折线坡建基面上的重力坝的应力分析

折线坡建基面上的重力坝的应力分析
折线坡建基面上的重力坝的应力分析

折线坡建基面上的重力坝的应力分析

吝江峰

河海大学水利水电学院,南京(210098)

E-mail:linjf0215@https://www.360docs.net/doc/a110420544.html,

摘要:为了更好地适应坝基地质条件,减小坝基开挖量,或为了提高坝的抗滑稳定性,有时将坝的建基面设计成倾角折坡面。本文采用ANSYS结构分析软件,对某一折线坡建基面上的混凝土重力坝进行有限元应力分析,研究了不同倾角对坝体应力、坝踵应力、坝趾应力的影响,由此得出一些有益结论,可供设计参考。

关键词:混凝土重力坝;倾角折坡面;坝体应力

中图分类号:TV10.3

1.引言

在混凝土重力坝工程设计中,为了更好地适应坝基地质条件,开挖困难或减小坝基开挖量,或为了提高坝的抗滑稳定性,故有时将坝的建基面设计成带有倾角折坡面。所谓折线坡建基面,一般是坝踵部分的建基面是水平面,其下游部分建基面根据地基地质条件可设计为一个或两个的倾角斜坡面。这样,坝的整个建基面就是一个折线坡面。

重力坝的应力分析的理论计算为材料力学法和弹性理论法。材料力学法因其概念清楚计算简单而被广泛采用,但其计算结果靠近坝基部分则不能反映地基变形对坝体应力的影响;对较复杂的的边界和坝坡转折部位也不能准确反映其应力状态[1]。

所以本文采用弹性理论的有限单元法来计算坝体应力,其方法是把弹性的连续体离散化为有限数目单元的组合体,并考虑组合体内单元之间的位移连续条件,它能够综合考虑各种影响因素的作用。在这种方法的基础上,迄今已开发了多种有限元软件,其中ANSYS程序是一个功能强大而灵活的有限元结构分析软件。本文就利用ANSYS对缓折坡建基面进行应力分析。

2.设计参数及分析方法

某具有缓折坡建基面混凝土重力坝,计算断面及作用水位和淤沙高程如图1。坝基密度2.7 g/cm3,弹性模量55.8GPa,泊松比0.25;坝体混凝土密度2.5 g/cm3,弹性模量31GPa,泊松比0.167,帷幕中心至坝踵13m,该点渗透压力折减系数0.3,不计浪压力的影响[4]。

图1 计算断面示意图水平段长度x(m)斜坡面的坡比N

0 1:7.37

30 1:5

42.67 1:4

表1 水平段长度与坡比的值

实际的混凝土重力坝的坝轴线往往较长,对于离开坝肩较远的坝段,按平面应变问题进行分析计算,得出的结果与实际情况很接近。为方便计算,可将三维坝体模型简化成二维平面应变模型。本文就采用二维平面应变模型;为了考虑坝基对坝体的影响,在ansys 中取坝体的上、下游地基各1.5倍坝高即195m 和坝底坝基取2倍的坝高即260m 来建立模型。

本文主要研究的是:假定坝踵和坝趾处的高程已知并且不变,不同水平x 段以及对应坡比的斜坡面下坝踵和坝趾的应力问题,其取值根据表1选取。

3. 有限元模型的建立

坝体及坝基有限元分析采用ANSYS 单元库中PLANE42单元,它可用作平面应变单元,有4个节点,每个节点有两个自由度(x 和y 向位移,坐标系x 轴正向指向下游,y 轴正向指向坝顶),其形状如图2所示。在ANSYS 中建立模型并选用四边形映射网格划分。剖分后的网格图如图3所示。

图4 竣工期坝体代表性截面垂直正应力

图2 PLANE42单元形状

4. 折线坡建基面重力坝应力分析

4.1竣工期坝体的应力比较

现分别取坝基面处、坝高42m 、和坝高82m 处三个代表性截面,分析具有不同倾角对坝体应力的影响,并与水平建基面重力坝的的应力情况做对比。为方便只考察三个截面上垂直正应力y σ,如图4所示。

1、在竣工期不同倾角下的坝基面坝趾均没有出现拉应力,它们均符合规范[3]的要求。

2、坝基面处,不同倾角下坝基面中间部分坝体垂直正应力y σ趋于一致,对坝踵处的的应力有一定的影响。随着水平段x 的增大(倾角的增大),坝踵的压应力有所减小(倾角为1:4比1:7的减小11.8%);不同倾角对坝趾处应力影响甚微。

3、在坝高1/3以上,坝体垂直正应力y σ趋于一致,说明不同倾角对坝体应力只影响在坝基面附近

4、坝底面的最小应力不出现在坝趾,而是靠近坝趾处,说明材料力学的假定与实际情况不相符。在坝高2/3以上,下游坝面会出现一定的拉应力(大小为0.04Mpa ),施工时应多加注意。

