神经网络基本知识(优.选)

神经网络基本知识(优.选)
神经网络基本知识(优.选)

(一)三层神经网络

1)该模型的参数通过两个步骤训练获得:在该网络的第一层,将输入映

射至隐藏单元激活量的权值可以通过稀疏自编码器训练过程获得。在第二层,将隐藏单元映射至输出的权值可

以通过 logistic 回归或 softmax 回归训练获得。

2)在描述上述过程时,假设采用了“替代(Replacement)”表示而不是“级联

(Concatenation)”表示。在替代表示中,logistic 分类器所看到的训练样本格式为;而在级联表示中,分类器所看到的训练样本格式为。在级联表示神经网络中,输入值也直接被输

入至 logistic 分类器。

3)在训练获得模型最初参数(利用自动编码器训练第一层,利用

logistic/softmax 回归训练第二层)之后,可以进一步修正模型参数,进而降低训练误差。具体来说,可以对参数进行微调,在现有参数的基础上采用梯度下降或者 L-BFGS 来降低已标注样本集

上的训练误差。

?微调的作用在于,已标注数据集也可以用来修正权值,这样可以

对隐藏单元所提取的特征做进一步调整。

?对于微调来说,级联表示相对于替代表示几乎没有优势。因此,如果需要开展微调,通常使用替代表示的网络。但是如果不开展微调,级联表示的效果有时候会好得多。

?通常仅在有大量已标注训练数据的情况下使用微调。在这样的情况下,微调能显著提升分类器性能。如果有大量未标注数据集(用于非监督特征学习/预训练),却只有相对较少的已标注训练集,微调的作用非常有限。

(二)深度网络

深度神经网络,即含有多个隐藏层的神经网络。通过引入深度网络,可以计算更多复杂的输入特征。因为每一个隐藏层可以对上一层的输出进行非线性变换,因此深度神经网络拥有比“浅层”网络更加优异的表达能力。

1.深度神经网络的优势

1)当训练深度网络的时候,每一层隐层应该使用非线性的激活函数。这

是因为多层的线性函数组合在一起本质上也只有线性函数的表达能力(例如,将多个线性方程组合在一起仅仅产生另一个线性方程)。因此,在激活函数是线性的情况下,相比于单隐藏层神经网络,包含多隐藏层的深度网络并没有增加表达能力。

2)深度网络最主要的优势在于,它能以更加紧凑简洁的方式来表达比浅层网络

大得多的函数集合。即可以找到一些函数,这些函数可以用层网络简洁地表达出来(这里的简洁是指隐层单元的数目只需与输入单元数目呈多项式关系)。但是对于一个只有层的网络而言,除非它使用与输入

单元数目呈指数关系的隐层单元数目,否则不能简洁表达这些函数。

3)当处理对象是图像时,使用深度网络,能够学习到“部分-整体”的分解关

系。例如,第一层可以学习如何将图像中的像素组合在一起来检测边缘,第二层可以将边缘组合起来检测更长的轮廓或者简单的“目标的部件”,在更深的层次上,可以将这些轮廓进一步组合起来以检测更为复杂的特征。

这种分层计算很好地模仿了大脑皮层对输入信息的处理方式。视觉图像在人脑中是分多个阶段进行处理的,首先是进入大脑皮层的“V1”区,然后紧跟着进入大脑皮层“V2”区,以此类推。

2.训练深度网络的困难

目前主要使用的学习算法是:首先随机初始化深度网络的权重,然后使用有监督的目标函数在有标签的训练

集上进行训练。其中通过使用梯度下降法来降低训练误差,这种方法通常不是十分凑效。

1)数据获取问题

使用上面提到的方法,需要依赖于有标签的数据才能进行训练。然而有标签的数据通常是稀缺的,因此对于许多问题,我们很难获得足够多的样本来拟合一个复杂模型的参数。例如,考虑到深度网络具有强大的表达能力,在不充足的数据上进行训练将会导致过拟合。

2)局部极值问题

使用监督学习方法来对浅层网络(只有一个隐藏层)进行训练通常能够使参数收敛到合理的范围内。但是当用这种方法来训练深度网络的时候,并不能取得很好的效果。特别的,使用监督学习方法训练神经网络时,通常会涉及到求解一个高度非凸的优化问题。对深度网络而言,这种非凸优化问题的搜索区域中充斥着大量“坏”的局部极值,因而使用梯度下降法(或者像共轭梯度下降法,L-BFGS 等方法)效果并不好。

3)梯度弥散问题

梯度下降法(以及相关的L-BFGS算法等)在使用随机初始化权重的深度网络上效果不好的技术原因是:梯度会变得非常小。具体而言,当使用反向传播方法计算导数的时候,随着网络的深度的增加,反向传播的梯度(从输出层到网络的最初几层)的幅度值会急剧地减小。结果就造成了整体的损失函数相对于最初几层的权重的导数非常小。这样,当使用梯度下降法的时候,最初几层的权重变化非常缓慢,以至于它们不能够从样本中进行有效的学习。这种问题通常被称为“梯度的弥散”.

