数学中常用极限方法总结

数学中常用极限方法总结
数学中常用极限方法总结

【1】忽略高阶无穷小方法。

很多极限看起来很复杂,而且也不好使用洛必达法则,但是如果忽略掉次要部分,则会很容易计算。

比如,忽略掉比x低的无穷小项后为√x / √2x = 1/√2

再比如斐波那契数列,

忽略掉[(1-√5)/2]^n的次要项后,

可以求得lim a(n+1)/a(n) = (1+√5)/2

再比如lim(x->∞) (sinh(x)+sinx)/(2Cosh(x)-3Cos(x))

当x->∞的时候sinx和cosx是sinh(x)和cosh(x)的高阶无穷小

所以lim(x->∞) (sinh(x)+sinx)/(2Cosh(x)-3Cos(x))

= lim(x->∞) sinh(x)/2Cosh(x)

= lim(x->∞) (e^x-e^(-x)) / 2(e^x+e^(-x))

= lim(x->∞) e^x / 2e^x

=1

【2】取对数与洛必达法则

洛必达法则是求极限的时候用的最多的方法,但是很多题目都会饶下弯子,需要先对代数式进行一些变形,否则计算起来会越来越烦,常见的的代换包括取对数,等价无穷小代换,省略高阶无穷小部分,在用完这些方法后,再使用洛必达法则,可以有效的解决这类问题。

比如

这个直接用等价无穷小代换后会因为损失了高阶无穷小导致结果不正确,取对数后就会化成容易计算的形式了

lim(x->∞) x^2*ln(1+1/x) - x

再做代换t = 1/x

=lin(t->0) (ln(1+t)-t) / t^2

再用洛必达法则= lim(t->0) (1/(1+t) - 1) / 2t = -1/2

所以原式极限为e^(-1/2)

再比如tanx ^(1/lnx)在x->0+的时候的极限

这个极限是0^∞的形式

直接取对数得ln(tanx) / lnx ,现在是∞/∞的形式

用洛必达法则得= x / ( sinx cosx) = x/sinx * 1/cosx = 1

所以tanx^(1/lnx)在x->0+的时候的极限为e

【3】常用等价无穷小

经常用到的等价无穷小有

(1) tanx ~ sinx ~ acrsinx ~ arctanx ~ sinh(x) ~ acsinh(x) ~ x (x->0)

(2) 1-cosx ~ x^2/2 (x->0)

(3) e^x - 1 ~ x (x->0)

(4) ln(1+x) ~ x (x->0)

(5) (1+x)^a - 1 ~ ax (x->0)

(6) e - (1+x)^(1/x) ~ ex / 2 (x->0)

【4】极限存在准则

有些极限问题直接计算很困难,但是合理地使用放缩,再利用极限存在准则,可以很容易的得到,这个方法在判别级数收敛,反常积分计算的时候更是经常用到。

比如

显然n/√(n^2+n) < ∑1/√(n^2+i) < n/√(n^2+1)

而limn/√(n^2+n) = limn/√(n^2+1) = 1

所以极限是1

再比如

显然 1 <= 2sin^2n + cos^2 n <= 2

所以1^(1/n) <= (2sin^2n + cos^2 n)^(1/n) <= 2^(1/n)

所以原式极限是1

另外一个巧妙应用是计算广义积分,可以在很多地方找到这个方法,这里就不再写了。

【5】泰勒级数代换

利用一个函数的泰勒级数来求极限是一个重要的方法,等价无穷小是泰勒级数的一个特例,而通常情况下,等价无穷小只适用于乘除的情况,但泰勒级数代换则可以适用于更多的情况,特别是包含加减的情况。

例如(tanx - sinx) / x^3在x->0处的极限,这个可以使用多次洛必达求得,或提取sinx 后用两个等价无穷小代换,也可以用tanx和sinx的级数代入求得

= (x+x^3/3 + O(x^4) - x + x^3/6 + O(x^4)) / x^3 = 1/2

但如果要求[tan(sin(tan(sinx))))-sin(tan(sin(tan(x))))] / x^7 (x->0)这个极限一般的方法就显得无助了,基本上只能使用泰勒级数来做

tan(sin(tan(sinx))))在x=0处的幂级数展开为x + x^3/3 + x^5/30 - (13 x^7)/210 + O(x^9) sin(tan(sin(tan(x))))在x=0处的幂级数展开为x + x^3/3 + x^5/30 - (9 x^7)/70 + O(x^9) 所以原式极限为1/15 (当然这个幂级数的展开式的计算量会很大)

再比如求( √(1+x) + √(1-x) - 2 ) / x^2在x->0处的极限

用泰勒公式就比较简单

√(1+x) ~ 1+x/2 - x^2/8 + O(x^3)

√(1-x) ~ 1 - x/2 - x^2/8 + O(x^3)