4.2运行期坝体的应力比较

运行期也分别取坝基面处、坝高42m 、和82m 处三个代表性截面,也与水平建基面重力坝的的应力情况做对比,三个代表截面上垂直正应力y σ如图5所示。

由图5分析可知:

1、在运行期不同倾角下的坝基面坝趾均没有出现拉应力,它们均符合规范[3]的要求。

图5

运行期坝体代表性截面垂直正应力

σ趋于一致,既不同倾角对坝体应力的影响甚微。

2、在坝高1/3以上,坝体垂直正应力

y

3、坝基面处,坝基面为水平时坝踵的压应力最小(0.22Mpa),该处的坝应力相差8.3%到16.7%,水平坝面应力与具有倾角坝面相比应力相差高达27.3%,说明不同倾角对该善坝踵的拉应力有一定的作用。不同倾角对坝趾处的应力有一定的影响:随着水平段x的增大(倾角的增大),坝踵的压应力有所增大(倾角为1:4比1:7的增大6.5%),但不是很明显,但与水平坝基面相比它们的压应力均有所减小。

4、在水平段与倾角斜坡面段连接处存在一定的应力集中。

5. 结语

综上所述,可以得出一些结论,以供设计参考:1、不同倾角对坝体应力的影响只在坝底面附近,对坝踵和坝趾的应力也有一定有影响,所以在建设混凝土重力坝时要选择合适的倾角建基面。2、有倾角坝基与水平坝基面相比,不论是在竣工期还是施工期对于改善坝踵和坝趾的应力有较大的作用,所以在建设混凝土重力坝时,尽可能选择具有倾角的坝。3、对于倾角建基面的重力坝,在水平段与倾角斜坡面段存在一定的应力集中。4、竣工期坝内最小应力和运行期坝内最大压力不在坝坝趾处,而在靠近坝趾处,应在设计时给予考虑。

参考文献

[1]左东启,王世夏,林益才.水工建筑物[M] .南京:河海大学出版社,1995.

[2]刘涛,杨凤鹏等.精通ANSYS[M].北京:清华大学出版社,2002.

[3] SL319-2005,混凝土重力坝设计规范[S].北京:水利部长江水利委员会长江勘测规划设计研究院,

2005.

[4]廖华云..缓折坡建基面上的重力坝抗滑稳定计算方法研究[J].红水河,2005,第24卷第4期:86-88

Study on stress of concrete gravity dam with different slope

angle base.

Lin JiangFeng

College of Water Conservancy & Hydropower Engineering,Hohai University,Nanjing (210098)

Abstract

In order to better adapt geological conditions, decreased excavation or higher dam stability against sliding, sometimes the dam construction base designed to the slope angle base. Using ANSYS structural analysis software, this paper makes FEM studies on stress of concrete gravity dam with different slope angle base. Analysis of different inclination to relieve stress dam, dam heel stress, which draw some useful conclusions

Keywords:Concrete gravity dam,Slope angle bas,Dam stress

作者简介:吝江峰,男,1980年生,河南三门峡人,硕士研究生,主要研究方向是水工结构工程。

重力坝稳定及应力计算

六、坝体强度承载能力极限状态 计算及坝体稳定承载能力极限状态计算(一)、基本资料 坝顶高程:m 校核洪水位(P = %)上游:m 下游:m 正常蓄水位上游:m 下游:m 死水位:m 混凝土容重:24 KN/m3 坝前淤沙高程:m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值:f `= c `= Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = m/s 多年平均最大风速为:v 0 `= m/s 吹程D = 1000 m

(二)、坝体断面 1、非溢流坝段标准剖面 (1)荷载作用的标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位,下游水位) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×× /2 = KN W 3 = ×()2× /2 = KN ∑W = KN W 1作用点至O 点的力臂为: /2 = m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?-

竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OW1 = 2040×= 8772 KN·m M OW2 = -×= -KN·m M OW3 = -×= -445 KN·m ∑M OW = KN·m ②静水压力(水平力) P1 = γH12 /2 = ×-1090)2 /2= -KN P2 =γH22 /2 =×2 /2 = ∑P = -KN P1作用点至O点的力臂为:-1090)/3 = P2作用点至O点的力臂为:-1090)/3 = 静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OP1 = ×= -6089 KN·m M OP2 = ×= KN·m ∑M OP = -KN·m ③扬压力 扬压力示意图请见下页附图: H1 = -1090 = m H2 = -1090 = m (H1 -H1) = -= m 计算扬压力如下: U1 = ××= KN U2 = ××/2 = KN ∑U = KN

重力坝稳定及应力计算书..

