向量知识点题型归纳

向量知识点题型归纳
向量知识点题型归纳

专题--平面向量

1.向向量的相关概念、、

2.向量的线性运算

二.向量的表示方法:

1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如,,等;

3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。如

(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______ (答:1322

a b -); (2)下列向量组中,能作为平面内所有向量基底的是

A. 12(0,0),(1,2)e e ==-

B. 12(1,2),(5,7)e e =-=

C. 12(3,5),(6,10)e e ==

D. 1213(2,3),(,)24

e e =-=- (答:B );

(3)已知,AD BE 分别是ABC ?的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____ (答:2

433

a b +);

(4)已知ABC ?中,点D 在BC 边上,且?→

??→

?=DB CD 2,?→

??→

??→

?+=AC s AB r CD ,则s r +的值是 (答:0)

四.实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:

()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ

=0时,0a λ=,注意:λ≠0。 五.平面向量的数量积:

1.两个向量的夹角:对于非零向量,,作,OA a OB b ==,AOB θ∠=

()0θπ≤≤称为向量a ,b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=

2

π

时,a ,垂直。

2.平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ叫做与的

数量积(或内积或点积),记作:a ?b ,即a ?b =cos a b θ。规定:零向量与任一向量的数量积是0,注

意数量积是一个实数,不再是一个向量。如

(1)△ABC 中,3||=?→?AB ,4||=?→?AC ,5||=?→

?BC ,则=?BC AB _________ (答:-9); (2)已知1

1(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为

4

π

,则k 等于___(答:1); (3)已知2,5,3a b a b ===-,则a b +等于____ 23;

(4)已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____(答:30)

3.b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0。如

已知3||=→

a ,5||=→

b ,且12=?→

→b a ,则向量→

a 在向量→

b 上的投影为______ (答:

5

12

) 4.?的几何意义:数量积?等于的模||a 与在上的投影的积。 5.向量数量积的性质:设两个非零向量,,其夹角为θ,则:

①0a b a b ⊥??=;

②当a ,b 同向时,a ?b =a b ,特别地,2

2

2

,a a a a a a =?==

;当a 与b 反向时,a ?b =-a b ;

当θ为锐角时,?>0,且 a b 、

不同向,0a b ?>是θ为锐角的必要非充分条件;当θ为钝角时,?<0,且 a b 、

不反向,0a b ?<是θ为钝角的必要非充分条件; ③非零向量a ,b 夹角θ的计算公式:cos a b a b

θ?=

;④||||||a b a b ?≤。如

(1)已知)2,(λλ=→

a ,)2,3(λ=→

b ,如果→

a 与→

b 的夹角为锐角,则λ的取值范围是______ (答:43

λ<-

或0λ>且1

3λ≠);

(2)已知OFQ ?的面积为S ,且1=??→

??→?FQ OF ,若2

321<

,)43

ππ

; 六.向量的运算: 1.几何运算:

①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC 叫做a 与b 的和,即

a b AB BC AC +=+=;

②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。如

(1)化简:①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____ (答:①AD ;②CB ;③0);

(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===

,则||a b c ++=_____(答:);

(3)若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____ (答:直角三角形);

(4)若D 为ABC ?的边BC 的中点,ABC ?所在平面内有一点P ,满足0PA BP CP ++=,设||

||

AP PD λ=,则λ的值为___ (答:2);

(5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为____(答:120);

2.坐标运算:设1122(,),(,)a x y b x y ==,则: ①向量的加减法运算:12(a b x x ±=±,12)y y ±。如

已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是 (答:(9,1))

②实数与向量的积:()()1111,,a x y x y λλλλ==。

③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如

设(2,3),(1,5)A B -,且13AC AB =,3AD AB =,则C 、D 的坐标分别是_____(答:11(1,),(7,9)3-); ④平面向量数量积:1212a b x x y y ?=+。 ⑤向量的模:2

22

222||,||a x y a a x y =

+==+。如

已知

,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____ ; ⑥两点间的距离:若()(

)1122,,,A x y B x y ,则||AB =。

七.向量的运算律:

1.交换律:a b b a +=+,()

()a a λμλμ=,a b b a ?=?; 2.结合律:()(),a b c a b c a b c a b c ++=++--=-+,()()()a b a b a b λλλ?=?=?; 3.分配律:()(),a a a a b a b λμλμλλλ+=++=+,()a b c a c b c +?=?+?。

