高考数学复习专题函数的最值

高考数学复习专题函数的最值
高考数学复习专题函数的最值

函数的最值(值域)

●高考要求

掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法

最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.考生的运算能力,分析问题和解决问题能力在这里充分展现.因此我们应注意总结最大、最小值问题的解题方法与技巧,以提高高考应变能力因函数的最大、最小值求出来了,值域也就知道了反之,若求出的函数的值域为非开区间,函数的最大或最小值也等于求出来了

●重难点归纳

(1)求函数的值域

此类问题主要利用求函数值域的常用方法配方法、分离变量法、单调性法、导数法数形结合法(图像法)导数法数形结合法、判别式法、部分分式、均值不等式、换元法、不等式法等无论用什么方法求函数的值域,都必须考虑函数的定义域

(2)函数的综合性题目

此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强

(3)运用函数的值域解决实际问题

此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力

●知识点归纳

一、相关概念 1、值域:函数A x x f y ∈=

,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。

2、最值:求函数最值常用方法和函数值域的方法基本相同。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。

最大值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最大值。记作()max 0y f x = 最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最小值。记作()min 0y f x = 注意:

①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0) = M ;

② 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )≥M )。

二、 确定函数值域的原则

1、当函数)(x f y =用表格给出时,函数的值域指表格中实数y 的集合;

则值域为{1,2,3,4} 2、数)(x f y

=的图像给出时,函数的值域是指图像在y 轴上的投影所覆盖的实数y 的集合;

3、数)(x f y =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;

4、由实际问题给出时,函数的值域由问题的实际意义决定。 三、基本函数的值域

1、一次函数)(0≠+=a b kx y 的定义域为R ,值域为R ;

2、二次函数)(02≠++=a c bx ax y 的定义域为R ,;

当]44(0);44[022a

b a

c ,,a ,a b ac ,a --∞<∞+->值域是时值域是时

3、反比例函数)0(≠=k x

k y 的定义域为{x|x ≠0},值域为}0/{≠y y ;

4、数函数)10(≠>=a a a y x

且的值域为}0/{>y y ;

5、对数函数)10(log ≠>=a a x y a 且的值域为R ;

6、函数y=sinx 、y=cosx 的值域是 ][1,1-;

7、函数 2

k x ,tan π

π+≠=x y ,cot x y =),(Z k k x ∈≠π的值域为R 。

四、求函数值域的方法

函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域

求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。 常用方法:

(1)观察法(用非负数的性质,如:2

0x ≥;0x ≥0(0)x ≥≥等)

例如:求下列函数的值域:y=-3x 2

+2;{y|y ≥2}

变式:y=5+21+x (x ≥-1).{y|y ≥5}最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.考生的运算能力,分析问题和解决问题能力在这里充分展现.

函数y=ax+1 (a ≠0,-1≤x ≤1)的值域是______. (2)直接法:利用常见函数的值域来求,

(3)配方法:(二次或四次) 转化为二次函数,利用二次函数的特征来求值;

常转化为含有自变量的平方式与常数的和,型如:),(,)(2

n m x c bx ax x f ∈++=的形式,然后根据变量的取值范围确定函数的最值; 例如:求值域:y=2

1x x ++,x R ∈;x []3,1-∈; (1,5]x ∈;[5,1]x ∈--

变式1:y =-x 2

+4x -1 x ∈[-1,3);

变式2:求函数y=

3

425

2+-x x 的值域.

变式3:当]2,0(∈x 时,函数3)1(4)(2

-++=x a ax x f 在2=x 时取得最大值,则a 的取值

范围是___(答:2

1

-≥a );

(4)换元法(代数换元法)通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题,化归思想;

例如:求函数x x y -+=142的值域. (]4,∞- 变式1:求函数y=3x-x 21-的值域.{y|y ≤2

3}

变式2:21y x =++

_____

(答:(3,)+∞)t =,0t ≥。运用换元法时,要特别要注意新元t 的范围);

变式3:4y x =+____(答:4]); 变式4:函数21x x y --=的值域为____

变式5:2

2sin 3cos 1y x x =--的值域为_____(答:17

[4,

]8

-);

变式6:sin cos sin cos y x x x x =++的值域为____(答:1

[1,2

-+);

变式7:求函数)42(5log log 24

124

1≤≤+-=x x x y 的值域

(5)分离常数法(分式转化法);对某些分式函数,可通过分离常数法,化成部分分式来求值域.

(6)逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x d

cx b

ax y ∈++=

例如:求下列函数的值域:y=

1

2

++x x ({y|y 1≠}) 变式:函数y =2

2

11x x +-的值域是( )

A.[-1,1]

B.(-1,1]

C.[-1,1)

D.(-1,1)

解法一:y =2211x x +-=212x +-1. ∵1+x 2≥1,∴0<212x

+≤2.∴-1<y ≤1. 解法二:由y =2

2

11x x +-,得x 2=y y +-11.∵x 2≥0,∴y y +-11≥0,解得-1<y ≤1. 解法三:令x =tan θ(-2π<θ<2π

),则y =θ

θ2

2tan 1tan 1+-=cos2θ .∵-π<2θ<π,∴-1<cos2θ≤1,即-1<y ≤1.答案:B 求函数()3025

x

y x x -=

≥+的值域

求函数1

22+=x x y 的值域

(7)利用判别式法(将函数转化为二次方程);若函数y =f (x )可以化成一个系数含有y 的关

于x 的二次方程a (y )x 2+ b (y )x +c (y )=0,则在a (y )≠0时,由于x 、y 为实数,故必须有Δ=b 2(y )-4a (y )·c (y )≥0,从而确定函数的最值,检验这个最值在定义域内有相应的x 值.