5.1重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程1152.00m,坝高H=40.00m。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m B10 。 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 5.2重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表4.5。 表4.5 荷载组合表 组合情况相关 工况 自 重 静水 压力 扬压 力 泥沙 压力 浪压 力 冰压 力 地震 荷载 动水 压力 土压 力 基本正常√√√√√√

重力坝抗滑稳定与应力计算

项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段 计算书名称:重力坝抗滑稳定及应力计算 审查: 校核: 计算: 黄河勘测规划设计有限公司 Yellow River Engineering Consulting Co. ,Ltd. 二〇一二年四月

目录 1.计算说明..................................................................................... 错误!未定义书签。 目的与要求 ......................................................................... 错误!未定义书签。 基本数据 ............................................................................. 错误!未定义书签。 2.计算参数和研究方法................................................................. 错误!未定义书签。 荷载组合 ............................................................................. 错误!未定义书签。 计算参数及控制标准 ......................................................... 错误!未定义书签。 计算理论和方法 ................................................................. 错误!未定义书签。 3.计算过程..................................................................................... 错误!未定义书签。 荷载计算 ............................................................................. 错误!未定义书签。 自重 ............................................................................. 错误!未定义书签。 水压力 ......................................................................... 错误!未定义书签。 扬压力 ......................................................................... 错误!未定义书签。 地震荷载 ..................................................................... 错误!未定义书签。 安全系数及应力计算 ......................................................... 错误!未定义书签。 4.结果汇总..................................................................................... 错误!未定义书签。

重力坝稳定及应力计算

坝体强度承载能力极限状态计算及坝体稳定承载能力极限状态计算 (一)、基本资料 坝顶高程:1107.0 m 校核洪水位(P = 0.5 %)上游:1105.67 m 下游:1095.18 m 正常蓄水位上游:1105.5 m 下游:1094.89 m 死水位:1100.0 m 混凝土容重:24 KN/m3 坝前淤沙高程:1098.3 m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值:f `= 0.5 c `= 0.2 Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = 19.44 m/s 多年平均最大风速为:v 0 `= 12.9 m/s 吹程D = 1000 m (二)、坝体断面 1、非溢流坝段标准剖面

荷载作用的 标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位1105.5m ,下游水位1094.89m ) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×10.75×8.6 /2 = 1109.4 KN W 3 = 9.81×(1094.5-1090)2×0.8 /2 = 79.46 KN ∑W = 3228.86 KN W 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?- 竖向力对O 点的弯矩(顺时针为“-”,逆时针为“+”): M OW1 = 2040×4.3 = 8772 KN ·m M OW2 = -1109.4×1.067 = -1183.7 KN ·m

重力坝稳定和应力计算

坝体强度承载能力极限状态 计算及坝体稳定承载能力极限状态计算(一)、基本资料 坝顶高程: m 校核洪水位(P = %)上游: m 下游: m 正常蓄水位上游: m 下游: m 死水位: m 混凝土容重:24 KN/m3 坝前淤沙高程: m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值: f `= c `= Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = m/s 多年平均最大风速为:v 0 `= m/s 吹程 D = 1000 m

(二)、坝体断面 1、非溢流坝段标准剖面 (1)荷载作用的标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位,下游水位) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×× /2 = KN W 3 = ×()2× /2 = KN ∑W = KN W 1作用点至O 点的力臂为: /2 = m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?-

竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”): M OW1 = 2040× = 8772 KN·m M OW2 = -× = - KN·m M OW3 = -× = -445 KN·m ∑M OW = KN·m ②静水压力(水平力) P1 = γH12 /2 = ×-1090)2 /2= - KN P2 =γH22 /2 =×2 /2 = ∑P = - KN P1作用点至O点的力臂为:-1090)/3 = P2作用点至O点的力臂为:-1090)/3 = 静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”): M OP1 = × = -6089 KN·m M OP2 = × = KN·m ∑M OP = - KN·m ③扬压力 扬压力示意图请见下页附图: H1 = -1090 = m H2 = -1090 = m (H1 - H1) = - = m 计算扬压力如下: U1 = ×× = KN U2 = ×× /2 = KN ∑U = KN

工程力学应力状态与应力状态分析样本

8 应力状态与应变状态分析 1、应力状态概念, 2、平面应力状态下应力分析, 3、主平面是切应力为零平面,主应力是作用于主平面上正应力。 (1)过一点总存在三对互相垂直主平面,相应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律

)]( [1 z y x x E σσμσε+-= )]([1 x z y y E σσμσε+-= )]([1 y x z z E σσμσε+-= G zx zx τγ= G yz yz τγ= , G xy xy τγ= 6、应力圆与单元体之间相应关系可总结为“点面相应、转向相似、夹角两倍。” 8.1 试画出下图8.1(a)所示简支梁A 点处原始单元体。 图8.1 [解](1)原始单元体规定其六个截面上应力应已知或可运用公式直接计算,因而应选用如下三对平面:A 点左右侧横截面,此对截面上应力可直接计算得到;与梁xy 平面平行一对平面,其中靠前平面是自由表面,因此该对平面应力均为零。再取A 点偏上和偏下一对与xz 平行平面。截取出单元体如图8.1(d)所示。 (2)分析单元体各面上应力: A 点偏右横截面正应力和切应力如图8.1(b)、(c)所示,将A 点坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面应力为: z M y I σ= b I QS z z *= τ 解题范例