与梯度弥散问题紧密相关的问题是:当神经网络中的最后几层含有足够数量神经元的时候,可能单独这几层就足以对有标签数据进行建模,而不用最初几层的帮助。因此,对所有层都使用随机初始化的方法训练得到的整个网络的性能将会与训练得到的浅层网络(仅由深度网络的最后几层组成的浅层网络)的性能相似。

3.逐层贪婪训练方法

逐层贪婪训练方法是训练深度网络取得一定成功的一种方法。简单来说,逐层贪婪算法的主要思路是:

?每次只训练网络中的一层,即首先训练一个只含一个隐藏层的网络,仅当这层网络训练结束之后才开始训练一个有两个隐藏层的网络,以此类推。

?在每一步中,把已经训练好的前层固定,然后增加第层(也就是将已经训练好的前的输出作为输入)。

?每一层的训练可以是有监督的(例如,将每一步的分类误差作为目标函数),但更通常使用无监督方法(例如自动编码器)。

?这些各层单独训练所得到的权重被用来初始化最终(或者说全部)的深度网络的权重,然后对整个网络进行“微调”(即把所有层放在一起来优化有标签训练集上的训练误差)。

逐层贪婪的训练方法取得成功要归功于以下两方面:

?数据获取

虽然获取有标签数据的代价是昂贵的,但获取大量的无标签数据是容易的。自学习方法的潜力在于它能通过使用大量的无标签数据来学习到更好的模型。具体而

言,该方法使用无标签数据来学习得到所有层(不包括用于预测标签的最终分类层)的最佳初始权重。相比纯监督学习方法,这种自学习方法能够利用

多得多的数据,并且能够学习和发现数据中存在的模式。因此该方法通常能够提高分类器的性能。

?更好的局部极值

当用无标签数据训练完网络后,相比于随机初始化而言,各层初始权重会位于参数空间中较好的位置上。然后我们可以从这些位置出发进一步微调权重。从经验上来说,以这些位置为起点开始梯度下降更有可能收敛到比较好的局部极值点,这是因为无标签数据已经提供了大量输入数据中包含的模式的先验信息。

(三)卷积特征提取和池化

1)全联通网络

把输入层和隐含层进行“全连接”的设计,从整幅图像中计算特征,从计算的角度来讲,对相对较小的图像是可行的。但是,如果是更大的图像,要通过全联通网络的这种方法来学习整幅图像上的特征,将是非常耗时。

2)部分联通网络

解决以上问题的一种简单方法是对隐含单元和输入单元间的连接加以限制:每个隐含单元仅仅只能连接输入单元的一部分。例如,每个隐含单元仅仅连接输入图像的一小片相邻区域。

网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。

3)卷积

自然图像有其固有特性,也就是说,图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,都能使用同样的学习特征。

当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

实例:假设已经从一个 96x96 的图像中学习到了它的一个 8x8 的样本所具有的特征,假设这是由有 100 个隐含单元的自编码完成的。为了得到卷积特征,需要对 96x96 的图像的每个 8x8 的小块图像区域都进行卷积运算。也就是说,抽取 8x8 的小块区域,并且从起始坐标开始依次标记为(1,1),(1,2),...,一直到(89,89),然后对抽取的区域逐个运行训练过的稀疏自编码来得到特征

的激活值。在这个例子里,显然可以得到 100 个集合,每个集合含有 89x89 个卷积特征。

假设给定了的大尺寸图像,将其定义为xlarge。首先通过从大尺寸图像中抽取的的小尺寸图像样本xsmall 训练稀疏自编码,计算 f = σ(W(1)xsmall+ b(1))(σ是一个sigmoid 型函数)得到了k 个特征,其中W(1) 和b(1) 是可视层单元和隐含单元之间的权重和偏差值。对于每一个大小的小图像xs,计算出对应的值fs = σ(W(1)xs+ b(1)),对这些fconvolved 值做卷积,就可以得

到个卷积后的特征的矩阵。

4)池化

在通过卷积获得了特征之后,下一步是要利用这些特征去做分类。理论上讲,可以用所有提取得到的特征去训练分类器,例如 softmax 分类器,但这样做面临计算量的挑战。例如:对于一个 96X96 像素的图像,假设已经学习得到了400个定义在8X8输入上的特征,每一个特征和图像卷积都会得到一个(96 ?8 + 1) * (96 ? 8 + 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样例都会得到一个7921 * 400 = 3,168,400 维的卷积特征向量。学习一个拥有超过3 百万特征输入的分类器十分不便,并且容易出现过拟合。

为了解决这个问题,即为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)。这些概要统计特征不仅具有低得多的维度 (相比使用所有提取得到的特征),同时还会改善结果(不容易过拟合)。这种聚合的操作就叫做池化(pooling),有时也称为平均池化或者最大池化 (取决于计算池化的方法)。

池化的不变性

如果选择图像中的连续范围作为池化区域,并且只是池化相同(重复)的隐藏单元产生的特征,那么,这些池化单元就具有平移不变性。这就意味着即使图像经历了一个小的平移之后,依然会产生相同的 (池化的) 特征。

形式化描述

形式上,在获取到卷积特征后,就要确定池化区域的大小(假定为),来池化卷积特征。那么,把卷积特征划分到数个大小为的不相交区域上,然后用这些区域的平均(或最大)特征来获取池化后的卷积特征。这些池化后的特征便可以用来做分类。