例5 求函数y =4

32

+x x 的最值.[-43

,43]

变式:2222

1

x x y x x -+=++;[1,5]

(8)三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

求函数2sin 11sin y θθ-=+,313x x

y =+,2sin 11cos y θθ-=+的值域(答: 1(,]2-∞、(0,1)、3

(,]2

-∞);

(9)基本不等式法:转化成型如:)0(>+

=k x

k

x y ,利用基本不等式公式来求值域; 设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则2

12

21)(b b a a +的取值范围是____________.

(答:(,0][4,)-∞+∞)。

求函数)52(1

≤≤+=x x

x y 的值域

求函数4

142

2++

+=x x y 的最小值

(10)单调性法:函数为单调函数,可根据函数的单调性求值域

如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减则函数y =f (x )在x =b 处有最大值f (b );

如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增则函数y =f (x )在x =b 处有最小值f (b );

求1(19)y x x x =-

<<,229sin 1sin y x x =++的值域为______(答:80(0,)9、11[,9]2

); 函数f (x )=x x x

1log 823-

+-的值域【2,3??+∞????

】 函数4

1

2

)

2

1(-

-=x x

y

的值域【(

(11)数形结合:根据函数图象或函数的几何图形,利用数型结合的方法来求值域

已知点(,)P x y 在圆22

1x y +=上,求

2

y

x +及2y x -

的取值范围(答:[33-

、[);

求函数

. 求函数2sin 2cos x

y x

-=

-的值域

(12)导数法―求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。(答:-48)

●典例剖析

题型一:函数值域问题 例1、求下列函数的值域

① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1+=

x x y ④x

x y 1+= 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5]

②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2} ③1111111+-=+-+=+=

x x x x x y ∵01

1

≠+x ∴1≠y

即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1

+

==2)1(2+-

x

x 2≥, 当x<0时,)1

(x x y -+

--==-2)1(2---

-x

x 2-≤ ∴值域是 ]2,(--∞[2,+∞)(此法也称为配方法) 函数x

x y 1

+

=的图像为:∴值域是 ]2,(--∞[2,+∞) 例2.求下列函数的值域:

(1)2

32y x x =-+;(2

)y =;(3)31

2

x y x +=

-; (4

)y x =+(5

)y x =(6)|1||4|y x x =-++;

(7)22221x x y x x -+=++;(8)2211()212x x y x x -+=>-;(9)1sin 2cos x

y x

-=-。

解:(1)(配方法)

2212323

323()61212

y x x x =-+=-+≥,

∴2

32y x x =-+的值域为23

[

,)12

+∞。 改题:求函数2

32y x x =-+,[1,3]x ∈的值域。

解:(利用函数的单调性)函数2

32y x x =-+在[1,3]x ∈上单调增, ∴当1x =时,原函数有最小值为4;当3x =时,原函数有最大值为26。 ∴函数2

32y x x =-+,[1,3]x ∈的值域为[4,26]。

(2)求复合函数的值域:设2

65x x μ=---(0μ≥)

,则原函数可化为y =。

又∵2

2

65(3)44x x x μ=---=-++≤,∴04μ≤≤

[0,2],

∴y 的值域为[0,2]。 (3)(法一)反解法:由31

2x y x +=

-得213+=-y x y ,由此得3y ≠∴原函数312

x y x +=-的值域为

{|3}y R y ∈≠。

(法二)分离变量法:313(2)77

3222

x x y x x x +-+===+

---, ∵

702x ≠-,∴7

332x +≠-,∴函数312

x y x +=

-的值域为{|3}y R y ∈≠。 (4)换元法(代数换元法)

:设0t =≥,则21x t =-,

∴原函数可化为22

14(2)5(0)y t t t t =-+=--+≥,∴5y ≤,∴原函数值域为(,5]-∞。 注:

总结y ax b =++

变形:2y ax b =+

2

y ax b =++(5)三角换元法:∵2

1011x x -≥?-≤≤,∴设cos ,[0,]x ααπ=∈,

则cos sin )4

y π

ααα=+=

+

∵[0,]απ∈,∴5[,]444

π

ππ

α+∈

,∴sin()[42πα+∈-

)[4

π

α+

∈-

,∴原函数的值域为[-。

(6)数形结合法:23(4)

|1||4|5(41)23(1)x x y x x x x x --≤-??

=-++=-<

,∴5y ≥,∴函数值域为[5,)+∞。

(7)判别式法:∵2

10x x ++>恒成立,∴函数的定义域为R 。

由22221

x x y x x -+=++得:2

(2)(1)20y x y x y -+++-= ①

①当20y -=即2y =时,①即300x +=,∴0x R =∈

②当20y -≠即2y ≠时,∵x R ∈时方程2

(2)(1)20y x y x y -+++-=恒有实根, ∴△22

(1)4(2)0y y =+-?-≥,∴15y ≤≤且2y ≠,∴原函数的值域为[1,5]。 (8)2

1

21(21)1111

2121212122

2

x x x x y x x x x x x -+-+===+=-++----,

∵12x >,∴102

x ->

,∴112122x x -+≥-

当且仅当11

2

122

x x -=-

时,即12

x +=时等号成立。

∴12y ≥

,∴原函数的值域为1

,)2

+∞。

(9)(法一)方程法:原函数可化为:sin cos 12x y x y -=-,

)12x y ?-=-

(其中cos ??=

=

),

∴sin()[1,1]x ?-=

-

,∴|12|y -≤2340y y -≤,∴403

y ≤≤

, ∴原函数的值域为4

[0,]3

点评:上面讨论了用初等方法求函数值域的一些常见类型与方法,在现行的中学数学要求中,求值域要求不高,要求较高的是求函数的最大与最小值,在后面的复习中要作详尽的讨论。 变式:求下列函数的值域:①])1,1[,,0,0(-∈>>>-+=

x b a b a bx

a bx

a y (2种方法); ②)0,(,32-∞∈+-=x x x x y (2种方法);③)0,(,1

3

2-∞∈-+-=x x x x y (2种方法);