下列命题中:① →

→→

→→

?-?=-?c a b a c b a )(;② →

→→

→→

??=??c b a c b a )()(;③ 2

()a b →

-2

||a →

=

2

2||||||a b b →→→

-?+;④ 若0=?→→b a ,则0=→a 或0=→

b ;⑤若,a b

c b ?=?则a c =;⑥22

a a =;⑦

2

a b b

a

a

?=

;⑧2

2

2()a b a b ?=?;⑨2

2

2()2a b a a b b -=-?+。其中正确的是_____(答:①⑥⑨)

提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向

量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即)()(?≠?,为什么 八.向量平行(共线)的充要条件://a b a b λ?=22()(||||)a b a b ??=1212x y y x ?-=0。如 (1)若向量(,1),(4,)a x b x ==,当x =_____时a 与b 共线且方向相同 (答:2);

(2)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =______ (答:4);

(3)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 共线 (答:-2或11)

九.向量垂直的充要条件:0||||a b a b a b a b ⊥??=?+=- 12120x x y y ?+=.特别地

(

)(

)AB AC AB AC AB

AC

AB

AC

+

⊥-

。如

(1)已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = (答:

3

2

); (2)以原点O 和A(4,2)为两个顶点作等腰直角三角形OAB ,90B ∠=?,则点B 的坐标是________ (答:(1,3)或(3,-1));

(3)已知(,),n a b =向量n m ⊥,且n m =,则m 的坐标是________ (答:(,)(,)b a b a --或) 十.线段的定比分点:

1.定比分点的概念:设点P 是直线P 1P 2上异于P 1、P 2的任意一点,若存在一个实数λ ,使1

2PP PP λ=,则λ叫做点P 分有向线段12PP 所成的比,P 点叫做有向线段12PP 的以定比为λ的定比分点;

2.λ的符号与分点P 的位置之间的关系:当P 点在线段 P 1P 2上时?λ>0;当P 点在线段 P 1P 2的延长线上时?λ<-1;当P 点在线段P 2P 1的延长线上时10λ?-<<;若点P 分有向线段12PP 所成的比为λ,

则点P 分有向线段21

P P 所成的比为1

λ

。如 若点P 分AB 所成的比为3

4

,则A 分BP 所成的比为_______

(答:7

3

-)

3.线段的定比分点公式:设111(,)P x y 、222(,)P x y ,(,)P x y 分有向线段12

PP 所成的比为λ,则121211x x x y y y λλλλ+?

=??+?+?=?+?,

λ=

x x x x --21=y

y y y --21 线段P 1P 2的中点公式12122

2

x x x y y y +?

=???+?=??。在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定

起点,分点和终点,并根据这些点确定对应的定比λ。如

(1)若M (-3,-2),N (6,-1),且1MP MN 3

--→

--→

=-,则点P 的坐标为_______

(答:7

(6,)3

--);

(2)已知(,0),(3,2)A a B a +,直线1

2

y ax =与线段AB 交于M ,且2AM MB =,则a 等于______ (答:2或-4)

十一.平移公式:如果点(,)P x y 按向量(),a h k =平移至(,)P x y '',则='pp ,x x h

y y k '=+??

'=+?

;曲线(,)0f x y =按向量(),a h k =平移得曲线(,)0f x h y k --=.注意:(1)函数按向量平移与平常“左加右减”有何联系(2)向量平移具有坐标不变性,可别忘了啊!如

(1)按向量a 把(2,3)-平移到(1,2)-,则按向量a 把点(7,2)-平移到点______ (答:(-8,3));

(2)函数x y 2sin =的图象按向量→

a 平移后,所得函数的解析式是12cos +=x y ,则→

a =________ (答:)1,4

-

12、向量中一些常用的结论:

(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;

(2)||||||||||||a b a b a b -≤±≤+,特别地,当 a b 、

同向或有0?||||||a b a b +=+ ≥||||||||a b a b -=-;当 a b 、

反向或有0?||||||a b a b -=+≥||||||||a b a b -=+;当 a b 、不共线?||||||||||||a b a b a b -<±<+(这些和实数比较类似).

在ABC ?中,

①若()()()112233,,,,,A x y B x y C x y ,则其重心的坐标为123123,33x x x y y y G ++++??

???

