4-电力电子器件
电力电子技术-第4章逆变电路讲解

4.3.1 单相电流型逆变电路
(1)电路结构
①用④阻载② 载来③ 联 确4并抗电个采 电限应C谐联,压桥和用 压制称振谐谐波臂L负 (晶之式振波形、,载 呈闸为逆回在接R每换 容管容变构路负近桥相性开性电成对载正臂方)通小路并基上弦晶式。时失(联波产波闸,的谐但谐呈生。管要d负最振高的i各/求载d终电阻压t串负)负路抗降联载载,,很一电仍故对小个流略此谐,电略显电波因抗超容路呈此器前性称低负L于T,为,负并准
4.2.1 单相电压型逆变电路
1、 半桥逆变电路 •(1)电路图
+
Ud 2
Ud
Ud 2
-
V1 io R L
u o V 2
a)
VD 1
VD 2
*导电方式:
V1,V2信号互补,
各导通180゜。
•半桥逆变电路有两个桥臂, 每个桥臂有一个可控器件和一 个反并联二极管组成。 •在直流侧接有两个相互串联 的足够大的电容,两个电容的 联结点是直流电源的中点。 •负载联结在直流电源中点和 两个桥臂联结点之间。
能否不改变直 流电压,直接进行 调制呢?为此提出 了导电方式二:
移相导电方式。
*导电方式二:移相调压 调节输出电压脉冲的宽度
采用移相方式调节逆变电路的输出电压
• 各IGBT栅极信号为180°正偏, 180°反偏,且V1和V2栅极信号互补, V3和V4栅极信号互补; • V3的基极信号不是比V1落后180°,
而是只落后q ( 0< q <180°);
• 也就是:V3、V4的栅极信号分别比
V2、V1的前移180°-q 。
工作过程
•t1时刻以前V1,V4通,u0=ud, io 从 0 增加; •t1时刻V4断,V1,VD3续流,u0=0,io 下降; • t2时刻V1也关断,io 还未下降到0,于是VD2,VD3续流,u0=-ud。 •直到io过0变负,V2,V3通,u0=-ud, io从0负增加; •t3时刻V3断,V2,VD4续流,u0=0,io 负减小; • t4时刻V2也关断,io 还未减小到0,于是VD1,VD4续流,u0=ud。
电力电子技术期末考试

电力电子技术期末考试第一章电力电子技术(概念):就是应用于电力领域的电子技术。
电力变换器通常分为四大类:1、交流变直流;2、交流变交流;3;直流变直流;4、直流变交流。
电力电子学的倒三角:电力电子学包含了电力电子技术。
电力电子技术的应用:1、一般工业;2、交通运输;3、电力系统;4、电子装置用电源;5、家用电器;6、其他(航空等)第二章电力电子器件的概念:主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。
电力电子器件:是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。
电力电子器件用于主电路与处理信息的电子器件相比,电力电子器件的特征:(1)电力电子器件所能处理电功率的大小,也就是其承受电压和电路的能力,是其最重要的参数;(2)因为处理的电功率较大,为了减小本身的损耗,提高效率,电力电子器件一般都工作在开关状态;(3)在实际应用当中,电力电子器件往往需要由信息电子电路来控制;(4)尽管工作在开关状态,但是电力电子器件自身的功率损耗通常仍远大于信息电子器件,因而为了保证不致于因损耗散发的热量导致器件温度过高而损坏,不仅在器件封装上比较讲究散热设计,而且在其工作时一般都还需要安装散热器。
电力电子器件在实际应用中的系统组成说明:电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。
按照电力电子器件能够被控制电路信号所控制的程度,可以将电力电子器件分为以下三类:(1)通过控制信号可以控制其导通而不能控制其通断的电力电子器件称为半控型器件;(2)通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件(3)也有不能用控制信号来控制其通断的电力电子器件,这就是电力二极管(不可控器件)。
按照驱动电路加在电力电子器件控制端和公共端之间信号的性质,可以将电力电子器件(电力二极管除外)分为电压驱动型和电流驱动型两类。
电导调制效应:低掺杂N区由于掺杂浓度低而具有的高电阻率对于电力二极管的正向导通是不利的。
电力电子技术第4章-习题答案