所以原式= (2 - x^2/4 - 2 + O(x^3) ) / x^2 = -1/4

经常可能用到的泰勒级数展开主要有正弦函数,余弦函数,正切函数,对数函数,指数函数,下面给出一个经常被问到的极限的级数展开

(1+x)^(1/x)在x=0处的级数展开为e - (e x)/2 + (11 e x^2)/24 + O(x^3)

(1+1/x)^x在x=0处的级数展开为1-x lnx + (1+(lnx)^2) x^2 + O(x^3)

【6】中值定理

有些极限用常见的方法处理比较困难,但是可以很容易的看出这是某个函数在两个很近的点处的割线的斜率或两个点之间的面积,那么这个时候可以考虑使用微分中值定理或积分中值定理。

比如求si n(√(x+1) - sin√x在x->∞的时候的极限

由微分中值定理知,存在x<ξ

所以lim(sin(√(x+1) - sin√x) = cosξ * (√(x+1)-√x) = cosξ / (√(x+1)+√x)

由于cosξ有界,1/(√(x+1)+√x)极限是0,所以原式极限是0

再比如求x^2 (arctan a/x - arctan a/(x+1))在x->∞处的极限

令f(x) = arctan a/x那么存在x< ξ

由于x^2/(a^2+(x+1)^2) < x^2/(a^2+ξ^2) < x^2 / (a^2+x^2) ,取极限得 1 <= lim x^2/(1+ξ^2) <= 1

所以原式极限是a

再比如求(Pi/2 - arctanx )^(1/lnx) 在x->∞处的极限

显然Pi/2 - arctanx = ∫ 1/(1+t^2)dt (积分限为[x,∞])

所以存在x<ξ<∞使得ξ/(1+ξ^2) = Pi/2 - arctanx

取对数后原式极限与ln(ξ/(1+ξ^2))/lnx极限相同,这个可以用洛必达法则容易求得极限为-1

所以原式极限是1/e

【7】Stolz定理

Stolz定理经常用来求一类与数列有关的极限

若y(n)->∞ ,并且y(n)>y(n-1)

那么lim x(n)/y(n) = lim [x(n)-x(n-1)]/[y(n)-y(n-1)]

这个定理其实是离散化的洛必达法则

例(1)求(1+1/2+1/3+...+1/n)/n在n->∞的极限

这个可以先把分子的和求出来(当然结果是一个定积分),然后再求极限,但是比较麻烦

由于满足Stolz定理的条件,所以

lim(1+1/2+1/3+...+1/n)/n = (1/n) / [(n)-(n-1)] = 1/n = 0

例(2) (1^k+2^k+3^k+...+n^k)/n^(k+1)在n->∞的极限

直接使用Stolz得

=n^k / [ n^(k+1) - (n-1)^(k+1) ]

=n^k / [ n^(k+1) - n^(k+1) + C(k+1,1)n^k - C(k+1,2)n^(k-1) + ....]

=n^k / [C(k+1,1)n^k - C(k+1,2)n^(k-1) + ....]

= 1/C(k+1,1) = 1/(k+1)

例(3) 求(ln(n!) -n ln(n) )/n在n->∞的极限

lim(ln(n!) -n ln(n) )/n

=lim( ln((n+1)!)-(n+1)ln(n+1) - ln(n!) + n ln(n) ) / (n+1-n)

=lim [ ln(n+1) - n ln(n+1) - ln(n+1) + n ln(n) ]

=lim n * ln (n/(n+1))

=-1

【8】利用定积分的数值公式

有些求和的极限用夹挤定理只能得到级数收敛,但不能求出具体的极限值,而一些题刚好是利用定积分的数值公式(主要是矩形公式)分解而来,这个时候可以考虑凑定积分的方式来对级数求和。

比如求

可以写成1/n ∑1/(1+(k/n)^2)

所以这个刚好是1/(1+x^2)在[0,1]上的定积分

所以极限为Pi/4

再如上面出现过的(1^k+2^k+...+n^k) / n^(k+1)

这个可以写成1/n ∑ (i/n)^k

所以可以看成是x^k在[0,1]上的定积分

所以极限是1/(k+1)

【9】利用级数展开

某些涉及到求和的极限可能刚好是某个函数的级数展开的特殊值

比如交错级数

1-1/2+1/3-1/4+...

这个刚好是ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + ...

在x=1处的值

所以极限是ln2

而对于其他一些级数也可能是函数展开的特殊值

比如1 + 1/2^2 + 1/3^2 + 1/4^ + 1/n^2 + ...