ANSYS在重力坝应力分析中的应用

山东水利职业学院院刊2009年6月 第2期ANSYS在重力坝应力分析中的应用 韩永胜梁秋生 (山东水利职业学院,山东日照276826) 摘要:本文对重力坝应力分析的材料力学方法、弹性力学方法、结构模型试验方法以及有限单元法进行了比较,重点阐述了有限单元法,利用大型有限元工程分析软件ANSYS对某重力坝进行了应力分析与开裂区域研究。 关键词:重力坝;应力分析;有限单元法;ANSYS 1引言 重力坝主要依靠坝体本身自重来保持坝体的稳定,故称为“重力坝”。其坝筑材料主要是混凝土或砌浆石或这两者的组合。在古代建造砌浆石坝的时候,还没有现在那么高的数学力学基础理论,也没有对这种坝起名叫重力坝,更没有对这种坝进行应力分析。从17世纪和18世纪以Hooke’s law为基础的材料力学出现和发展,到19世纪初逐步创立了杠件系统的结构力学和一般弹性体的弹性力学,再到19世纪上半叶和中叶混凝土出现和发展之后,才开始将重力坝作为连续弹性体进行应力分析。最初采用材料力学方法,而后发展到弹性力学方法,对于边界复杂的坝体结构采用模型试验方法。近年来,随着有限单元法的研究和电子计算机的发展,对重力坝的数值解法越来越受到学者和工程师的青睐。 2材料力学方法 材料力学方法基本假定是:(1)坝体材料为均质和各向同性;(2)在静力载荷应力计算中,不考虑温度载荷引起的应力;(3)坝体的永久横缝不传力,将坝段看作独立的固定于岩基上的竖直悬臂梁,不考虑基础变形对坝体应力的影响[1]。 材料力学计算得出:重力坝最不利的应力位于坝踵(上游坝面底部)和坝址(下游坝面底部)。这两处是应力控制的部位,我国重力坝设计规范规定[2],用材料力学方法计算时,重力坝上游坝面不允许出现竖直方向拉应力,坝基面上的压应力应小于坝基许用压应力。 3弹性力学方法 19世纪中下叶,法国李维等学者和工程师为重力坝二维应力分析提供了弹性力学解法。但是由于弹性力学计算方法很繁琐,目前,中低型重力坝的设计基本上按规范规定的材料力学进行应力计算。4结构模型试验方法 用于测试应力的结构模型试验方法主要有光测法和脆性材料电测法两类。结构模型试验方法能适应复杂的边界形状和地基变形条件,便于测量和研究重力坝孔口、坝踵和坝址等角缘应力分布状态,解决了材料力学方法不能解决、弹性力学方法难以解决的课题。在今天,即使电子计算机发展很快、应用很广,一些高重力坝的设计和计算仍采用结构模型试验方法,作为与有限单元法计算结果相互验证的补充的手段。 5有限单元法 有限单元法适用于孔口、角缘和地基变形等复杂的边界条件与载荷情况,可以考虑各种材料的特性和组合,后来又发展到进行温度场和温度应力的计算、非线性分析和动力分析等等。它出色地完成了材料力学方法和弹性力学方法所不能计算的课题,对重力坝的应力计算发挥了很重要的作用。本文利用大型有限元分析程序计算了某重力坝的应力分布和开裂区域。 14··

工程力学-应力状态与应力状态分析报告

8 应力状态与应变状态分析 1、应力状态的概念, 2、平面应力状态下的应力分析, 3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。 (1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上的应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力的大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面的方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律 )]([1 z y x x E σσμσε+-=

)] ( [ 1 x z y y E σ σ μ σ ε+ - = )] ( [ 1 y x z z E σ σ μ σ ε+ - = G zx zx τ γ= G yz yz τ γ= ,G xy xy τ γ= 6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。” 8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。 图8.1 [解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A点偏上和偏下的一对与xz平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力: A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为: z M y I σ= b I QS z z * = τ 由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A点单元体如图8.1(d)。 8.2图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解题范例

ansys平面应力和平面应变问题 接触分析 有限元模型装配技术精品文档5页

ansys平面应力和平面应变问题: 如果能将三维问题简化为二维问题,将大大节约计算时间。对于平面应力和平面应变问题就可以实现这种简化,本问将介绍一下平面应力和平面应变的概念。 平面应力:只在平面内有应力,与该面垂直方向的应力可忽略,例如薄板拉压问题。 平面应变:只在平面内有应变,与该面垂直方向的应变可忽略,例如水坝侧向水压问题。 具体说来: 平面应力是指所有的应力都在一个平面内,如果平面是OXY平面,那么只有正应力σx,σy,剪应力τxy(它们都在一个平面内),没有σz,τyz,τzx。 平面应变是指所有的应变都在一个平面内,同样如果平面是OXY平面,则只有正应变εx,εy和剪应变γxy,而没有εz,γyz,γzx。 举例说来: 平面应变问题比如压力管道、水坝等,这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束。 平面应力问题讨论的弹性体为薄板,薄壁厚度远远小于结构另外两个方