例3求函数6

6

522-++-=x x x x y 的值域

方法一:(判别式法)去分母得 (y -1)2

x +(y+5)x -6y -6=0 ①

当 y ≠1时 ∵x ∈R ∴△=(y+5)2+4(y -1)×6(y+1)≥0由此得 (5y+1)2≥0

检验 51

-=y 时 2)

5

6

(2551

=-?+-

-=x (代入①求根)

∵2 ? 定义域 { x| x ≠2且 x ≠3} ∴5

1-≠y 再检验 y=1 代入①求得 x=2 ∴y ≠1

综上所述,函数6

6

522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠51-}

方法二:(分离常数法)把已知函数化为函数3

6

133)3)(2()3)(2(--

=+-=+---=x x x x x x x y (x ≠2) 由此可得 y ≠1

∵ x=2时 51-=y 即 51-≠y ∴函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠5

1

-}

例4 (分段函数法及图像法)求函数y=|x+1|+|x-2|的值域

解法1:将函数化为分段函数形式:

??

?

??≥-<≤--<+-=)2(12)21(3)1(12x x x x x y ,

画出它的图象,由图象可知,函数的值域是{y|y ≥3}

解法2:(几何法或图象法)∵函数y=|x+1|+|x-2|表示数轴上

的动点x 到两定点-1,2的距离之和,∴易见y 的最小值是3,∴函数的值域是[3,+∞] 如图

例5求函数x x y -+=142的值域

解:(换元法)设 x t -=1 则 t ≥0 x=1-2

t

代入得 t t t f y 4)1(2)(2

+-?==4)1(224222+--=++-=t t t ∵t ≥0 ∴y ≤4

例6设函数2

221

()log log (1)log ()1

x f x x p x x +=+-+--, (1)求函数的定义域;

(2)问()f x 是否存在最大值与最小值?如果存在,请把它写出来;如果不存在,请说明理

解:(1)由101100x x x p x +?>?-??->?

->??

,解得1

x x p >??

当1p ≤时,①不等式解集为?;

当1p >时,①不等式解集为{}|1x x p <<,∴()f x 的定义域为(1,)(1)p p >

(2)原函数即2

2221(1)()log [(1)()]log [()]24

p p f x x p x x -+=+-=--+, 当

1

12

p -≤,即13p <≤时,函数()f x 既无最大值又无最小值; 当112

p p -<<,即3p >时,函数()f x 有最大值22log (1)2p +-,但无最小值

题型二:最值问题

例1.(2002全国理,21)设a 为实数,函数2

()1f x x x a =+-+,x ∈R . (1)讨论()f x 的奇偶性; (2)求()f x 的最小值.

解:(1)当0a =时,函数2

()()1()f x x x f x -=-+-+=,此时()f x 为偶函数;

当0a ≠时,2

()1f a a =+,2

()21f a a a -=++,()()f a f a -≠, ()()f a f a -≠-.

此时函数()f x 既不是奇函数,也不是偶函数;

(2)①当x a ≤时,函数2

2

13()1()2

4

f x x x a x a =-++=-++. 若1

2

a ≤

,则函数()f x 在(]a -∞,上单调递减,从而,函数()f x 在(]a -∞,上的最小值为2()1f a a =+;若12a >,则函数()f x 在(]a -∞,上的最小值为13

()24

f a =+,且

1

()()2

f f a ≤; ②当x a ≥时,函数2

213()1()24

f x x x a x a =+-+=+-+;

若12a -≤,则函数()f x 在[)a +∞,上的最小值为13()24

f a -=-,且1

()()2f f a -≤.

若1

2

a >-,则函数()f x 在[)a +,∞上单调递增,从而,函数()f x 在[)a +,∞上的最小值为

2()1f a a =+.

综上,当12a -≤时,函数()f x 的最小值是3

4

a -, 当11

22a -

<≤时,函数()f x 的最小值是21a +, 当12a >时,函数()f x 的最小值是3

4

a +.

点评:函数奇偶性的讨论问题是中学数学的基本问题,如果平时注意知识的积累,对解此题会有较大帮助.因为x ∈R ,f (0)=|a |+1≠0,由此排除f (x )是奇函数的可能性.运用偶函数的定义分析可知,当a =0时,f (x )是偶函数,第2题主要考查学生的分类讨论思想、对称思想。 变式1:设函数2

()21f x x x =+--,x ∈R .

(1) 判断函数()f x 的奇偶性;(2)求函数()f x 的最小值.

解:(1)(2)3f =,(2)7f -=,由于(2)(2)f f -≠,(2)(2)f f -≠-. 故()f x 既不是奇函数,也不是偶函数.

(2)()f x =2

232

12

x x x x x x ?+-??-+

由于()f x 在[)2+,∞上的最小值为(2)3f =,在(2)-∞,内的最小值为1

3()24

f =. 故函数()f x 在()-+∞,∞

内的最小值为34

例2:已知函数f (x )=x

a

x x ++22,x ∈[1,+∞),

(1)当a =2

1

时,求函数f (x )的最小值

(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围

思路分析 解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得 (1)解 当a =

21时,f (x )=x +x

21

+2 ∵f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=

2

7

O

y x

(a ,f (a ))

(b ,f (b ))

图1

(2)解法一 在区间[1,+∞)上,

f (x )=x

a x x ++22 >0恒成立?x 2+2x +a >0恒成立

设y =x 2+2x +a ,x ∈[1,+∞),∵y =x 2+2x +a =(x +1)2+a -1递增,

∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3

解法二 f (x )=x +

x

a

+2,x ∈[1,+∞) 当a ≥0时,函数f (x )的值恒为正;

当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,

当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3

点评 本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力 解题的关健是把求a 的取值范围的问题转化为函数的最值问题.通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想

例3.(2008江苏理,20)已知函数1

1()3

x p f x -=,2

2()23

x p f x -=?(12,,x R p p ∈为常数).函

数()f x 定义为:对每个给定的实数x ,112212(),()()

()(),()()

f x f x f x f x f x f x f x ≤?=?