(四)白化

为了使每个输入特征具有单位方差,可以直接使用作为缩放因子来缩放每个特征。具体地,定义白化后的数据如下:

是数据经过PCA白化后的版本: 中不同的特征之间不相关并且具有单位方差。

白化与降维相结合:如果想要得到经过白化后的数据,并且比初始输入维数更低,可以仅保留中前个成分。当我们把PCA白化和正则化结合起来时,中最后的少量成分将总是接近于0,因而舍弃这些成分不会带来很大的问题。

1) ZCA白化

数据的协方差矩阵变为单位矩阵的方式并不唯一。具体地,如果是任意正交矩阵,即满足(说它正交不太严格,可以是旋转或反射矩阵), 那么仍然具有单位协方差。在ZCA白化中,令。我们定义ZCA白化的结果为:

可以证明,对所有可能的,这种旋转使得尽可能地接近原始输入数据。

当使用 ZCA白化时(不同于 PCA白化),我们通常保留数据的全部个维度,不尝试去降低它的维数。

2) 正则化

实践中需要实现PCA白化或ZCA白化时,有时一些特征值在数值上接近于

0,这样在缩放步骤时我们除以将导致除以一个接近0的值;这可能使数据上溢 (赋为大数值)或造成数值不稳定。因而在实践中,使用少量的正则化实现这个缩放过程,即在取平方根和倒数之前给特征值加上一个很小的常数:

当在区间上时, 一般取值为。

对图像来说, 这里加上,对输入图像也有一些平滑(或低通滤波)的作用。这样处理还能消除在图像的像素信息获取过程中产生的噪声,改善学习到的特征。

ZCA 白化是一种数据预处理方法,它将数据从映射到。事实证明这也是一种生物眼睛(视网膜)处理图像的粗糙模型。具体而言,当你的眼睛感知图像时,由于一幅图像中相邻的部分在亮度上十分相关,大多数临近的

“像素”在眼中被感知为相近的值。因此,如果人眼需要分别传输每个像素值(通过视觉神经)到大脑中,会非常不划算。取而代之的是,视网膜进行一个与ZCA 中相似的去相关操作 (这是由视网膜上的ON-型和OFF-型光感受器细胞将光信号转变为神经信号完成的)。由此得到对输入图像的更低冗余的表示,并将它传输到大脑。

提示:可以在PCA白化过程中同时降低数据的维度。这是一个很好的主

意,因为这样可以大大提升算法的速度(减少了运算量和参数数目)。

确定要保留的主成分数目有一个经验法则:即所保留的成分的总方差达

到总样本方差的 99% 以上。

注意: 在使用分类框架时,应该只基于练集上的数据计算PCA/ZCA白化

矩阵。需要保存以下两个参数留待测试集合使用:(a)用于零均值化数据

的平均值向量;(b)白化矩阵。测试集需要采用这两组保存的参数来进行

相同的预处理。

最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

人工神经网络的模型

人工神经网络的模型:人工神经元的模型、常用的激活转移函数、MP模型神经元 人工神经元的主要结构单元是信号的输入、综合处理和输出 人工神经元之间通过互相联接形成网络,称为人工神经网络 神经元之间相互联接的方式称为联接模式。相互之间的联接强度由联接权值体现。 在人工神经网络中,改变信息处理及能力的过程,就是修改网络权值的过程。 人工神经网络的构造大体上都采用如下的一些原则: 由一定数量的基本神经元分层联接; 每个神经元的输入、输出信号以及综合处理内容都比较简单; 网络的学习和知识存储体现在各神经元之间的联接强度上。 神经网络解决问题的能力与功效除了与网络结构有关外,在很大程度上取决于网络激活函数。人工神经网络是对人类神经系统的一种模拟。尽管人类神经系统规模宏大、结构复杂、功能神奇,但其最基本的处理单元却只有神经元。人工神经系统的功能实际上是通过大量神经元的广泛互连,以规模宏伟的并行运算来实现的。 人工神经网络模型至少有几十种,其分类方法也有多种。例如,若按网络拓扑结构,可分为无反馈网络与有反馈网络;若按网络的学习方法,可分为有教师的学习网络和无教师的学习网络;若按网络的性能,可分为连续型网络与离散型网络,或分为确定性网络与随机型网络;若按突触连接的性质,可分为一阶线性关联网络与高阶非线性关联网络。 人工神经网络的局限性: (1) 受到脑科学研究的限制:由于生理实验的困难性,因此目前人类对思维和记忆机制的认识还很肤浅,还有很多问题需要解决; (2) 还没有完整成熟的理论体系; (3) 还带有浓厚的策略和经验色彩; (4) 与传统技术的接口不成熟。 如果将大量功能简单的形式神经元通过一定的拓扑结构组织起来,构成群体并行分布式处理的计算结构,那么这种结构就是人工神经网络,在不引起混淆的情况下,统称为神经网络。根据神经元之间连接的拓扑结构上的不同,可将神经网络结构分为两大类:分层网络相互连接型网络 分层网络可以细分为三种互连形式: 简单的前向网络; 具有反馈的前向网络; 层内有相互连接的前向网络。 神经网络的学习分为三种类型:有导师学习、强化学习无导师学习 有导师学习:必须预先知道学习的期望结果——教师信息,并依此按照某一学习规则来修正权值。 强化学习:利用某一表示“奖/惩”的全局信号,衡量与强化输入相关的局部决策如何。 无导师学习:不需要教师信息或强化信号,只要给定输入信息,网络通过自组织调整,自学习并给出一定意义下的输出响应。 神经网络结构变化的角度,学习技术还可分为三种: 权值修正、拓扑变化、权值与拓扑修正学习技术又还可分为:确定性学习、随机性学习 人工神经网络 人工神经网络是生物神经网络的某种模型(数学模型);是对生物神经网络的模仿 基本处理单元为人工神经元 生物神经元(neuron)是基本的信息处理单元