向的尺度。薄板的中面为平面,其所受外力,包括体力均平行于中面面内,并沿厚度方向不变。而且薄板的两个表面不受外力作用 在ANSYS有限元分析中,设置平面应变和应力的命令流方法有两种形式: A. ET,1,PLANE2,,,2 !定义单元类型和属性,设定平面应变问题keyopt(3)=2 B. ET,1,PLANE2 !定义单元类型 KEYOPT,1,3,2 !设定平面应变问题keyopt(3)=2 KEYOPT,1,5,0 KEYOPT,1,6,0 ANSYS接触分析: 刚性目标面-导向节点 1、缺省时,程序自动约束刚性目标面。也就是说,自动地将目标的位移和转动设定为零。 2、要模拟刚性目标的更复杂行为,可以创建一个特殊的单节点目标单元,称为导向节点。 >该单元通过具有相同的实常数属性与目标面联系起来。 比如: *set,_npilot,1000

根据MATLAB的有限元法分析平面应力应变问答刘刚

姓名:刘刚学号:15 平面应力应变分析有限元法 Abstruct:本文通过对平面应力/应变问题的简要理论阐述,使读者对要分析的问题有大致的印象,然后结合两个实例,通过MATLAB软件的计算,将有限元分析平面应力/应变问题的过程形象的展示给读者,让人一目了然,快速了解有限元解决这类问题的方法和步骤! 一.基本理论 有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点出连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据节点处的平衡和协调条件建立方程,综合后做整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化简单单元分析与综合问题。因此,一般的有限揭发包括三个主要步骤:离散化单元分析整体分析。 二.用到的函数 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) 2.LinearBarAssemble(K k I f) 3.LinearBarElementForces(k u)

4.LinearBarElementStresses(k u A) 5.LinearTriangleElementArea(E NU t) 三.实例 例1.考虑如图所示的受均布载荷作用的薄平板结构。将平板离散化成两个线性三角元,假定E=200GPa ,v=0.3,t=0.025m,w=3000kN/m. 1.离散化 2.写出单元刚度矩阵 通过matlab 的LinearTriangleElementStiffness 函数,得到两个单元刚度矩阵1k 和2k ,每个矩阵都是6 6的。 >> E=210e6 E = 210000000 >> k1=LinearTriangleElementStiffness(E,NU,t,0,0,0.5,0.25,0,0.25,1) k1 =

应力应力状态分析习题解答

8-9 矩形截面梁如图所示,绘出1、2、3、4点的应力单元体,并写出各点的应力计算式。 解:(1)求支反力R A =1.611KN,R B =3.914KN (2)画内力图如图所示。 x Pl (-)(+) Pl M kN ·m) P P y (-) (-) (+) V kN) 题8-9图 (3) 求梁各点的正应力、剪应力: (4)画各点的应力单元体如图所示。 9-1 试用单元体表示图示构件的A 、B 的应力单元体。 (a )解:(1)圆轴发生扭转变形,扭矩如图所示。 111max 222222333333max 442330,22(')[()]448 11 4()12 12 00(0, 0) 16 Z Z Z Z z V p A b h h h h P P b M V S Pl h y I I b b h b h b M S M Pl W b h σττστστστ==-=-? =-??-?? ?-?= ?=? = =??????=====- =- =??

x x 80A - + 160 80 T (kN ·m ) (2)绘制A 、B 两点的应力单元体: A 、 B 两点均在圆轴最前面的母线上,横截面上应力沿铅垂方向单元体如图所示: 3 3 1601020.216 80510.216 A A t b B t T Pa kPa W T Pa kPa W τπτπ= ==?===-? (b )解:(1)梁发生弯曲变形,剪力、弯矩图如图所示。 - + 120 V kN) 40 M kN ·m) + 120 4020 60 题9-1(b )

折线坡建基面上的重力坝的应力分析

折线坡建基面上的重力坝的应力分析 吝江峰 河海大学水利水电学院,南京(210098) E-mail:linjf0215@https://www.360docs.net/doc/a110420544.html, 摘要:为了更好地适应坝基地质条件,减小坝基开挖量,或为了提高坝的抗滑稳定性,有时将坝的建基面设计成倾角折坡面。本文采用ANSYS结构分析软件,对某一折线坡建基面上的混凝土重力坝进行有限元应力分析,研究了不同倾角对坝体应力、坝踵应力、坝趾应力的影响,由此得出一些有益结论,可供设计参考。 关键词:混凝土重力坝;倾角折坡面;坝体应力 中图分类号:TV10.3 1.引言 在混凝土重力坝工程设计中,为了更好地适应坝基地质条件,开挖困难或减小坝基开挖量,或为了提高坝的抗滑稳定性,故有时将坝的建基面设计成带有倾角折坡面。所谓折线坡建基面,一般是坝踵部分的建基面是水平面,其下游部分建基面根据地基地质条件可设计为一个或两个的倾角斜坡面。这样,坝的整个建基面就是一个折线坡面。 重力坝的应力分析的理论计算为材料力学法和弹性理论法。材料力学法因其概念清楚计算简单而被广泛采用,但其计算结果靠近坝基部分则不能反映地基变形对坝体应力的影响;对较复杂的的边界和坝坡转折部位也不能准确反映其应力状态[1]。 所以本文采用弹性理论的有限单元法来计算坝体应力,其方法是把弹性的连续体离散化为有限数目单元的组合体,并考虑组合体内单元之间的位移连续条件,它能够综合考虑各种影响因素的作用。在这种方法的基础上,迄今已开发了多种有限元软件,其中ANSYS程序是一个功能强大而灵活的有限元结构分析软件。本文就利用ANSYS对缓折坡建基面进行应力分析。 2.设计参数及分析方法 某具有缓折坡建基面混凝土重力坝,计算断面及作用水位和淤沙高程如图1。坝基密度2.7 g/cm3,弹性模量55.8GPa,泊松比0.25;坝体混凝土密度2.5 g/cm3,弹性模量31GPa,泊松比0.167,帷幕中心至坝踵13m,该点渗透压力折减系数0.3,不计浪压力的影响[4]。 图1 计算断面示意图水平段长度x(m)斜坡面的坡比N 0 1:7.37 30 1:5 42.67 1:4 表1 水平段长度与坡比的值