。如 若⊿ABC 的三边的中点分别为(2,1)、(-3,4)、(-1,-1),则⊿ABC 的重心的坐标为_______(答:24(,)33

-); ②1()3PG PA PB PC =++?G 为ABC ?的重心,特别地0PA PB PC P ++=?为ABC ?的重心;

③PA PB PB PC PC PA P ?=?=??为ABC ?的垂心;

④向量()(0)||||

AC AB AB AC λλ+≠所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线);

(4)向量 PA PB PC 、、中三终点A B C 、、共线?存在实数αβ、使得PA PB PC αβ=+且1αβ+=.如 平面直角坐标系中,O 为坐标原点,已知两点)1,3(A ,)3,1(-B ,若点C 满足=?→

?OC ?→

??→?+OB OA 21λλ,其中

R ∈21,λλ且121=+λλ,则点C 的轨迹是_______

(答:直线AB ) 12、向量与三角形 外心.

三角形外接圆的圆心,简称外心. 是三角形三边中垂线的交点. (下左图)

重心

三角形三条中线的交点,叫做三角形的重心.

掌握重心到顶点的距离是它到对边中点距离的2倍.(上右图) 三、垂心

三角形三条高的交点,称为三角形的垂心.(下左图)

四、内心

三角形内切圆的圆心,简称为内心. 是三角形三内角平分线的交点.

三角形内角平分线性质定理:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例.(上右图) 题型一:共线定理应用

例一:平面向量→→b a ,共线的充要条件是( )A.→→b a ,方向相 同 B. →

→b a ,两向量中至少有一个为零向量 C.存在,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→

→b a λλλλ

变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→

→b a //”的( )

A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件

变式二:设→

→b a ,是两个非零向量( )

A.若→

=+b a b a _则→→⊥b a B. 若→→⊥b a ,则→

→→→=+b a b a _

C. 若

→→→

=+b

a b a _,则存在实数λ,使得→→=a b λ D 若存在实数λ,使得→

→=a b λ,则

→→→

=+b

a b a _

例二:设两个非零向量→

21e e 与,不共线,

(1)如果三点共线;求证:D C A e e CD e e BC e e AB ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e e e e e ,,,2,32,212121-=-=+=求实数k 的值。

变式一:设→

21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。

变式二:已知向量→

→b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) ,B,D ,B,C ,C,D ,C,D

题型二:线段定比分点的向量形式在向量线性表示中的应用

例一:设P 是三角形ABC 所在平面内的一点,,2+=则( )

A. +=

B. +=

C. +=

D. ++=

变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且++=2,那么( )A.

A = B. A 2= C. A 3= D. A =2

变式二:在平行四边形ABCD 中a AB =,b AD =,NC AN 3=,M 为BC 的中点,则=MN ( 用b a ,表示)

例二:在三角形ABC 中,=,=,若点D 满足2=,则=( )

A. ,3132+

B. ,3235-

C. ,3132-

D. ,3

2

31+

变式一:(高考题) 在三角形ABC 中,点D 在边AB 上,CD 平分角ACB,=,=

21==,则

=CD ( )

A. ,3231+

B. ,3132+

C. ,54

53+ D. ,5

354+

变式二:设D,E,F 分别是三角形ABC 的边BC,CA,AB 上的点,且,2=,2=,2=则

CF BE AD ++,与( )

A.反向平行

B. 同向平行

C.互相垂直

D.既不平行也不垂直

变式三:在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若μλ+=,其,,R ∈μλ则μλ+=

变式四:在平行四边形ABCD 中,AC 与BD 交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若

,=,=则=AF ( )A. ,2141+ B. ,3132+ C. ,4121+ D. ,3

2

31+

题型三:三点共线定理及其应用

例一:点P 在AB 上,求证:OB OA OP μλ+=且μλ+=1(,,R ∈μλ)

变式:在三角形ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 和N,若

,m =,n =则m+n=

例二:在平行四边形ABCD 中,E,F 分别是BC,CD 的中点,DE 与AF 交于点H,设,=,=则= A. ,5452- B. ,5452+ C. ,5452+- D. ,5

4

52--

变式:在三角形ABC 中,点M 是BC 的中点,点N 是边AC 上一点且AN=2NC,AM 与BN 相交于点P,若,λ=求λ的值。

题型四: 向量与三角形四心 一、

内心

例一:O 是?ABC 所在平面内一定点,动点P

满足),【∞+∈+

+=0λλAC AB ,则

点P 的轨迹一定通过?ABC 的( )A.外心 B.内心 C.重心 D.垂心

变式一:已知非零向量与

满足0=?+

,且

2

1

=

,则?ABC 为( )

