建立 §3-4 匀晶相图及固溶体的结晶 §3-5 共晶相图及其合金的结晶 §3-6 包晶相图及其合金的结晶 §3-7 其它类型的合金相图 §3-8 二元相图的分析及使用
§3-6 包晶相图及其合金的结晶
室温组织组成:β+αⅡ
室温相组成: α+β
三、不平衡结晶及其组织
原因 新生β相依附于α相生核长大, β相将α相包围
液体和α相反应形成β相,须 通过β相层进行扩散
原子在固体中的扩散低于液体, 包晶转变缓慢
冷却速度快.包晶转变被抑制 不能完全进行
剩余的液体在低于包晶转变温 度直接转变为β
保留下来的α,以及形成的β 相成分都不均匀。
(2) 线:
液相线: ACB,固相线:APDB。 固溶线:PE、DF线分别为中的固溶线(溶解度曲线)。
包晶线:水平线PDC
一、相图分析
(3)相区:
三个单相区: L、、; 三个两相区:L+、L+、+; 一个三相区:即水平线PDC; L + + 。
匀晶、共晶、包晶

何谓共晶反应、包晶反应和共析反应? 何谓共晶反应、包晶反应和共析反应?试比较这三种反应的异同点 共晶反应:指一定成分的液体合金,在一定温度下, 共晶反应:指一定成分的液体合金,在一定温度下,同时结晶出 成分和晶格均不相同的两种晶体的反应。 成分和晶格均不相同的两种晶体的反应。 包晶反应:指一定成分的固相与一定成分的液相作用,形成另外 包晶反应:指一定成分的固相与一定成分的液相作用, 一种固相的反应过程。 一种固相的反应过程。 共析反应:由特定成分的单相固态合金,在恒定的温度下, 共析反应:由特定成分的单相固态合金,在恒定的温度下,分解 成两个新的,具有一定晶体结构的固相的反应。 成两个新的,具有一定晶体结构的固相的反应。 共同点:反应都是在恒温下发生, 共同点:反应都是在恒温下发生,反应物和产物都是具有特定成 分的相,都处于三相平衡状态。 分的相,都处于三相平衡状态。 不同点:共晶反应是一种液相在恒温下生成两种固相的反应; 不同点:共晶反应是一种液相在恒温下生成两种固相的反应;共 析反应是一种固相在恒温下生成两种固相的反应; 析反应是一种固相在恒温下生成两种固相的反应;而包晶反应是 一种液相与一种固相在恒温下生成另一种固相的反应。 一种液相与一种固相在恒温下生成另一种固相的反应。 两组元在液态时无限互溶,固态时也无限互溶,结晶所构成的相 两组元在液态时无限互溶,固态时也无限互溶, 图称为二元匀晶相图 二元匀晶相图。 图称为二元匀晶相图。
三.共晶相图
二元共晶相图:两组元在液态时无限互溶, 二元共晶相图:两组元在液态时无限互溶,固态 时有限互溶,并发生共晶反应所构成的相图称为二 时有限互溶,并发生共晶反应所构成的相图称为二 元共晶相图。 元共晶相图。 共晶反应:是指冷却时由液相同时结晶出两个固相 液相同时结晶出 共晶反应:是指冷却时由液相同时结晶出两个固相 的复合混合物的反应。 的复合混合物的反应。 共晶体:共晶反应的产物是共晶体。 共晶体:共晶反应的产物是共晶体。 共晶组织:共晶体的显微组织是共晶组织。 共晶组织:共晶体的显微组织是共晶组织。
二元合金的相图

+ Ⅱ
组织组成物
Ⅱ
冷却曲线
t
组织中,由一定的相构成 的,具有一定形态特征的 组成部分。
X2合金结晶过程分析 (共晶合金)
T,C
L
T,C
L
(+ )
183
L+
M
L
E
L
L+
N
L(+ ) 共晶体
(+ )
+
Pb Sn X2
冷却曲线
t
(+ )
铅锡共晶合金的显微组织
液固相线距离愈小, 结晶温度范围愈小,则流 动性好,不易形成分散缩 孔,铸造性能好。 共晶成分的合金铸造 性能最好。
锻造、轧制性能:
单相固溶体合金, 变形抗力小,变形均匀, 不易开裂,锻造、轧制性 能最好。
T,C
T,C L
1
L L+(+ )+
L+
183
L+
M
E
+
L+ N
2
(+ )+
(+ )+ + Ⅱ
Sn
Pb
X3
t
亚共晶合金的平衡结晶过程
(+ )+ + Ⅱ
β II
α
α+β
WSn50%的Pb-Sn合金的显微组织
(+ )+ + Ⅱ
L
T,C
3 F 4 X1
L+
M
c
LEL+ 来自L L+
e
N
第三章 金属的结晶与二元合金相图