循环神经网络(RNN, Recurrent Neural Networks)介绍

循环神经网络(RNN, Recurrent Neural Networks)介绍 标签:递归神经网络RNN神经网络LSTMCW-RNN 2015-09-23 13:24 25873人阅读评论(13) 收藏举报分类: 数据挖掘与机器学习(23) 版权声明:未经许可, 不能转载 目录(?)[+]循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考: https://www.360docs.net/doc/9f18872483.html,/2015/09/recurrent-neural-networks-tutorial-part-1-introd uction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解。 循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用。但是,目前网上与RNNs有关的学习资料很少,因此该系列便是介绍RNNs的原理以及如何实现。主要分成以下几个部分对RNNs进行介绍: 1. RNNs的基本介绍以及一些常见的RNNs(本文内容); 2. 详细介绍RNNs中一些经常使用的训练算法,如Back Propagation Through Time(BPTT)、Real-time Recurrent Learning(RTRL)、Extended Kalman Filter(EKF)等学习算法,以及梯度消失问题(vanishing gradient problem) 3. 详细介绍Long Short-Term Memory(LSTM,长短时记忆网络);

多层循环神经网络在动作识别中的应用

Computer Science and Application 计算机科学与应用, 2020, 10(6), 1277-1285 Published Online June 2020 in Hans. https://www.360docs.net/doc/9f18872483.html,/journal/csa https://https://www.360docs.net/doc/9f18872483.html,/10.12677/csa.2020.106132 Multilayer Recurrent Neural Network for Action Recognition Wei Du North China University of Technology, Beijing Received: Jun. 8th, 2020; accepted: Jun. 21st, 2020; published: Jun. 28th, 2020 Abstract Human action recognition is a research hotspot of computer vision. In this paper, we introduce an object detection model to typical two-stream network and propose an action recognition model based on multilayer recurrent neural network. Our model uses three-dimensional pyramid di-lated convolution network to process serial video images, and combines with Long Short-Term Memory Network to provide a pyramid convolutional Long Short-Term Memory Network that can analyze human actions in real-time. This paper uses five kinds of human actions from NTU RGB + D action recognition datasets, such as brush hair, sit down, stand up, hand waving, falling down. The experimental results show that our model has good accuracy and real-time in the aspect of monitoring video processing due to using dilated convolution and obviously reduces parameters. Keywords Action Recognition, Dilated Convolution, Long Short-Term Memory Network, Deep Learning 多层循环神经网络在动作识别中的应用 杜溦 北方工业大学,北京 收稿日期:2020年6月8日;录用日期:2020年6月21日;发布日期:2020年6月28日 摘要 人体动作识别是目前计算机视觉的一个研究热点。本文在传统双流法的基础上,引入目标识别网络,提出了一种基于多层循环神经网络的人体动作识别算法。该算法利用三维扩张卷积金字塔处理连续视频图

神经网络基本知识

(一)三层神经网络 1)该模型的参数通过两个步骤训练获得:在该网络的第一层,将输入映射 至隐藏单元激活量的权值可以通过稀疏自编码器训练过程获得。 在第二层,将隐藏单元映射至输出的权值可以通过 logistic 回归或 softmax 回归训练获得。 2)在描述上述过程时,假设采用了“替代(Replacement)”表示而不是“级联 (Concatenation)”表示。在替代表示中,logistic 分类器所看到的训练样 本格式为;而在级联表示中,分类器所看到的训练样本格式 为。在级联表示神经网络中,输入值也直接被输入 至 logistic 分类器。 3)在训练获得模型最初参数(利用自动编码器训练第一层,利用 logistic/softmax 回归训练第二层)之后,可以进一步修正模型参数,进而降低训练误差。具体来说,可以对参数进行微调,在现有参数的基础上采用梯度下降或者 L-BFGS 来降低已标注样本集 上的训练误差。 微调的作用在于,已标注数据集也可以用来修正权值,这样可以对 隐藏单元所提取的特征做进一步调整。