A. 等边三角形

B. 直角三角形

C. 等腰非等边三角形

D.三边均不相等的三角形

?=?+?+?P 为?ABC 的内心

二、重心

例一:O 是?ABC 内一点,0=++OB OA OC ,则为?ABC 的( )A.外心B.内心C .重心 D.垂心

变式一:在?ABC 中,G 为平面上任意一点,证明:?++=)(3

1

GC GB GA GO O 为?ABC 的重心

变式二:在?ABC 中,G 为平面上任意一点,证明:?+=)(3

1

AC AB GO O 为?ABC 的重心

三垂心:

例一:求证:在?ABC 中,??=?=?OA OC OC OB OB OA O 为?ABC 的垂心

变式一:O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足

,),(

R COSC

AC AC COSB

AB AB OA OP ∈+

+=λλ则点P 的轨迹一定通过?ABC 的( )

A.外心

B.内心

C.重心 D .垂心 四外心

例一:若O 是?ABC 的外心,H 是?ABC 的垂心,则OB

OC OA OH ++=

变式一:已知点O ,N ,P 在?ABC 所在平面内,且

,OC OB OA ==NC

NB NA ++=0,

PA PC PC PB PB PA ?=?=?,则O ,N ,P 依次是?ABC 的( )

A. 重心、外心 、垂心

B. 重心、外心 、内心

C. 外心 、重心、垂心 D . 外心 、重心、 内心

题型五:向量的坐标运算

例一:已知A(-2,4),B(3,-1),C(-3,-4),且CB CN CA CM 2,3==,试求点M,N 和MN

的坐标。

变式一:已知平面向量向量),2

3

,21(),1,3(=-=b a ,b 3)(-+=t a x ,b t a k y +-=其中t 和k 为不同时为零的实数,(1)若y x ⊥,求此时k 和t 满足的函数关系式k=f(t);(2)若y x //,求

此时k 和t 满足的函数关系式k=g(t).

变式二:平面内给定3个向量)1,4(),2,1(),2,3(=-==c b a ,回答下列问题。(1)求c b a 23-+;

(2)求满足

c n b m a +=的实数m,n;(3)若

)

2//()(a b c k a -+,求实数k ;(4)设

)//()(),(b a c d y x d +-=满足且1=-c d ,求d

题型六:向量平行(共线)、垂直充要条件的坐标表示

例一:已知两个向量)2,3(),2.1(-==b a ,当实数k 取何值时,向量b a k 2+与b a 42-平行

变式一:设向量a,b 满足|a|=52,b=(2,1),且a 与b 反向,则a 坐标为_________

例二:已知向量)10,(),5,4(),12,(k OC OB k OA -===→

且A,B,C 三点共线,则k=( )

A:23 B:32 C:32- D:2

3

- 变

),

3

1

,(cos ),sin 23(αα==b a 且

a ),,(),,(a c a

b q b

c a p --=+=q

p //6π3π2

π

3

2π=?→

AC AB →

?CB DE →

?CB DE →

=PM

AP 2)(→

+?PC PB PA 94-34-349

4→

→?AC

AP 23→

→?AC

AO 22

=?BF AE ?090=∠A 1=AB 点P,Q 满足R AC AQ AB AP ∈-==λλλ,)1(,,若2-=?CP BQ ,则λ=( )

A:31 B:32 C:3

4

D:2

例三:已知向量c b a ,,满足,221=

===++c b a 则=?+?+?a c c b b a

平面向量知识点总结(精华)

必修4 平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别. 向量常用有向线段来表示 . 注意:不能说向量就是有向线段,为什么?提示:向量可以平移. 举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0) 2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位 向量(与u A uu B r共线uuur 的单位向量是u A u B ur ); | AB| 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a r、 b r叫做平行向量,记作:a r∥b r, 规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有r0); ④三点A、B、C 共线u A uu B r、u A u C ur共线. 6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r. 举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相 等的充要条件是它们的起点相同,终点相同 . (3)若u A u B ur u D u C u r,则ABCD是平行四边形 . (4)若ABCD是平行四边形,则u A uu B r u D u C uur. (5)若a r b r,b r c r,则a r c r. (6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5) 二、向量的表示方法