考虑正弦函数的无穷积展开为

sinx = x ∏ (1-x^2/k^2Pi^2)

取对数后求导数得

Cot[x] = 1/x - ∑2x/(k^2-x^2)

取x->0的时候的极限就可以得到∑1/n^2 = Pi^2/6

还有一些级数会复杂一些

比如 1 - 1/4 + 1/7 - 1/11 + ...(-1)^(3k+1)/(3k+1) + ....也是可以计算出来的,结果留给你们算

求极限方法总结全

极限求解总结 1、极限运算法则 设lim n →∞ a a =a ,lim n →∞ a a =a ,则 (1) lim n →∞ (a a ±a a )=lim n →∞ a a ±lim n →∞ a a =a ±a ; (2) lim n →∞ a a a a =lim n →∞ a a lim n →∞ a a =aa ; (3) lim n →∞a a a a = lim n →∞a a lim n →∞ a a = a a (a ≠0). 2、函数极限与数列极限的关系 如果极限lim x →a 0 a (a )存在,{a a }为函数a (a )的定义域内任一收敛于a 0的数列,且满 足:a a ≠a 0(a ∈a +),那么相应的函数值数列{a (a )}必收敛,且lim a →∞ a (a a )= lim a →a 0 a (a ) 3、定理 (1) 有限个无穷小的和也是无穷小; (2) 有界函数与无穷小的乘积是无穷小; 4、推论 (1) 常数与无穷小的乘积是无穷小; (2) 有限个无穷小的乘积也是无穷小;

(3)如果lim a(a)存在,而c为常数,则lim[aa(a)]=a lim a(a) (4)如果lim a(a)存在,而n是正整数,则lim[a(a)]a=[lim a(a)]a 5、复合函数的极限运算法则 设函数y=a[a(a)]是由函数u=a(a)与函数y=a(a)复合而成的,y=a[a(a)] 在点a0的某去心领域内有定义,若lim a→a0a(a)=a0,lim a→a0 a(a)=a,且存在a0> 0,当x∈U(a0,a0)时,有a(a)≠a0,则lim a→a0a[a(a)]=lim a→a0 a(a)=a 6、夹逼准则 如果 (1)当x∈U(a0,a)(或|a|>M)时,g(x)≤a(a)≤h(x) (2)lim a→a0(a→∞)a(a)=a,lim a→a0(a→∞) a(a)=a 那么lim a→a0(a→∞) a(a)存在,且等于A 7、两个重要极限 (1)lim a→0sin a a =1 (2)lim x→∞(1+1 x )x=a 8、求解极限的方法(1)提取因式法

高等数学极限求法总结

高等数学极限求法总结 函数极限的求法 函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明 题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存 在正数,使得当x 满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函 数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法 则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条 件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求 lim( x 2 3x + 5). x→ 2 解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5 = (lim x) 2 3 lim x + lim 5 = 2 2 3 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限 来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零 比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件:

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

数学中常用极限方法总结

【1】 忽略高阶无穷小方法。 很多极限看起来很复杂, 而且也不好使用洛必达法则, 但是如果忽略掉次要部分, 易计算。 比如 …皿 ,忽略掉比x 低的无穷小项后为 V x / V 2x = 1/ V2 再比如斐波那契数列, 忽略掉[(1-V 5)/2]人n 的次要项后, 可以求得 lim a(n+1)/a(n) = (1+ V 5)/2 再比如 lim(x- ) (sinh(x)+sinx)/(2Cosh(x) -3Cos(x)) 当x->g 的时候sinx 和cosx 是sinh(x)和cosh(x)的高阶无穷小 所以 lim(x- >g ) (sinh(x)+sinx)/(2Cosh(x) -3Cos(x)) =lim(x- >m )sin h(x)/2Cosh(x) =lim(x- >g ) (e A )ee A (-x)) / 2(e A x+e A (-x)) =lim(x- >m )eAx / 2eAx =1 【2】 取对数与洛必达法则 洛必达法则是求极限的时候用的最多的方法,但是很多题目都会饶下弯子,需要先 对代 数式进行一些变形,否则计算起来会越来越烦,常见的的代换包括取对数,等 价无穷小 代换,省略高阶无穷小部分,在用完这些方法后,再使用洛必达法则,可 以有效的解决 这类问题。 比如 这个直接用等价无穷小代换后会因为损失了高阶无穷小导致结果不正确,取对数后 就会 化成容易计算的形式了 lim(x->8) xA2*ln(1+1/x) - x 再做代换t = 1/x 则会很容 lim 工一>乂 (1+-) X e x