对于微调来说,级联表示相对于替代表示几乎没有优势。因此,如果需要开展微调,通常使用替代表示的网络。但是如果不开展微调,级联表示的效果有时候会好得多。 通常仅在有大量已标注训练数据的情况下使用微调。在这样的情况下,微调能显著提升分类器性能。如果有大量未标注数据集(用于非监督特征学习/预训练),却只有相对较少的已标注训练集,微调的作用非常有限。 (二)深度网络 深度神经网络,即含有多个隐藏层的神经网络。通过引入深度网络,可以计算更多复杂的输入特征。因为每一个隐藏层可以对上一层的输出进行非线性变换,因此深度神经网络拥有比“浅层”网络更加优异的表达能力。 1.深度神经网络的优势 1)当训练深度网络的时候,每一层隐层应该使用非线性的激活函数。这 是因为多层的线性函数组合在一起本质上也只有线性函数的表达能力(例如,将多个线性方程组合在一起仅仅产生另一个线性方程)。因此,在激活函数是线性的情况下,相比于单隐藏层神经网络,包含多隐藏层的深度网络并没有增加表达能力。 2)深度网络最主要的优势在于,它能以更加紧凑简洁的方式来表达比浅层网络 大得多的函数集合。即可以找到一些函数,这些函数可以用层网络简洁地表达出来(这里的简洁是指隐层单元的数目只需与输入单元数目呈多项式 关系)。但是对于一个只有层的网络而言,除非它使用与输入单元 数目呈指数关系的隐层单元数目,否则不能简洁表达这些函数。 3)当处理对象是图像时,使用深度网络,能够学习到“部分-整体”的分解关 系。例如,第一层可以学习如何将图像中的像素组合在一起来检测边缘,第二层可以将边缘组合起来检测更长的轮廓或者简单的“目标的部件”,在更深的层次上,可以将这些轮廓进一步组合起来以检测更为复杂的特征。 这种分层计算很好地模仿了大脑皮层对输入信息的处理方式。视觉图像在人脑中是分多个阶段进行处理的,首先是进入大脑皮层的“V1”区,然后紧跟着进入大脑皮层“V2”区,以此类推。 2.训练深度网络的困难 目前主要使用的学习算法是:首先随机初始化深度网络的权重,然后使用有 监督的目标函数在有标签的训练集上进行训练。其中通过使用梯度下降法来降低训练误差,这种方法通常不是十分凑效。

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

关于人工神经网络的分析

人工神经网络 分析 班级: 学号: 姓名: 指导教师: 时间:

摘要: 人工神经网络也简称为神经网络,是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 自从认识到人脑的计算与传统的计算机相比是完全不同的方式开始,关于人工神经网络的研究就开始了。半个多世纪以来,神经网络经历了萌芽期、第一次高潮期、反思低潮期、第二次高潮期、再认识与应用研究期五个阶段。而近年来,人工神经网络通过它几个突出的优点更是引起了人们极大的关注,因为它为解决大复杂度问题提供了一种相对来说比较有效的简单方法。目前,神经网络已成为涉及计算机科学、人工智能、脑神经科学、信息科学和智能控制等多种学科和领域的一门新兴的前言交叉学科。 英文摘要: Artificial neural networks are also referred to as the neural network is a neural network model of animal behavior, distributed parallel information processing algorithm mathematical model. This network relies on system complexity, achieved by adjusting the number of nodes connected to the relationship between, so as to achieve the purpose of processing information. Since the understanding of the human brain compared to traditional computer calculation and are completely different way to start on artificial neural network research began. Over half a century, the neural network has experienced infancy, the first high tide, low tide reflections, the second peak period, and again knowledge and applied research on five stages. In recent years, artificial neural networks through which several prominent advantage is attracting a great deal of attention because it is a large complex problem solving provides a relatively simple and effective way. Currently, neural networks have become involved in computer science, artificial intelligence, brain science, information science and intelligent control and many other disciplines and fields of an emerging interdisciplinary foreword. 关键字:

人工神经网络复习资料题

《神经网络原理》 、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为 离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+ △)=▼(◎,(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改—进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1 )、信息分布存储和容错性。 (2 )、大规模并行协同处理。 (3)、自学习、自组织和自适应。

(4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络 设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1 )、空间相加性;(2 )、时间相加性;(3)、阈值作用;(4 )、不应期;(5 )、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x的关系如下图,试述它们分别有几个平衡状态,是 否为稳定的平衡状态? 答:在图(1、中,有两个平衡状态a、b,其中,在a点曲线斜率|F' (X)|>1 ,为非稳定平稳状态;在b点曲线斜率|F' (X)|<1 ,为稳定平稳状态。 在图(2、中,有一个平稳状态a,且在该点曲线斜率|F' (X)|>1 ,为非稳定平稳状态。

神经网络工具箱

神经网络工具箱 版本6.0.4(R2010a版本)25-JAN-2010 图形用户界面的功能。 nctool - 神经网络分类的工具。 nftool - 神经网络拟合工具。 nprtool - 神经网络模式识别工具。 nntool - 神经网络工具箱的图形用户界面。 nntraintool - 神经网络训练工具。 视图- 查看一个神经网络。 分析功能。 混乱- 分类混淆矩阵。 errsurf - 单输入神经元的误差表面。 maxlinlr - 最大的学习率的线性层。 鹏- 受试者工作特征。 距离函数。 boxdist - 箱距离函数。 DIST - 欧氏距离权重函数。 mandist - 曼哈顿距离权重函数。 linkdist - 链路距离函数。 格式化数据。 combvec - 创建载体的所有组合。 con2seq - 转换并行向量连续载体。 同意- 创建并发偏载体。 dividevec - 创建载体的所有组合。 ind2vec - 转换指数为载体。 最小最大- 矩阵行范围。 nncopy - 复印基质或细胞阵列。 normc - 规格化矩阵的列。 normr - 规格化行的矩阵的。 pnormc - 矩阵的伪规格化列。 定量- 值离散化作为数量的倍数。 seq2con - 转换顺序向量并发载体。 vec2ind - 将矢量转换成指数。 初始化网络功能。 initlay - 层- 层网络初始化函数。 初始化层功能。