重力坝抗滑稳定及应力计算教程文件

重力坝抗滑稳定及应 力计算

项目名称:几内亚凯勒塔(KALETA)水电站工程 项目阶段:复核阶段 计算书名称:重力坝抗滑稳定及应力计算 审查: 校核: 计算: 黄河勘测规划设计有限公司Yellow River Engineering Consulting Co. ,Ltd. 二〇一二年四月

目录 1.计算说明 (1) 1.1 目的与要求 (1) 1.2 基本数据 (1) 2.计算参数和研究方法 (1) 2.1 荷载组合 (1) 2.2 计算参数及控制标准 (1) 2.3 计算理论和方法 (2) 3.计算过程 (3) 3.1 荷载计算 (3) 3.1.1 自重 (3) 3.1.2 水压力 (4) 3.1.3 扬压力 (6) 3.1.4 地震荷载 (8) 3.2 安全系数及应力计算 (10) 4.结果汇总 (13)

1.计算说明 1.1 目的与要求 下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。 1.2 基本数据 正常蓄水位:110m; 设计洪水位:112.94m; 校核洪水位:113.30m; 大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇; 坝址区地震动峰值加速度为0.15g(g=9.81m/s2),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。 计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m高程以下坡度为1:0.75。 计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m高程以下坡度为1:0.85。正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m 时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。 进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽 13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。 底孔坝段顶高程114.00m,坝基底高程83.50m,坝高30.5m,顶宽10.0m,上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m高程以下坡度为1:0.75。 2.计算参数和研究方法 2.1 荷载组合 作用在坝上的主要荷载包括:坝体自重、上下游水压力、扬压力、地震力。基本组合:正常蓄水位情况(上游水位110.0m) 设计洪水位情况(上游水位112.94m) 特殊组合:校核洪水位情况(上游水位113.30m) 地震情况(正常蓄水位+地震荷载) 2.2 计算参数及控制标准 水容重γw:9.81KN/m3 混凝土容重γc:24KN/m3 坝址区岩体主要为坚硬的辉绿岩和砂岩,大坝的建基面基本上分布在弱风化的辉绿岩和砂岩上。坝基面抗滑稳定计算的岩体及混凝土物理力学参数按表1-1取值,坝基面抗滑稳定安全系数和坝基应力应满足表1-2规定的数值。

第四节 重力坝的应力分析

第四节重力坝的应力分析 一、应力分析的目的和方法 1、目的 1°了解坝体内的应力分布情况,检验大坝在施工期和运行期是否满足强度要求; 2°为布置坝身材料(如混凝土分区)提供依据; 3°为特殊部位的配筋提供依据,如孔口、廊道等部位的配筋; 4°为改进结构型式和科学研究提供依据; 2、分析方法: 模型试验法和理论计算法 ①模型试验法 光测方法如:偏振光弹性试验, 激光全息试验, 脆性材料电测法 ②理论计算法 1°材料力学法(重力法) 这是一种历史悠久、应用最广、最简便的方法。它不考虑地基变形的影响,假定: σy呈直线分布; σx呈三次抛物线分布; τ呈二次抛物线分布; 评价:该法有长期的实践经验,目前我国重力坝设计规范中的强度标准就是以该法为基础的。 2°弹性理论解析法 该法的力学模型和数学解法均很严密,但前只有少数边界条件简单的典型结构才有解答。 评价:可用于验证其他方法的精确性,有重要价值。 3°弹性理论差分法 该法力学模型严密,在数学解法上采用差分格式,是一种近似的方法。评价:要求方形网格,对复杂边界适应性差。 4°弹性理论的有限单元法 与差分法相反,该法力学模型是近似的,数学解法是精确的,网格可采用三角形单元、四边形单元或两者的组合。见图2.14 评价:可处理复杂的边界条件,随着计算机的发展,单元可划分得很细以模拟各种边界。目前大型或重要的工程都需用该法计算,以了解坝体各部位的应力状态。