>?若若

(1)求1()()f x f x =对所有实数x 成立的充分必要条件(用12,p p 表示);

(2)设,a b 是两个实数,满足a b <,且12,(,)p p a b ∈.若()()f a f b =,求证:函数()f x 在区间[,]a b 上的单调增区间的长度之和为

2

b a

-(闭区间[,]m n 的长度定义为n m -) 解:(1)由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于

()()12f x f x ≤(对所有实数x )这又等价于1

2

3

23

x p x p --≤,

即12

3log 23

32x p x p ---≤=对所有实数x 均成立. (*)

由于121212()()()x p x p x p x p p p x R ---≤---=-∈的最大值为12p p -, 故(*)等价于12

3

2p p -≤,即123log 2p p -≤,这就是所求的充分必要条件

(2)分两种情形讨论

(i )当1232p p log -≤时,由(1)知1()()f x f x =(对所有实数[,]x a b ∈) 则由()()f a f b =及1a p b <<易知12

a b

p +=

再由111

11

3,()3,p x x p x p f x x p --?

函数()f x 在区间[,]a b 上的单调增区间的长度

为22

a b b a b +--=

(参见示意图1) (ii )1232p p log ->时,不妨设12,p p <,则213log 2p p ->,于是 当1x p ≤时,有1212()33()p x

p x f x f x --=<<,从而1()()f x f x =;

当2x p ≥时,有31

2122122log 212()333333()x p p p x p p p x p x p f x f x --+----===>=

从而 2()()f x f x = ; 当12p x p <<时,11()3

x p f x -=,及22()23

p x

f x -=?,由方程1

23

23x p p x --=?

解得12()()f x f x 与图象交点的横坐标为 12031

log 222

p p x +=+ ⑴

显然10221321

[()log 2]2

p x p p p p <=---<, 这表明0x 在1p 与2p 之间。由⑴易知

10

1022

(),()(),p x x f x f x x x p f x ≤≤?=?<≤?

综上可知,在区间[,]a b 上,0

102

(),()(),a x x f x f x x x b f x ≤≤?=?<≤? (参见示意图2)

故由函数1()f x 及2()f x 的单调性可知,()f x 在区间[,]a b 上的单调增区间的长度之和为

012()()x p b p -+-,由于()()f a f b =,即12323p a b p --=?,得 123log 2p p a b +=++ ⑵

故由⑴、⑵得 0121231()()[log 2]2

2

b a

x p b p b p p --+-=-+-=

综合(i )(ii )可知,()f x 在区间[,]a b 上的单调增区间的长度和为2

a

b -。

点评:函数奇偶性的讨论问题是中学数学的基本问题,如果平时注意知识的积累,对解此题会有较大帮助.因为x ∈R ,f (0)=|a |+1≠0,由此排除f (x )是奇函数的可能性.运用偶函数的定义分析可知,当a =0时,f (x )是偶函数,第2题主要考查学生的分类讨论思想、对称思想。

题型三:函数的综合题

例1.已知函数()f x 的定义域为[]0,1,且同时满足: (1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =

(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;

(III)设数列{}n a 的前n 项和为n S ,且满足*

12

(3),n n S a n N =--∈. 求证:1231

12332

()()()()2n n f a f a f a f a n -?+++

+≤+-.

解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤

由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (2分) (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥

22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥

max ()(1)3f x f ∴== (6分)

(III)

*

12(3)()n n S a n N =--∈1112(3)(2)n n S a n --∴=--≥

1111133(2),10n n n n a a n a a --∴=≥=≠∴= (8分) 11

1112113333333()(

)()()()23()4n n n n n n n

n f a f f f f f -∴==+≥+-≥-+ 1

111

43

333()()n n f f -∴≤+,即11433())(n n f a f a +≤+。

2211221

14144

144441

12133333333333()()()()2n n n n n n n f a f a f a f a ------∴≤+≤++≤≤+++++=+ 故1

13

()2n n f a -≤+ 1213

13

1()1()()()2n n

f a f a f a n --∴++

+

≤+即原式成立。 (14分)

点评:本题贴近生活。要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决。该题典型代表高考的方向。

例2.(2003北京春,理文21)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。 (1)当每辆车的月租金定为3600元时,能租出多少辆车?

(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为:

50

3000

3600- =12,所以这时租出了88辆车。

(2)设每辆车的月租金定为x 元,则租赁公司的月收益为: f (x )=(100-

503000-x )(x -150)-50

3000

-x ×50,

整理得:f (x )=-502x +162x -21000=-50

1(x -4050)2

+307050。

所以,当x =4050时,f (x )最大,其最大值为f (4050)=307050。

即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元. 点评:根据实际问题求函数表达式,是应用函数知识解决实际问题的基础,在设定或选定变量去寻求等量关系并求得函数表达式后,还要注意函数定义域常受到实际问题本身的限制。 例3.(2006湖南 理20)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)物体质量(含污物)

污物质量

-

1为8.0,要求清洗完后的清洁度为99.0。有两种

方案可供选择,方案甲:一次清洗;方案乙:分两次清洗。该物体初次清洗后受残留水等因素影响,其质量变为)31(≤≤a a 。设用x 单位质量的水初次清洗后的清洁度是

1

8

.0++x x )1(->a x ,用y 单位质量的水第二次清洗后的清洁度是

a y ac y ++,其中c )99.08.0(<

(Ⅰ)分别求出方案甲以及95.0=c 时方案乙的用水量,并比较哪一种方案用水量较少;

(Ⅱ)若采用方案乙, 当a 为某固定值时, 如何安排初次与第二次清洗的用水量,使总用水量最小? 并讨论a 取不同数值时对最少总用水量多少的影响。 解:(Ⅰ)设方案甲与方案乙的用水量分别为x 与z 。