initnw - 阮层的Widrow初始化函数。 initwb - 从重量和- 偏置层初始化函数。 初始化的重量和偏见的功能。 initcon - 良心的偏见初始化函数。 initzero - 零重量/偏置初始化函数。 initsompc - 初始化SOM的权重与主要成分。 中点- 中点重初始化函数。 randnc - 归一列重初始化函数。 randnr - 归行重初始化函数。 兰特- 对称随机重量/偏置初始化函数。 学习功能。 learncon - 良心的偏见学习功能。 learngd - 梯度下降重量/偏置学习功能。 learngdm - 梯度下降W /气势重量/偏置学习功能。 learnh - 赫布重学习功能。 learnhd - 赫布衰变重学习功能。 learnis - 重量龄学习功能。 learnk - Kohonen的重量学习功能。 learnlv1 - LVQ1重学习功能。 learnlv2 - LVQ2重学习功能。 learnos - Outstar重学习功能。 learnsomb - 批自组织映射权重学习功能。 learnp - 感知重量/偏置学习功能。 learnpn - 归感知重量/偏置学习功能。 learnsom - 自组织映射权重学习功能。 learnwh - 的Widrow - 霍夫重量/偏置学习规则。 在线搜索功能。 srchbac - 回溯搜索。 srchbre - 布伦特的结合黄金分割/二次插值。 srchcha - Charalambous“三次插值。 srchgol - 黄金分割。 srchhyb - 混合二分/立方搜索。 净输入功能。 netprod - 产品净输入功能。 netsum - 求和净输入功能。 网络创造的功能。 网络- 创建一个自定义的神经网络。 NEWC - 创建一个有竞争力的层。 newcf - 创建级联转发传播网络。

人工神经网络基本概念

《神经网络》讲稿 主讲人:谷立臣教授 2003年9月

第1章基本概念 ?作为自然实例的人脑 ?人工神经元模型 ●人工神经网络的拓扑结构及其学习规则?神经网络的学习策略 ?人工神经网络与生物神经网络的比较?人工神经网络的发展与现状 ?人工神经网络与自动控制 ?人工神经网络与设备故障诊断 ?参考文献

?脑神经生理学家告诉我们:人脑借以记忆与思维的最基本单元是神经元,其数量 约为个; ?每一神经元约有个突触; ?神经元间通过突触形成的网络,传递着彼此间的兴奋与抑制;全部大脑神经元构成拓扑上极其复杂的网络群体,由这一网络群体实现记忆与思维。见图1-1。 111210~103410~10

每一个神经元包括细胞体(Cell body或Soma)和突起(Process)两部分。 ◆细胞体是神经元新陈代谢的中心,还是接收与处理信息的部件 ◆突起有两类,即轴突(Axon)与树突(Dendrite)。轴突的长度相差很大,长的可达1米。轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其他神经元发送出生物信息,在轴突中电脉冲的传导速度可达到10~100米/秒。另一类突起——树突(输入),一般较短,但分枝很多,它能接收来自其他神经元的生物电信号,从而与轴突一起实现神经元之间的信息沟通。突起的作用是传递信息。 ◆通过“轴突---突触――树突”这样的路径,某一神经元就有可能和数百个以至更多的神经元沟通信息。那些具有很长轴突的神经元,更可将信息从一脑区传送到另一脑区。

?绝大多数神经元不论其体积﹑形状﹑功能如何,不论是记忆神经元还是运动神经元,均可分为一个输入(或感知)器官,一个代数求和器官,一个长距离传递器官和一个输出器官。见图1-2。 ?既然所有神经元的功能均是相近的,那么何以实现复杂的功能呢?答案是:无一功能是由单个神经元实现的,而是由许多神经元以不同的拓扑结构所共同产生的。这一平行处理性提高了神经网路系统的冗余度与可靠性。