图2.14 重力坝应力分析有限单元法示意图 二、材料力学法,见图2.15和图2.16 1、基本假定 ①坝体混凝土为均质、连续、各向同性的弹性体 ②将坝体简化为固结在地基上的变截面悬臂梁; ③不考虑地基变形对坝体应力的影响,并认为各坝段独立工作,横缝不传力; ④σy呈直线分布; 图2.15 坝体应力计算简图

重力坝抗滑稳定及应力计算

重力坝抗滑稳定及应力计算

项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段 计算书名称:重力坝抗滑稳定及应力计算 审查: 校核: 计算: 黄河勘测规划设计有限公司Yellow River Engineering Consulting Co. ,Ltd. 二〇一二年四月

目录 1.计算说明 (1) 1.1 目的与要求 (1) 1.2 基本数据 (1) 2.计算参数和研究方法 (1) 2.1 荷载组合 (1) 2.2 计算参数及控制标准 (2) 2.3 计算理论和方法 (3) 3.计算过程 (4) 3.1 荷载计算 (4) 3.1.1 自重 (4) 3.1.2 水压力 (5) 3.1.3 扬压力 (8) 3.1.4 地震荷载 (11) 3.2 安全系数及应力计算 (13) 4.结果汇总 (18)

1.计算说明 1.1 目的与要求 下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。 1.2 基本数据 正常蓄水位:110m; 设计洪水位:112.94m; 校核洪水位:113.30m; 大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇; 坝址区地震动峰值加速度为0.15g(g=9.81m/s2),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。 计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。 计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m 高程以下坡度为1:0.85。正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m 时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。 进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。 底孔坝段顶高程114.00m,坝基底高程83.50m,坝高30.5m,顶宽10.0m,上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m高程以下坡度为1:0.75。 2.计算参数和研究方法 2.1 荷载组合 作用在坝上的主要荷载包括:坝体自重、上下游水压力、扬压力、地震力。

混凝土重力坝的应力分析

水工建筑物课程设计 设计题目: 混凝土重力坝的应力分析姓名: 学号: 年级专业: 2013级水利水电工程指导老师: 提交时间: 2016年12月

目录 一、基本资料 (1) 二、确定工程等别和主要建筑物级别 (2) 三、非溢流坝剖面尺寸拟定 (3) 四、荷载计算及组合 (6) 五、抗滑稳定极限状态计算 (7) 六、坝址抗压强度极限状态计算 (7)

一、基本资料 某高山峡谷地区规划的水利枢纽,拟定坝型为混凝土重力坝,其任务以灌溉为主、兼顾供水,水库总库容4亿m3。 1.水电规划成果上游设计洪水位为355.0 m,相应的下游水位为331.0 m;上游校核洪水位356.3 m ,相应的下游水位为332.0 m;正常高水位354.0 m;死水位339.5 m。 2.地质资料:河床高程320.0 m,约有1~2 m覆盖层,基础要求开挖至弱风化层,清基后岩石表面最低高程为318.0m。岩基为石灰岩,地质构造良好。坝体和基岩抗剪断摩擦系数f'=0.82,凝聚力c'=0.6MPa。 3.其它有关资料:河流泥沙计算年限采用50年,据此求得坝前淤沙高程330.0 m。泥沙浮重度为6.5kN/ m3 ,内摩擦角φ=18°。 枢纽所在地区洪水期的多年平均最大风速为15m/s,水库最大风区长度由库区地形图上量得D=0.9km。 坝体混凝土重度γc =24kN/m3,地震设计烈度为4度。拟采用混凝土强度等级C10,90d龄期,80%保证率,fckd强度标准值为10MPa,坝基岩石允许压应力设计值为4000kPa。

二、确定工程等别和主要建筑物级别 (1)水利水电枢纽工程等级划分: 根据《水利水电工程等级划分及洪水标准》(SL 252 -2000 )的规定,水利水电工程根据其工程规模、效益以及在国民经济中的重要性,划分为I、II、III、IV 、V 五等,适用于不同地区、不同条件下建设的防洪、灌溉、发电、供水和治涝等水利水电工程,见表格1: 山区、丘陵区水利水电枢纽工程分等指标 表格 1 工 程等别工程规 模 水库总库 容 (m) 防洪治涝灌溉供水发电 保护城 镇及工 矿企业 的重要 性 保护农田 (亩) 治涝面积 (亩) 灌溉面积 (亩) 供水 对象 重要 性 装机容量 () Ⅰ大(1) 型 10 特别重 要 特别 重要 Ⅱ大(2) 型 10 1 重要500100 200150重要120 Ⅲ中10.1 中等10030 6050中等30 Ⅳ小(1) 型 0.10.01 一般30 5 155一般5 Ⅴ小(2) 型 0.010.00 1 5 对于综合利用的水利水电工程,当按各分项利用项目的分等指标确定的等别 不时,其工程等别应按其中的最高等别确定。 (2)水工建筑物的级别划分 水利水电工程中水工建筑物的级别,反映了工程对水工建筑物的技术要求和安全要求。应根据所属工程的等别及其在工程中的作用和重要性分析确定。 水利水电工程的永久性水工建筑物的级别应根据建筑物所在工程的等别,以及建筑物的重要性确定为五级,分别为 1 、 2 、 3 、 4 、 5 级,见表 2