由题设有

0.8

1

x x ++=0.99,解得x =19。 由0.95c =得方案乙初次用水量为3,

第二次用水量y 满足方程: 0.950.99,y a

y a

+=+解得y =4a ,故z =4a +3.即两种方案的用水量分

别为19与4a +3。

因为当13,4(4)0,a x z a x z ≤≤-=->>时即,故方案乙的用水量较少。 (II )设初次与第二次清洗的用水量分别为x 与y ,类似(I )得

54

5(1)

c x c -=

-,(99100)y a c =-(*)

于是545(1)c x y c -+=-+(99100)a c -1

100(1)15(1)a c a c =

+----

当a 为定值时,11x y a a +≥-=-+,

当且仅当

1

100(1)5(1)

a c c =--时等号成立。

此时1)1(0.8,0.99),c c =+

=-不合题意,舍去或

将1c =-

*

)式得11,.x a y a =>-=

故1c =-

,

此时第一次与第二次用水量分别为1a 与,

最少总用水量是()1T a a =-+。

当'13,()10a T a ≤≤=

->时, 故T(a )是增函数(也可以用二次函数的单调性判断)。这说明,随着a 的值的最少总用水量, 最少总用水量最少总用水量。

点评:本题贴近生活。要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决。该题典型代表高考的方向。

题型四:课标创新题

例1.(1)设

d cx bx ax x x f ++++=2

34)(,其中a 、b 、c 、d 是常数。 如果,30)3(,20)2(,10)1(===f f f 求的值)6()10(-+f f ;

(2)若不等式)1(122

->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的取值范围。 解:(1)构造函数,10)()(x x f x g -=则,0)3()2()1(===g g g

故:.810460)6)(36)(26)(16(100)

10)(310)(210)(110()6()10(=---------++----=-+r m f f

(2)原不等式可化为

.0)12()1(2<---x m x 构造函数

)22)(12()1()(2

≤≤----=m x m x m f ,其图象是一条线段。 根据题意,只须:

?????<---=<----=-,0)12()1(2)2(,0)12()1(2)2(22

x x f x x f

即?????<-->-+.0122,03222

2x x x x

解得

23

1271+<<+-x 。 点评:上面两个题目通过重新构造函数解决了实际问题,体现了函数的工具作用。

例5、(2004年广东,19)设函数f (x )=|1-

x

1

|(x >0), 证明:当0<a <b ,且f (a )=f (b )时,ab >1.

剖析一:f (a )=f (b )?|1-a 1|=|1-b 1|?(1-a 1)2=(1-b

1

)2?2ab =a +b ≥2ab ?ab

>1.

证明:略.

剖析二:f (x )=???????+∞∈-∈-).,1(11],1,0(11

x x

x x

证明:f (x )在(0,1]上是减函数,在(1,+∞)上是增函数.由0<a <b 且f (a )= f (b ),

得0<a <1<b 且a 1-1=1-b 1,即a 1+b

1

=2?a +b =2ab ≥2ab ?ab >1.

评注:证法一、证法二是去绝对值符号的两种基本方法.

最全高考数学统计专题解析版【真题】

最全高考数学统计专题解析版【真题】 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章统计、统计案例 第一部分六年高考荟萃 2013年高考题 1 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取 42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号 落入区间[481, 720]的人数为()A.11 B.12 C.13 D.14 2 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有 50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名 女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名 女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样 B.这种抽样方法是一种系统抽样 C.这五名男生成绩的方差大于这五名女生成绩的方差 D.该班级男生成绩的平均数小于该班女生成绩的平均数 3 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))某校从高 一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布 直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60 分的学生人数为()A.588 B.480 C.450 D.120 4 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。利用下 面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481 )A.08 B.07 C.02 D.01 5.(2013年高考上海卷(理))盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 ___________(结果用最简分数表示)

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考数学专题练习--函数图像

高考数学专题练习--函数图像 1. 【江苏苏州市高三期中调研考试】已知函数()2 21,0 ,0 x x f x x x x ->?=? +≤?,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是__________. 【答案】1 ,04 ?? - ??? 【解析】 2. 【江苏省苏州市高三暑假自主学习测试】已知函数31 1, ,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程 ()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】 试题分析:作函数()y f x =及(1)y k x =+图像,(11), (1,0)A B -,,由图可知要使关于x 的方程()(1)f x k x =+有两个不同的实数根,须满足1 (0,)(0,).2 AB k k ∈=

3. 【江苏省南通市如东县、徐州市丰县高三10月联考】设幂函数()f x kx α=的图象经过点 ()4,2,则k α+= ▲ . 【答案】 32 【解析】 试题分析:由题意得11,422 k α α==?=∴32k α+= 4. 【泰州中学第一学期第一次质量检测文科】已知幂函数()y f x =的图象经过点1 (4,)2 ,则 1 ()4 f 的值为 . 【答案】2 【解析】 试题分析:设()y f x x α ==,则11422α α=?=-,因此1 211()()244 f -== 5. 【江苏省南通中学高三上学期期中考试】已知函数2 +1, 1, ()(), 1, a x x f x x a x ?-?=?->??≤ 函数 ()2()g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数的取值范围是 ▲ . 【答案】23a <≤ 【解析】

高考数学阶段复习试卷:三角形中的最值问题

高考数学阶段复习试卷:三角形中的最值问题 1. 在ABC ?中,a ,b ,c 分别为角A ,B ,C 所对的边长,已知:3C π= ,a b c λ+=(其中1λ>) (1)当2λ=时,证明:a b c ==; (2)若3AC BC λ?=,求边长c 的最小值. 2. 已知函数()4cos sin()3f x x x π=- (1)求函数()f x 在区间[,]42 ππ上的值域; (2)在ABC ?中,角,,A B C 所对的边分别是,,a b c 若角C 为锐角,()f C =,且2c =,求ABC ?面积的最大值。 3. 已知函数2()22cos f x x x m =+- (Ⅰ)若方程()0f x =在[0,]2x π ∈上有解,求m 的取值范围;(Ⅱ)在ABC ?中,,,a b c 分别是,,A B C 所对 的边,当(Ⅰ)中的m 取最大值,且()1f A =-,2b c +=时,求a 的最小值 4. 在ABC ?中,sin A a =. (1)求角B 的值;(2)如果2b =,求ABC ?面积的最大值. 5. 如图,扇形AOB ,圆心角AOB 等于60o ,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设AOP θ∠=,求POC ?面积的最大值及此时θ的值.

6. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从匀速步行到C .假设缆车匀速直线运动的速度为130m /min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5 C =. (1) 求索道AB 的长; (2) 问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3) 为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 7. 如图,在等腰直角三角形OPQ ?中,90POQ ? ∠=,22OP =点M 在线段P Q 上. (1)若5OM =求PM 的长; (2)若点N 在线段MQ 上,且30MON ?∠=,问:当POM ∠取何值时,OMN ?的面积最小?并求出面积的最小值.

高考数学最值问题复习

第9课时最值问题 要点·疑点·考点 课前热身 能力·思维·方法 延伸·拓展 误解分析

要点·疑点·考点 1.能够根据条件恰当地选择自变量建立目标函数,然后利用求函数最值的方法(如配方法、基本不等式法、三角函数的值域、函数的单调性、判别式法等)求出最大、最小值 2.能够结合曲线的定义和几何性质,运用“数形结合”或者用“几何法”求出某些最大、最小值. 返回

1322=-y x 1.定长为12的线段AB 的端点在双曲线的右支上,则AB 中点M 的横坐标的最小值为_____.2.已知点,F 是椭圆的左焦点,一动点M 在椭圆上移动,则|AM|+2|MF|的最小值为_____.3.若动点P 在直线2x+y+10=0上运动,直线PA 、PB 与圆x 2+y 2=4分别切于点A 、B ,则四边形PAOB 面积的最小值为_______.112 1622=+y x () 32,A 课前热身 2 7 108

返回 4.椭圆且满足,若离心率为e ,则的最小值为()(A)2(B)(C)(D)()0122 22>>=+b a b y a x b a 3≤221e e +6133132 35.设点P 是椭圆上的动点,F 1、F 2是椭圆的两个焦点,则sin ∠F 1PF 2的最大值为_________________12222=+b y a x 783B

能力·思维·方法 1.过椭圆2x2+y2=2的一个焦点作直线交椭圆于P,Q两点,求△POQ面积S的最大值. 【解题回顾】本题若选择PQ为底表示△POQ的面积则运算量较大

【解题回顾】本题是通过建立二次函数求最值,基本手法是配方,要注意顶点横坐标是否在此区间内的讨论.2.已知定点A (a ,0),其中0<a <3,它到椭圆上的点的距离的最小值为1,求a 的值.149 2 2=+y x

全国各地高考数学统计与概率大题专题汇编.doc

1.【2015·新课标II】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); 价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 2.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

3.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10 分;若能被10整除,得1分. 整除,得1 (I)写出所有个位数字是5的“三位递增数” ; (II)若甲参加活动,求甲得分X的分布列和数学期望EX. 4.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

高考文科数学函数专题讲解及高考真题精选含答案

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是

高中数学最值问题

最值问题 一、点击高考 最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面。以最值为载体,可以考查中学数学的所有知识点,考查分类讨论、数形结合、转化与化归等诸多数学思想和方法,还可以考查学生的思维能力、实践和创新能力。因此,它在高考中占有比较重要的地位。 回顾近几年高考,从题型分布来看,大多数一道填空或选择题,一道解答题;从分值来看,约占总分的10%左右。特别是2003年北京卷,选择、填空题各一道,解答题有两道,总分值有36分之多;2003年上海卷,填空题各一道,解答题有两道,总分值有36分之多;2003年上海卷,填空题一道,解答题也是两道,总分值有近30分,两份试卷中均有一道实际应用问题。 由此看来,最值问题虽然是老问题,但一直十分活跃,尤其导数的引入,更是为最值问题的研究注入了新的活力。 可以预见:2005年的高考命题中,有关最值问题,题型、题量、分值将保持稳定,题目的背景会更贴近学生的实际生活,更关注社会热点问题,难度不会太难。 二、考点回顾: 分析已有考法,最值问题的呈现方式一般有以下几种: 1、函数的最值; 2、学科内的其它最值,如三角形的面积最值问题、几何体的体积最值问题、数列的最大项等等; 3、字母的取值范围; 4、不等式恒成立问题,常常转化为求函数的最值,例如: f(x)≥0对x∈R恒成立?f(x)的最小值≥0成立, f(x)≤0对x∈R恒成立?f(x)的最大值≤0成立; 5、实际应用问题: 实际应用问题中,最优化问题占的比例较大,通过建模可化为最值问题。这类题已成为这几年高考的热点。可以肯定,这个热度会继续保持。

三、知识概要 1、求函数最值的方法: “数”和“形”,数形结合: 配方法 直接法 均值不等式法 单调性 代数方法 导数法 判别式法 间接法 有界性 函数的图像 平面几何知识 几何方法 线性规划 解析几何 斜率 两点间距离 2、求几类重要函数的最值方法; (1)二次函数:配方法和函数图像相结合; (2)),0()(R a a x a x x f ∈≠+=:均值不等式法和单调性加以选择; (3)多元函数:数形结合成或转化为一元函数。 3、实际应用问题中的最值问题一般有下列三种模型: 能直接判断 线性规划 建立目标函数 曲函数的最值 四、典型例题分析 例1(2002·全国卷·理·21) 设a 为实数,)(1)(2R x a x x x f ∈+-+=, (1)讨论)(x f 的奇偶性;