=li n(t->0) (In (1+t)-t) / t A2 再用洛必达法则=Iim(t->0) (1/(1+t) - 1) / 2t = -1/2 所以原式极限为eA(-1/2) 再比如tanx A(1/|nx)在x->0+的时候的极限 这个极限是0A R的形式 直接取对数得In(tanx) / Inx,现在是g/ °的形式 用洛必达法则得=x / ( sinx cosx) = x/si nx * 1/cosx = 1 所以tanxA(1/Inx)在x->0+的时候的极限为e 【3】常用等价无穷小 经常用到的等价无穷小有 (1) tanx ~ si nx ~ acrs inx ~ arcta nx ~ sin h(x) ~ acsin h(x) ~ x (x->0) (2) 1-cosx ~ 沁212 (x->0) (3) eAx - 1 ~ x (x->0) (4) In (1+x) ~ x (x->0) (5) (1+x)Aa - 1 ~ ax (x->0) (6) e - (1+x)A(1/x) ~ ex / 2 (x->0) 【4】极限存在准则 有些极限问题直接计算很困难,但是合理地使用放缩,再利用极限存在准则,可以很容 易的得到,这个方法在判别级数收敛,反常积分计算的时候更是经常用到。 比如 显然n/ V(nA2+n) < 刀1/V(n人2+。< n/ V(n人2+1) 而limn/ V(n人2+n) = limn/ V(n人2+1) = 1 所以极限是1 H+COS2用y “ 再比如 显然1 <= 2s in A2n + cosA2 n <= 2 所以1A(1/n) <= (2si nA2n + cosA2 n)A(1/n) <= 2人(1/ n) 所以原式极限是1 € 一企 2 也E 另外一个巧妙应用是计算广义积分’'' 「,可以在很多地方找 到这个方法,这里就不再写了。 【5】泰勒级数代换 利用一个函数的泰勒级数来求极限是一个重要的方法,等价无穷小是泰勒级数的一个特例,而通常

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

极限求值方法总结

求极限方法总结 1、 四则运算 设lim (),lim ()p p f x A g x B ==(A 、B 为常数)则 lim[()()]lim ()lim ()p p p f x g x f x g x A B ±=±=±; lim[()()]lim ()lim ()p p p f x g x f x g x A B ==; lim ()()lim (0)()lim ()p p p f x f x A B g x g x B ==≠ 例1 32 lim(23).x x x →-+ 解: 333 2 2 2 2 lim(23)lim lim(2)lim322237x x x x x x x x →→→→-+=-+=-?+= 2、 约去零因子法 当分子极限0 0lim ()()0x x p x p x →=≠时,即当0x x →时,分式 () () P x Q x 的分子、分母的极限均为0(称此式 型不定式)时,多项式()P x 与()Q x 必有公因子0()x x -,故在求0() lim ()x x P x Q x →时,分子分母可以先约去0()x x -,再求极限。 例2. 23 3 lim 9 x x x →-- 解:()()23 333311 lim lim lim 93336 x x x x x x x x x →→→--=== -+-+ 3、 同除以最高次幂 当x →∞时,分子与分母都是无穷大,故不能直接应用商的极限运算法则。将分子分母同除以x 的最高次幂,此时分子、分母都有极限存在,且分母极限不为零。 例3 2351 lim 232 x x x x x →∞+++- 解:223233 2323511511lim 510lim lim 0323223222lim 2x x x x x x x x x x x x x x x x x x →∞→∞→∞→∞??++++ ?++??====+-??+-+- ? ? ?

考研数学极限计算方法:利用单侧极限

https://www.360docs.net/doc/9f2690186.html, 版权所有翻印必究 考研数学极限计算方法:利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan ),0121x e x x f x x x x x ?-+-?? 在0=x 处的极限。分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0 =→x f x 。有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时

版权所有翻印必究 https://www.360docs.net/doc/9f2690186.html, 2会出现负号,同时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+=+= ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++???? ,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

高等数学极限总结

【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。 【关键词】高等数学极限技巧 《高等数学》极限运算技巧 《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。 一,极限的概念 从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限! 从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。 二,极限的运算技巧 我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助! 我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

1,连续函数的极限 这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。 2,不定型 我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。 第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个: 需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。 此外等价无穷小代换的使用,可以变通一些其他形式,比如: 等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。 当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。 在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通

极限计算方法总结

极限计算方法总结 靳一东 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2 =-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,) ()(lim 成立此时需≠= B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim =→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim =→x x x ,e x x x =--→21 ) 21(lim ,e x x x =+∞ →3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

高数数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x)?当x →x 0时的极限,记作。[2] 单侧极限:?.左极限:或 ?.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0 )(x f 0x x →

等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。时的极限。 函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则 有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有; (2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时, (2) ,, 那么存在,且等于。 夹逼定理:(1)当时,有??成立 (2) ?,那么,极限存在,且等于A 【准则Ⅰ,准则Ⅰ′合称夹逼定理】 )()()(lim 0 00x f x f x f x x →+-==0,,,x x x x x →-∞→+∞→∞→0x x →{}n x {}n y {}n z +∈?N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞ →lim {}n x a x n x =∞ →lim ),(0r x U x ο ∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim ) (0 A x h x x x o =∞→→)(lim ) ()(lim ) (0 x f x x x ∞→→A ),(x 0r x U ο ?()0x f

相关文档
最新文档