重力坝抗滑稳定计算书

深圳市野生动物救护中心养公坑蓄水工程 技施设计 浆砌石重力坝抗滑稳定 计算书 国家电力公司中南勘测设计研究院 2004年12月

说 明 1.计算目的与要求 对拟定的体型进行抗滑稳定计算,求出拟定体型在各种设计工况下的抗滑稳定安全系数。同时对坝基面的应力进行计算,以论证是否满足规定的正常使用极限状态与承载能力极限状态要求。 2.计算基本依据 1. 建筑体型结构尺寸见附图1; 2. 主要地质参数见资料单; 3. 材料容重: 浆砌块石:取3/0.23m kN s =γ; 水:取3/8.9m kN w =γ; 土的饱和溶重3/12m kN =γ 3.计算方法及计算公式 1. 基本假定 1) 坝体为均质、连续、各向同性的弹性材料; 2) 取单宽1米计算,不考虑坝体之间的内部应力。 3) 本工程规模小,只计算坝体的抗滑稳定,不对坝体剖面进 行浅层与深层抗滑稳定分析以及坝基面应力分析。 2. 地基应力计算 按偏心受压公式计算应力: σmax =W M A G ∑∑+ σ min = W M A G ∑∑- 式中 ∑G —坝体本身的重力,kN ; A ——坝基的受力面积,m 2; ∑M —坝体各部分的重力对形心的弯距,kN.M;

W —作用在计算截面的抗弯截面系数; 3.抗滑稳定 坝受到铅直力和水平力的共同作用下,要求沿坝基底面的抗滑力必须大于作用在坝结构水平向的滑动力,并有一定的安全系数。 计算公式为: K C = ∑∑H f G * 式中K c —结构的抗滑稳定安全系数; ∑G —坝的基底总铅直力,kN ; ∑H —坝的水平方向总作用力,kN ; f —坝基底的摩擦系数。 4.计算结果总表 5.结论 经由计算可知,该方案,结构能够满足浆砌石坝在不同运用时期的地基应力和抗滑稳定要求,不会发生地基沉陷和滑动变形,并满足经济适用的原则。 6.主要参考书目 a )《浆砌石坝设计规范(SL25-91》; b )《水工建筑物荷载设计规范(DL5077—1997)》; c )天津大学 祁庆和《水工建筑物(上册)》(水利电力出版

重力坝稳定和应力计算

WORD文档下载可编辑 坝体强度承载能力极限状态 计算及坝体稳定承载能力极限状态计算(一)、基本资料 坝顶高程:1107.0 m 校核洪水位(P = 0.5 %)上游:1105.67 m 下游:1095.18 m 正常蓄水位上游:1105.5 m 下游:1094.89 m 死水位:1100.0 m 混凝土容重:24 KN/m3 坝前淤沙高程:1098.3 m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值:f `= 0.5 c `= 0.2 Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = 19.44 m/s 多年平均最大风速为:v 0 `= 12.9 m/s 吹程D = 1000 m

(二)、坝体断面 1、非溢流坝段标准剖面 (1)荷载作用的标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位1105.5m ,下游水位1094.89m )① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×10.75×8.6 /2 = 1109.4 KN W 3 = 9.81×(1094.5-1090)2×0.8 /2 = 79.46 KN ∑W = 3228.86 KN W 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?-W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?-

竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OW1 = 2040×4.3 = 8772 KN·m M OW2 = -1109.4×1.067 = -1183.7 KN·m M OW3 = -79.46×5.6 = -445 KN·m ∑M OW = 7143.3 KN·m ②静水压力(水平力) P1 = γH12 /2 = 9.81×(1105.5-1090)2 /2= -1178.4 KN P2 =γH22 /2 =9.81×(1094.89-1090)2 /2 = 117.3KN ∑P = -1061.1 KN P1作用点至O点的力臂为:(1105.5-1090)/3 = 5.167m P2作用点至O点的力臂为:(1094.89-1090)/3 = 1.63m 静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OP1 = 1178.4×5.167 = -6089 KN·m M OP2 = 117.3×1.63 = 191.2 KN·m ∑M OP = -5897.8 KN·m ③扬压力 扬压力示意图请见下页附图: H1 = 1105.5-1090 = 15.5 m H2 = 1094.89-1090 = 4.89 m (H1 -H1) = 15.5-4.89 = 10.61 m 计算扬压力如下: U1 = 9.81×13.6×4.89 = 652.4 KN U2 = 9.81 ×13.6×10.61 /2 = 707.8 KN ∑U = 1360.2 KN

相关文档
最新文档