循环神经网络注意力的模拟实现

循环神经网络注意力的模拟实现 我们观察PPT的时候,面对整个场景,不会一下子处理全部场景信息,而会有选择地分配注意力,每次关注不同的区域,然后将信息整合来得到整个的视觉印象,进而指导后面的眼球运动。将感兴趣的东西放在视野中心,每次只处理视野中的部分,忽略视野外区域,这样做最大的好处是降低了任务的复杂度。 深度学习领域中,处理一张大图的时候,使用卷积神经网络的计算量随着图片像素的增加而线性增加。如果参考人的视觉,有选择地分配注意力,就能选择性地从图片或视频中提取一系列的区域,每次只对提取的区域进行处理,再逐渐地把这些信息结合起来,建立场景或者环境的动态内部表示,这就是本文所要讲述的循环神经网络注意力模型。 怎么实现的呢? 把注意力问题当做一系列agent决策过程,agent可以理解为智能体,这里用的是一个RNN 网络,而这个决策过程是目标导向的。简要来讲,每次agent只通过一个带宽限制的传感器观察环境,每一步处理一次传感器数据,再把每一步的数据随着时间融合,选择下一次如何配置传感器资源;每一步会接受一个标量的奖励,这个agent的目的就是最大化标量奖励值的总和。 下面我们来具体讲解一下这个网络。 如上所示,图A是带宽传感器,传感器在给定位置选取不同分辨率的图像块,大一点的图像块的边长是小一点图像块边长的两倍,然后resize到和小图像块一样的大小,把图像块组输出到B。 图B是glimpse network,这个网络是以theta为参数,两个全连接层构成的网络,将传感器输出的图像块组和对应的位置信息以线性网络的方式结合到一起,输出gt。 图C是循环神经网络即RNN的主体,把glimpse network输出的gt投进去,再和之前内部信息ht-1结合,得到新的状态ht,再根据ht得到新的位置lt和新的行为at,at选择下一步配置传感器的位置和数量,以更好的观察环境。在配置传感器资源的时候,agent也会

成套电器设备安装接线基础知识培训教材解读

成套电器设备安装接线基础知识培训教材 培训教材 成套安装接线基础知识 作为一个从事成套电气设备行业的员工:要做好本职工作,他必须要掌握有关成套电器设备在用电配电系统中起的作用。同时懂得一些技术知识及最基本的装配、接线技能要求,做到安全生产、文明生产。要学会看懂、领会有关的图纸。图纸是工程技术界的共同语言,设计部门用图纸表达设计思想意图;生产部门用图纸指导加工与制造;使用部门用图纸指导使用、维修和管理;施工部门用图纸编制施工计划、准备材料组织施工等。 从事成套设备行业的员工要想做好本职工作,就必需要树立文明生产的观念。 在日常生产过程中处处以有关工艺要求来提高质量意识,明确质量就是企业的生命的重要性,要讲究工作效益,创造一个良好的工作环境,有了一个舒畅的工作环境,才能更好地提高工作效益,也就是要处处注意周围的环境卫生,同时在日常的工作中,同事之间要互相配合、互相尊重、互相关照;在技术方面要相互交流经验,不断完善自己,养成对完工工作任务做到自检、互检、后报检的良好工作习惯,来确保质量,为企业创造更好的效益。 要想做好本职工作:(1)每个员工必须做到应该知道什么?熟悉什么?能看懂什么?就成套电器产品而言,每个员工应该知道产品的结构形式、用途;应该熟悉产品的性能、内部的结构、主要的技术参数;应该看懂系统图(一次方案图)、平面布置图、原理图、二次接线安装图。(2 )每位员工必须知道什么是三按生产: 按图纸生产;按工艺生产;按技术规范生产。质量管理方面“五不”,①材料不合格不投料;②上道工序不 合格不流入下道工序;③零件、元器件不合格不装配;④装配不合格不检验;⑤检验不合格不出厂。在日常工作中要有一个比较合理的、完整的装配接线计划。电力的生产、输送、分配和使用,需大量的各种类型的电器设备,以构成电力发、输、配的主系统。这些设备主要是指发电机、变压器、隔离开关、断路器、电压互感器、电流互感器、电力电容器、避雷器、电缆、母 线等。它们在电力系统中通常称为一次设备,把这些设备连接在一起组成的电路称为一次接线,也称主接线, 也就是一次方案回路。为了使电力生产、传输、分 配和使用的各环节安全、可靠、连续、稳定、经济、灵活的运行,并随时监视其 工作情况,在主系统外还需装置相当数量的其它设备,如测量仪表、自动装置继电保护远动及控制信号器具等,这些设备通常与电流、电压互感器的二次绕组直流回路或厂用所用的低压回路连接起来,它们构成的回路称为二次回路,接线称二次接线。描述二次回路的图纸称为二次接线或二次回路(其中包括辅助回路)图。 二次接线的图纸一般有三种形式,即原理图、原理展开图和安装接线图(我们通常所用的是二次接线图)。 在二次接线图中所使用的图形符号和文字符号,它不但用于代表二次接线图中的各电器设备与元件的所在位置,而且反映它所发挥的作用。在二次接线图中,断路器、隔离开关、接触器的辅助触头及继电器的触点,所表示的位置是这些设备在正常状态的位置。所谓正常状态就是指断路器、隔离开关、接触器及继电器处于断路和失电状态。所谓常开、常闭触点是指这些设备在正常状态即断路或失电状态下辅助触点是短开或闭合 的。 二次接线的原理图是用来表示继电保护测量仪表、自动装置的工作原理的。通常是将二次接线和一次接线中与二次接线有关部分画在一起。在原理图上,所有仪表、继电器和其他电器都是以整体形式表示的,其相互联系的电流回路、电压回路、直流回路都是综合在一起,而且还表示有关的一次回路的部分。这种接线图的特点是能够使看图者对整个装置的构成和动作过程有一个明确的整体概念,