第4章直流-交流变换器习题及答案第1部分:填空题1.把直流电变成交流电的电路称为_逆变电路_,当交流侧有电源时称为_有源逆变__,当交流侧无电源时称为_无源逆变__。
2.电流从一个支路向另一个支路转移的过程称为换流,从大的方面,换流可以分为两类,即外部换流和_内部换流__,进一步划分,前者又包括_电网换流__和_负载换流___两种换流方式,后者包括_器件换流_和_强迫换流_两种换流方式。
适用于全控型器件的换流方式是_器件换流_。
3.逆变电路可以根据直流侧电源性质不同分类,当直流侧是电压源时,称此电路为_电压型逆变电路_,当直流侧为电流源时,称此电路为_电流型逆变电路_。
4.半桥逆变电路输出交流电压的幅值Um为__1/2___Ud ,全桥逆变电路输出交流电压的幅值Um为___1.0___Ud 。
5.单相全桥方波型逆变电路,180度导电角的控制方式下,改变输出交流电压的有效值只能通过改变直流电压U d来实现,改变开关切换频率可改变输出交流电频率。
为防止同一桥臂的上下两个开关器件同时导通而引起直流侧电源短路,在开关控制上应采取先断后通的措施。
6.三相电压型逆变电路中,180度导电角的控制方式下,每个桥臂的导电角度为__180O______,各相开始导电的角度依次相差_120O__,在任一时刻,有___3___个桥臂导通。
7.电压型逆变电路一般采用_全控型_器件,换流方式为_器件换流____;电流型逆变电路中,较多采用__半控型__器件,换流方式有的采用 _强迫换流_,有的采用_负载换流__。
8.三相电流型逆变电路的基本工作方式是120度导电方式,按VT1到VT6的顺序每隔__60O_______依次导通,各桥臂之间换流采用 __横向_____换流方式,在任一时刻,有___3_____个桥臂导通。
电力电子技术试题(第四章)

电力电子技术试题(第四章)一、填空题1、GTO的全称是,图形符号为;GTR的全称是,图形符号为;P-MOSFET的全称是,图形符号为;IGBT 的全称是,图形符号为。
33、门极可关断晶闸管、大功率晶体管、功率场效应管、绝缘门极晶体管。
2、GTO的关断是靠门极加出现门极来实现的。
33、负信号、反向电流。
3、大功率晶体管简称,通常指耗散功率以上的晶体管。
34、GTR、1W。
4、功率场效应管是一种性能优良的电子器件,缺点是和。
35、电流不够大、耐压不够高。
二、判断题对的用√表示、错的用×表示(每小题1分、共10分)1、大功率晶体管的放大倍数β都比较低。
(√)2、工作温度升高,会导致GTR的寿命减短。
(√)3、使用大功率晶体管时,必须要注意“二次击穿”问题。
(√)4、同一支可关断晶闸管的门极开通电流和关断电流是一样大的。
(×)5、电力晶体管的外部电极也是:集电极、基极和发射极。
(√)6、实际使用电力晶体管时,必须要有电压电流缓冲保护措施。
(√)7、同一支可关断晶闸管的门极开通电流比关断电流大。
(×)8、电力场效应晶体管属于电流型控制元件。
(×)9、绝缘栅双极型晶体管具有电力场效应晶体管和电力晶体管的优点。
(√)三、单项选择题把正确答案的番号填在括号内(每小题1分,共10分)1、比较而言,下列半导体器件中性能最好的是()。
A、GTRB、 MOSFETC、、IGBT2、比较而言,下列半导体器件中输入阻抗最小的是()。
A、GTRB、MOSFETC、IGBT3、比较而言,下列半导体器件中输入阻抗最大的是()。
A、GTRB、 MOSFETC、、IGBT4、能采用快速熔断器作为过电流保护的半导体器件是()。
A、GTOB、GTRC、IGBT。
5、比较而言,下列半导体器件中开关速度最快的是()、最慢的是()。
A、GTOB、GTRC、MOSFET6、下列半导体器件中属于电流型控制器件的是。
电力电子技术