高考数学不等式中最值问题全梳理

高考数学不等式中最值问题全梳理 模块一、题型梳理 题型一 基本不等式与函数相结合的最值问题 例题1 若方程ln x m =有两个不等的实根1x 和2x ,则22 12x x +的取值范围是( ) A .()1,+∞ B . ) +∞ C . ()2,+∞ D .()0,1 【分析】由方程可得两个实数根的关系,再利用不等式求解范围. 【解析】因为 ln x m =两个不等的实根是1x 和2x ,不妨令()()120,1,1,x x ∈∈+∞, 12,Inx m Inx m =-= 故可得()120In x x =,解得211x x = ,则22 12x x + =212112x x +>=,故选:C. 【小结】本题考查对数函数的性质,涉及均值不等式的使用,属基础题. 例题2 22 91 sin cos αα +的最小值为( ) A .2 B .16 C .8 D .12 【分析】利用22sin cos 1αα+=将22 91sin cos αα +变为积为定值的形式后,根据基本不等式可求得最小值. 【解析】∵22sin cos 1αα+=,∵ ()22 2222 9191sin cos sin cos sin cos αααααα?? +=++ ??? 2222 sin 9cos 1010616cos sin αααα=+++=,当且仅当23sin 4α=,2 1cos 4α=时“=”成立,故2291 sin cos αα +的最小值为16. 【小结】本题考查了利用基本不等式求和的最小值,解题关键是变形为积为定值,才能用基本不等式求最值,属于基础题.

例题3 已知函数y =log a x +1(a >0且a ≠1)图象恒过定点A ,若点A 在直线x m +y n -4=0(m >0,n >0)上,则 m +n 的最小值为________. 【解析】由题意可知函数y =log a x +1的图象恒过定点A (1,1),∵点A 在直线x m +y n -4=0上,∵1m +1 n =4,∵m >0,n >0,∵m +n =14(m +n )????1m +1n =14????2+n m +m n ≥14? ?? ?? 2+2 n m ·m n =1,当且仅当m =n =12时等号成立,∵m +n 的最小值为1. 题型二 基本不等式与线性规划相结合的最值问题 例题4 已知,x y 满足约束条件230 23400x y x y y -+≥?? -+≤??≥? ,若目标函数2z mx ny =+-的最大值为1(其中 0,0m n >>),则 11 2m n +的最小值为( ) A .3 B .1 C .2 D . 32 【分析】画出可行域,根据目标函数z 最大值求,m n 关系式23m n +=,再利用不等式求得112m n +最小值. 【解析】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=. ()11111151519322323232322n m m n m n m n m n ?????+=?+?+=?++≥?+=?= ? ? ?????,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32 .故选:D

高考数学概率与统计专题复习

高考复习专题之:概率与统计 一、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 1.随机事件A 的概率0()1P A ≤≤,其中当()1P A =时称为必然事件;当()0P A =时称为不可能事件P(A)=0; 注:求随机概率的三种方法: (一)枚举法 例1如图1所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c , d , e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通 路的概率是 . 分析:要计算使电路形成通路的概率,列举出闭合五个开关中的任意 两个可能出现的结果总数,从中找出能使电路形成通路的结果数,根据概率的意义计算即可。 解:闭合五个开关中的两个,可能出现的结果数有10种,分别是a b 、a c 、a d 、a e 、bc 、bd 、be 、cd 、ce 、de ,其中能形成通路的有6种,所以p(通路)= 106=5 3 评注:枚举法是求概率的一种重要方法,这种方法一般应用于可能出现的结果比较少的事件的概率计算. (二)树形图法 例2小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如, 两人同时出象牌,则两人平局.如果用A 、B 、C 分别表示小刚的象、虎、鼠三张牌,用A 1、B 1、C 1分别表示小明 的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少? 分析:为了清楚地看出小亮胜小刚的概率,可用树状图列出所有可能出现的结果,并从中找出小刚胜小明可能出现的结果数。 解:画树状图如图树状图。由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种.所以P (一次出牌小刚胜小明)= 31 点评:当一事件要涉及两个或更多的因素时,为了不重不漏地列出所有可能的结果,通过画树形图的方法来计算概率 (三)列表法 例3将图中的三张扑克牌背面朝上放在桌面上,从中随机摸出两张,并用这两张扑克牌上的数字组成一个两位数.请你用画树形(状)图或列表的方法求:(1)组成的两位数是偶数的概率;(2)组成的两位数是6的倍数的概率. 分析:本题可通过列表的方法,列出所有可能组成的两位数的可能情况,然后再找出组成的两位数是偶数的可能情况和组成两位数

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

2020高考数学(理)大一轮复习配套练习:第九章10第9讲第1课时圆锥曲线中的范围、最值问题含解析

[基础题组练] 1.如图,抛物线W :y 2=4x 与圆C :(x -1)2+y 2=25交于A ,B 两点,点P 为劣弧AB ︵ 上不同于A ,B 的一个动点,与x 轴平行的直线PQ 交抛物线W 于点Q ,则△PQC 的周长的取值范围是( ) A .(10,14) B .(12,14) C .(10,12) D .(9,11) 解析:选C.抛物线的准线l :x =-1,焦点(1,0), 由抛物线定义可得|QC |=x Q +1, 圆(x -1)2+y 2=25的圆心为C (1,0),半径为5, 可得△PQC 的周长=|QC |+|PQ |+|PC |=x Q +1+(x P -x Q )+5=6+x P , 由抛物线y 2=4x 及圆(x -1)2+y 2=25可得交点的横坐标为4,即有x P ∈(4,6),可得6+x P ∈(10,12), 故△PQC 的周长的取值范围是(10,12).故选C. 2.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF →=λFB → (λ>1), 则λ的值为________. 解析:根据题意设A (x 1,y 1),B (x 2,y 2),由AF →=λFB → ,得????p 2-x 1,-y 1=λ????x 2-p 2,y 2,故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43????x -p 2,联立直线AB 与抛物线方程,消元得y 2-3 2 py -p 2=0.故y 1+y 2=32p ,y 1·y 2=-p 2,(y 1+y 2)2 y 1·y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ +2=-94.又λ>1,故λ=4. 答案:4 3.已知椭圆C :y 2a 2+x 2 b 2=1(a >b >0)的焦距为4且过点(2,-2). (1)求椭圆C 的方程; (2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF → 的取值范围. 解:(1)椭圆C :y 2a 2+x 2 b 2=1(a >b >0)的焦距是4,所以焦点坐标是(0,-2),(0,2),2a =2+0+ 2+(2+2)2=42,所以a =22,b =2,