神经网络的基本原理

神经网络的基本原理 在神经网络系统中,其知识是以大量神经元互连和各互连的权值表示。神经网络映射辨识方法主要通过大量的样本进行训练,经过网络内部自适应算法不断调整其权值,以达到目的。状态识别器就隐含在网络中,具体就在互连形式与权值上。在网络的使用过程中,对于特定的输入模式,神经网络通过前向计算,产生一输出模式,通过对输出信号的比较和分析可以得到特定解。目前,神经网络有近40多种类型,其中BP 网络是最常用和比较重要的网络之一,本文就应用BP 网络进行齿轮计算中相应数据图表的识别映射。 BP 网络模型处理信息的基本原理是:输入信号X i 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k ,网络训练的每个样本包括输入向量X 和期望输出量t ,网络输出值Y 与期望输出值t 之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij 和隐层节点与输出节点之间的联接强度T jk 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 BP 网络的学习过程是通过多层误差修正梯度下降法进行的,称为误差逆传播学习算法。误差逆传播学习通过一个使误差平方和最小化过程完成输入到输出的映射。在网络训练时,每一个输入、输出模式集在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传播到各层并经过处理后,产生一个输出,并得到一个该实际输出和所需输出之差的差错矢量;一遍反向传播计算,从输出层至输入层,利用差错矢量对连接权值和阀值,进行逐层修改。 经过训练好的BP 网络即可付诸应用。学习后的网络,其连接权值和阀值均已确定。此时,BP 模型就建立起来了。网络在回想时使用正向传播公式即可。 BP 网络由输入层结点,输出层结点和隐含层结点构成,相连层用全互连结构。图1为典型的三层结构网络模型。 图1 三层网络结构图 神经网络的工作过程主要分为两个阶段:一个是学习期,通过样本学习修改各权值,达到一稳定状态;一个是工作期,权值不变,计算网络输出。 BP 网络的学习过程由正向传播和反向传播两部分组成。在正向传播过程中,输入信息从输入层经隐含层单元逐层处理,并传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的路径返回,通过修改各层神经元的权值,使得误差信号最小。当给定一输入模式 12(,,...,)m X x x x =和希望输出模式12(,,...,)n Y y y y = 时,网络的实际输出和实际误差,可用下列公式求出:

人工神经网络及其应用实例解读

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

BP神经网络基本原理

5.4 BP神经网络的基本原理 BP(Back Propagation)网络是1986年由Rumelhart和 McCelland为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。 5.4.1 BP神经元 图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本也是最重要的功能:加权、求和与转移。其中x1、x2…x i…x n分别代表来自神经元1、2…i…n 的输入;w j1、w j2…w ji…w jn则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权值;b j为阈值;f(·)为传递函数;y j为第j个神经元的输出。 第j个神经元的净输入值为: (5.12) 其中: 若视,,即令及包括及,则

于是节点j的净输入可表示为: (5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出 : (5.14) 式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 BP网络 BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f1(·),输出层的传递函数为f2(·),则隐层节点的输出为(将阈值写入求和项中):

数学建模之神经网络

神经网络 神经网络不需要做许多假设和和复杂的数学表达式,只用通过学习样本进行训练。 一、BP 神经网络 1.1简介 BP 神经网络由输入层、隐层和输出层三层构成。对于BP 神经网络,网络的性能受局部不准确试验数据的影响很小。所以BP 神经网络有很强的容错性。 缺点:训练时间较长,求得的解可能是局部极小解。 若R 是输入量的个数,il W 是隐层第i 个神经元与输出层第K 个神经元的连接权值,i b 是阈值。则通用神经元模型如下: ... ∑f 将多个神经元模型串起来会得到n 个神经元输出,第i 个神经元输出为 1R i ik k i k n x b ω==+∑ 第i 个神经元经过任意传递函数后得到输出为 ()log ()|tan ()|()i i i i i y f n sig n sig n purelin n == BP 神经网络的应用 ①沼泽草炭土结构特性及模型研究(下载文档) 2.1步骤 ①构造建模方案 根据输入与输出关系写出表达式,如三输入,一输出的非线性函数表达式为 (,,)f d q σε= 相对应的BP 神经网络结构为

设j x ,i y ,l o 分别表示BP 网络三层节点的输入节点,隐节点,输出节点。ij ω表示输入节点和隐节点之间的网络权值,li T 表示隐节点和输出节点之间的网络权值,我们用梯度法对BP 网络的权值进行修正,采用sigmoid 函数。若输出节点期望输出l t ,则有 输入节点至隐节点的公式为: 阈值修正:(1)()i i i j k k θθηδγ''+=+ 误差:(1)i i i l li l y y T δδ'=-∑ 权值修正:(1)()ij ij i j k k ωωηδγ''+=+ 隐节点至输出节点的公式为: 若有p 个样本数,n 个输出节点数,则一个样本的误差为()(k)1||,n k k l l l e t o ==-∑控 制误差范围是1,p k k E e ζ==<∑ 阈值修正:(1)()l l l k k θθηδ''+=+ 权值修正:(1)(),(li li l i T k T k y k ηδ+=+为迭代次数) 误差:()(1)l l l l l t o o o δ=-??- 输出节点的计算公式为:

相关文档
最新文档