液相区L 双相区L+α 固相区α 液相线 固相线
固相区
匀 晶 相 图 合 金 的 结 晶 过 程 (P33)
☆在不同温度下刚刚结晶出来的固相的化学成分是 不相同的,其变化规律是沿着固相线变化.与此同 时剩余液相的化学成分也相应地沿着液相线变化.
2,晶内偏析——枝晶偏析 (P33)
晶内偏析: 晶内偏析: 在一个晶粒内,各处 成分的不均匀现象. 因为金属通常以枝晶 方式结晶,先形成的 主干和后形成的支干 就会有化学成分之差, 枝晶偏析. 所以也称枝晶偏析 枝晶偏析
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 3,过冷度(△T):理论结晶温度与实际结 过冷度( 晶温度之差.对于纯金属: △T= T0- Tn 4,金属的结晶都 是在一定的过冷 度下进行的,这 种现象称过冷现 过冷现 象.
第一节 金属结晶的基础知识
(二)共晶相图 1,相图分析 (P35)
7)α固溶体溶解度变化曲线——cf 8) β固溶体溶解度变化曲线——eg 9)三个单相区:L,α,β
10)液相线——adb 11)固相线——acdeb 12)共晶线——cde
(二)共晶相图 1,相图分析 (P35)
13)三个两相区:L+α,L+β,α+β 14)一个三相区:L+α+β,在共晶转变过程中三相同时存在.
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 1,理论结晶温度 0: 又称平衡结晶温度. 理论结晶温度T 理论结晶温度 (冷速极慢)也就是金属的熔点Tm. 2,实际结晶温度 n:在某一实际冷却速度下 实际结晶温度T 实际结晶温度 的结晶温度.
铁碳相图结晶过程

三条水平线
§2 典型铁碳合金结晶过程分析
一、铁碳合金按其含碳量及室温组织分类 ①纯铁 :wc <0.0218%
②钢
亚共析钢: wc= 0.0218~0.77%
共析钢: wc= 0.77% 过共析钢: wc= 0.77~2.11% 亚共晶白口铁: wc= 2.11~4.3% 共晶白口铁: wc= 4.3%
2.为制定热加工工艺提供依据
对铸造:确定铸造温度;根据相图上液相线和固相线间距离估计
铸造性能的好坏.
对于锻造:确定锻造温度。 对焊接:根据相图来分析碳钢焊缝组织,并用适当热处理方法来
减轻或消除组织不均匀性。
对热处理:相图更为重要,这在下面一章中详细介绍。
§3 碳 钢
一、钢中常存杂质元素对钢的性能的影响
4.含碳1.2%的过共析钢(合金④)
5.含碳4.3%的共晶白口铁(合金⑤) 6.含碳3.0%的亚共晶白口铁(合金⑥)
7.含碳5.0%的过共晶白口铁(合金⑦)
1.含碳0.01%的工业纯铁
图4-3 工业纯铁结晶过程
2. 0.77%共析钢结晶过程
图4-5 共析钢结晶过程示意图
3.亚共析钢结晶过程
二、碳钢的分类、编号和用途
1.碳钢的分类
(1)按含碳量分类 低碳钢:wc=0.01~0.25% 中碳钢:wc= 0.25~0.6% 高碳钢:wc= 0.6~1.3% (2)按质量分类 普通碳素钢:ws≤0.055% wp≤0.045% 优质碳素钢:ws、wp ≤0.035~0.040% 高级优质碳素钢:ws ≤0.02~0.03%;wp ≤ 0.03~0.035% (3)按用途分类 碳素结构钢:用于制造各种工程构件,如桥梁、船舶、建筑构件 等,及机器零件,如齿轮、轴、连杆、螺钉、螺母等。 碳素工具钢:用于制造各种刀具、量具、模具等,一般为高碳钢。