2019年高考数学一轮复习专题10.2统计与统计案例测

专题10.2 统计与统计案例 一、填空题:请把答案直接填写在答题卡相应的位置........ 上(共10题,每小题6分,共计60分). 1.交通部门对某路段公路上行驶的汽车速度实施监控,从速度在 的汽车中抽取150辆进行分析,得到数据的频率分布直方图如图所示,则速度在 以下的汽车有辆. ) 【答案】75 2.某校高一年级有学生人,高二年级有学生人,现采用分层抽样的方法从全校学生中抽出人,其中从高一年级学生中抽出人,则从高三年级学生中抽取的人数为 ▲ . 【答案】17 【解析】高一高二人数之比为10:9,因此高二抽出的人数为18人,高三抽出的人数为55-20-18=17人 3.若一组样本数据9,8,x ,10,11的平均数为10,则该组样本数据的方差为▲. 【答案】2 【解析】由题意得,因此方差为 4.某校共有教师200人,男学生800人,女学生600人,现用分层抽样的方法从所有师生中抽取一个容量为的样本,已知从男学生中抽取的人数为100人,那么 ▲ . 【答案】200 【解析】男学生占全校总人数,那么 5.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示。若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为.

【答案】20 【解析】根据频率分布直方图,得视力在0.9以上的频率为(1.00+0.75+0.25)×0.2=0.4, ∴该班学生中能报A专业的人数为50×0.4=20. 6.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人. 【答案】37,20 7.下图是2014年在怀化市举行的演讲比赛,七位评委为第一位演讲者打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为. 【答案】, 【解析】去掉一个最高分和一个最低分之后,剩余的五个数据依次是、、、、,平均数为

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

高考数学最值问题

专题十六最值问题 【考点聚焦】 考点1向量的概念、向量的加法和减法、向量的坐标运算、平面向量的数量积 考点2:解斜三角形. 考点3:线段的定比分点、平移. 考点4:向量在平面解析几何、三角、复数中的运用 考点5:向量在物理学中的运用. 【自我检测】 1求函数最值的方法:配方法,单调性法,均值不等式法,导数法,判别式法,三角函数有界性,图象法, 2、求几类重要函数的最值方法; (1)二次函数:配方法和函数图像相结合; a (2) f (x) =x (a = 0, a ? R):均值不等式法和单调性加以选择; x (3)多元函数:数形结合成或转化为一元函数?3、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法(线性规划,曲函数的最值) 【重点?难点?热点】 问题1:函数的最值问题 函数的最值问题是其他最值问题的基础之一,许多最值问题最后总是转化为函数(特别是二次函数)的最值问题?求函数最值的方法有:配方法、均值不等式法、单调性、导数法、 判别式法、有界性、图象法等? 例1: (02 年全国理1)设a 为实数,f (x) =x2+ x —a +1(x^ R), (1)讨论f (x)的奇偶性;(2)求f (x)的最小值. 思路分析:(1)考察f(x)与f (-x)是否具有相等或相反的关系;或从特殊情形去估计,再加以验证.(2)二次函数的最值解,一般借助于二次函数的图像,当对称轴与所给区间的相对位置关系不确定,则需分类讨论. (1)解法一:(利用定义)f (一x) =x2+ x + a +1, - f (x) = -x2- x -a T. 若f(x)为奇函数,贝V f(-x) = -f(x),即2x2+ x + a +|x-a +2 = 0.此等式对R 都不成立,故f(x)不是奇函数;

高考数学复习专题:统计与概率(经典)

11 12 13 3 5 7 2 2 4 6 9 1 5 5 7 图1 统计与概率专题 一、知识点 1、随机抽样:系统抽样、简单随机抽样、分层抽样 1、用简单随机抽样从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( ) A . 1001 B .251 C .5 1 D . 5 1 2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( ) A .40 B .30 C .20 D .12 3、某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) A .3人 B .4人 C .7人 D .12人 2、古典概型与几何概型 1、一枚硬币连掷3次,只有一次出现正面的概率是( ) A .83 B .32 C .31 D .4 1 2、如图所示,在正方形区域任意投掷一枚钉子,假设区域内每一点被投中的可能性相等,那么钉子投进阴影区域的概率为____________. 3、线性回归方程 用最小二乘法求线性回归方程系数公式1 2 211 ???n i i i n i x y nx y b a y bx x nx ==-==--∑∑,. 二、巩固练习 1、随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1, 这12位同学购书的平均费用是( ) A.125元 B.5.125元 C.126元 D.5.126元 2、200辆汽车通过某一段公路时的时速频率分布直方图如图所示,时速在[50,60) 的汽车大约有( ) A .30辆 B . 40辆 C .60辆 D .80辆 3、某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师 的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其 他教师中共抽取了16人,则该校共有教师 ______人. 4、执行下边的程序框图,若0.8p =,则输出的n = . 0.04 0.030.020.01频率 组距时速8070605040开始 10n S ==, S p

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

相关文档
最新文档