脉冲前沿由VT4导通时刻确定,脉冲宽度与反向充电回路时 间常数R11C3有关。 电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接 在VT8集电极电路中。
同步电压为锯齿波的触发电路
4) 双窄脉冲形成环节
内双脉冲电路
同步电压为锯齿波的触发电路
图2-7 同步电压为锯齿波的触发电路
同步电压为锯齿波的触发电路
1) 同步环节
同步——要求触发脉冲的频率与主电路电源的频率相 同且相位关系确定。 锯齿波是由开关VT2管来控制的。
VT2开关的频率就是锯齿波的频率——由同步变压器所接的交 流电压决定。 VT2由导通变截止期间产生锯齿波——锯齿波起点基本就是同 步电压由正变负的过零点。 VT2截止状态持续的时间就是锯齿波的宽度——取决于充电时
f 1 T 1 Re C ln 1 1
电路中R1上的脉冲电压宽度取决于电容放电时间常数。 R2是温度补偿电阻,作用是保持振荡频率的稳定。
三、具有同步环节的单结晶体管触发电路
图2-5 晶体管同步触发电路
注意:
每周期中电容C的充放电不 止一次,晶闸管由第一个脉 冲触发导通,后面的脉冲不 起作用。 改变Re的大小, 可改变电容 充电速度,达到调节α角的目 的。 削波的目的:增大移相范围, 使输出的触发脉冲的幅度基本 一样。不削波:UP≈ηUbb, 为正弦半波,移相范围小。
(二)过电流的产生及保护
1. 产生:短路、过载时会产生过电流 2. 保护:快速熔断器(1.57IT(AV)≥IFU≥ITM )
银质 熔丝 石英沙
快速熔断器保护的接法 a)串于桥臂中 b)串于交流侧 c) 串于直流侧
电力电子复习题含答案

考试试卷( 1 )卷一、填空题(本题共8小题,每空1分,共20分)1、按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为____电压型____和_____电流型___两类。
2、电子技术包括__信息电子技术___和电力电子技术两大分支,通常所说的模拟电子技术和数字电子技术就属于前者。
2、为减少自身损耗,提高效率,电力电子器件一般都工作在____开关_____状态。
当器件的工作频率较高时,__开关_______损耗会成为主要的损耗。
3、在PWM控制电路中,载波频率与调制信号频率之比称为______载波比_______,当它为常数时的调制方式称为_____同步____调制。
在逆变电路的输出频率范围划分成若干频段,每个频段内载波频率与调制信号频率之比为桓定的调制方式称为_____分段同步_______调制。
4、面积等效原理指的是,_____冲量____相等而__形状_____不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
5、在GTR、GTO、IGBT与MOSFET中,开关速度最快的是___MOSFET______,单管输出功率最大的是____GTO_________,应用最为广泛的是___IGBT________。
6、设三相电源的相电压为U2,三相半波可控整流电路接电阻负载时,晶闸管可能承受的最大反向电压为电源线电压的峰值,即,其承受的最大正向电压为。
7、逆变电路的负载如果接到电源,则称为逆变,如果接到负载,则称为逆变。
8、如下图,指出单相半桥电压型逆变电路工作过程中各时间段电流流经的通路(用V1,VD1,V2,VD2表示)。
(1) 0~t1时间段内,电流的通路为________;(2) t1~t2时间段内,电流的通路为_______;(3) t2~t3时间段内,电流的通路为_______;(4) t3~t4时间段内,电流的通路为_______;(5) t4~t5时间段内,电流的通路为_______;二、选择题(本题共10小题,前4题每题2分,其余每题1分,共14分)1、单相桥式PWM逆变电路如下图,单极性调制工作时,在电压的正半周是()A、V1与V4导通,V2与V3关断B、V1常通,V2常断,V3与V4交替通断C、V1与V4关断,V2与V3导通D、V1常断,V2常通,V3与V4交替通断2、对于单相交流调压电路,下面说法错误的是()A、晶闸管的触发角大于电路的功率因素角时,晶闸管的导通角小于180度B、晶闸管的触发角小于电路的功率因素角时,必须加宽脉冲或脉冲列触发,电路才能正常工作C、晶闸管的触发角小于电路的功率因素角正常工作并达到稳态时,晶闸管的导通角为180度D、晶闸管的触发角等于电路的功率因素角时,晶闸管的导通角不为180度3、在三相三线交流调压电路中,输出电压的波形如下图所示,在t1~t2时间段内,有()晶闸管导通。
电力电子元器件选型技术手册

电力电子元器件选型技术手册随着现代电力电子技术的不断发展,电力电子元器件在各个领域中得到了广泛应用。
在电力电子元器件的选型过程中,正确选型是保证电子设备性能和可靠性的关键。
本技术手册将为您提供电力电子元器件选型的基本知识和技巧,并指导您如何正确选择合适的电力电子元器件。
一、电力电子元器件选型的基本知识电力电子元器件是指各种用于变换和控制电力的电子元器件。
在电力电子元器件的选型中,需要掌握以下基本知识:1.1 元器件的类型和性能电力电子元器件主要包括晶闸管、二极管、三极管、场效应管、金属氧化物半导体场效应管(MOSFET)、绝缘栅型双极晶体管(IGBT)等。
不同类型的电力电子元器件具有不同的性能指标,包括额定电压、额定电流、导通压降、开关速度等。
在选型时需要根据实际应用场合选择合适的元器件类型和性能。
1.2 应用条件的分析电力电子元器件的选型需要考虑应用条件的影响,包括工作电压、工作电流、环境温度、湿度等因素。
根据实际工作条件进行分析,选择符合要求的元器件。
1.3 元器件的封装和散热不同类型的电力电子元器件可以有不同的封装形式和散热方式。
选择合适的封装和散热方式有助于提高元器件的可靠性和使用寿命。
二、电力电子元器件选型技巧在电力电子元器件选型过程中,需要掌握以下技巧:2.1 单个元器件的选择在选型时需要根据实际应用场合需求选择元器件,首先要确定元器件的性能指标是否符合要求,其次需要考虑元器件的价格和可靠性,最后根据封装和散热方式来确定选型。
2.2 器件组合的选择在实际应用中,可能需要选择多个元器件进行组合以满足系统的要求。
在进行器件组合选择时,需要注意元器件之间的匹配性和互补性。
2.3 参考资料的选择在进行电力电子元器件选型时,可以参考一些电子元器件选型手册、数据手册、型录和参考设计等资料,以便更好地进行选型分析。
三、电力电子元器件选型案例分析例如,在选择一个AC/DC桥式整流电路的转换器中,需要选择合适的整流二极管和滤波电容。
电力电子技术复习题四到九章知识点

第四章课后题:1、无源逆变和有源逆变电路有什么不同?答:与整流相对应,把直流电变成交流电称为逆变。
当交流侧接在电网上,即交流侧接有电源时,称为有缘逆变。
当交流侧直接和负载连接时,称为无源逆变。
2、换流方式有哪几种?各有什么特点?答:器件换流:利用全控型器件的自关断能力进行换流称为器件换流。
电网换流:由电网提供换流电压称为电网换流。
负载换流:由负载提供换流电压称为负载换流。
凡是负载电流的相位超前于负载电压的场合,都可以实现负载换流.当负载为电容性负载时,就可实现负载换流。
3、什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点?电压型逆变电路:直流侧是电压源或直流侧并联一个大电容。
特点:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路:直流侧是电流源或直流侧串联一个大电感。
特点:①直流侧串联大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。
③当交流侧为阻抗负载时需要提供无功功率,直流侧电感起缓冲无功能量的作用。
因为反馈无功能量时直流电流并不方向,因此不必像电压型逆变电路那样要给开关器件反并联二极管。
4、电压型逆变电路中反馈二极管的作用是什么?为什么电流型逆变电路中没有反馈二极管?答:1)在电压型逆变电路中,当交流侧为阻感负载时,需要提供无功功率。
直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管,当输出交流电压和电流的极性相同时,电流经电路中可控开关器件流通,而当输出电压电流极性相反时,由反馈二极管提供电流通道。