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

向量知识点归纳与常见总结

向量知识点归纳与常见题型总结 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量 可以比较大小,而向量不能比较大小,只有它的模才能比较大小. 记号“a>b”错了,而| a | > | b | 才有意义 . ⑵有些向量与起点有关,有些向量与起点无关. 由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量). 当遇到与起点有关向量时,可平移向量 . ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量 ⑷单位向量是模为 1 的向量,其坐标表示为(x, y ),其中 x 、y满足x2y2=1 (可用( cos ,sin)( 0≤≤2π)表示) . 特别: AB 表示与 AB 同向的单位向量。|AB| 例如:向量直线);( AB AC )(0) 所在直线过ABC 的内心(是BAC 的角平分线所在|AB||AC| 例 1、O是平面上一个定点, A、B、C不共线,P 满足OP OA(AB AC )[0,). |AB|| AC 则点 P 的轨迹一定通过三角形的内心。 →→→→ → →→ 1 AB + AC AB · AC =, 则△ABC 为() (变式 )已知非零向量 AB 与 AC 满足 (→→)·BC=0 且→→2 |AB ||AC ||AB ||AC | A. 三边均不相等的三角形 B. 直角三角形 C. 等腰非等边三角形 D. 等边三角形(06 陕西 ) ⑸ 0 的长度为0,是有方向的,并且方向是任意的,实数0 仅仅是一个无方向的实数 . ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. ( 7)相反向量 ( 长度相等方向相反的向量叫做相反向量。 a 的相反向量是- a 。) 2.与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量. (三角形法则和平行四边形法则) ①当两个向量 a 和 b 不共线时, a b 的方向与 a 、b 都不相同,且| a b |<| a |+| b |; ②当两个向量 a 和 b 共线且同向时, a b 、a 、b 的方向都相同,且 | a b || a || b |; ③当向量 a 和 b 反向时,若| a |>| b |, a b 与 a 方向相同,且 |a b |=| a |-| b |; 若 | a | < | b | 时 , a b 与 b方向相同,且 | a+b |=| b |-| a |. ⑵向量与向量相减,其差仍是一个向量. 向量减法的实质是加法的逆运算. 三角形法则适用于首尾相接的向量求和;平行四边形法则适用于共起点的向量求和。 AB BC AC;AB AC CB 例 2: P 是三角形 ABC 内任一点,若CB PA PB,R ,则P一定在()

高考平面向量知识点总结

高考平面向量知识点总结 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为 () 11,x y , () 22,x y ,则 ()1212,x x y y AB =--. 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 20、向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向 b a C B A a b C C -=A -AB =B

数学必修4_第二章_平面向量知识点word版本

数学必修4第二章 平面向量知识点 2.1 平面向量的实际背景及基本概念 1. 向量:既有大小又有方向的量。 2. 向量的模:向量的大小即向量的模(长度),如,AB a uu r r 的模分别记作|AB u u u r |和||a r 。 注:向量不能比较大小,但向量的模可以比较大小。 3. 几类特殊向量 (1)零向量:长度为0的向量,记为0r ,其方向是任意的,0r 与任意向量平行, 零向量a =0r |a |=0。由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) (2)单位向量:模为1个单位长度的向量,向量0a 为单位向量0||1a u u r 。将一个 向量除以它的模即得到单位向量,如a r 的单位向量为: ||a a e a r r r (3)平行向量(共线向量):方向相同或相反的非零向量,称为平行向量.记作a ∥b 。 规定:0r 与任何向量平等, 任意一组平行向量都可以移到同一直线上,由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。 (4)相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a r 。 关于相反向量有:① 零向量的相反向量仍是零向量, ②)(a =a ; ③ ()0a a v v v ; ④若a 、b 是互为相反向量,则 a = b ,b =a ,a +b =0 。

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

(完整版)空间向量与立体几何题型归纳.doc

空间向量与立体几何 1,如图,在四棱锥V-ABCD中,底面 ABCD是正方形,侧面 VAD是正三角形,平面 VAD⊥底面 ABCD (1)证明 AB⊥平面 VAD; (2)求面 VAD与面 VDB所成的二面角的大小 2, 如图所示,在四棱锥 P— ABCD中,底面 ABCD为矩形,侧棱 PA⊥底面 ABCD,AB= , BC=1, PA=2, E 为 PD的中点 . (1)求直线 AC与 PB所成角的余弦值; (2)在侧面 PAB内找一点 N,使 NE⊥平面 PAC,并求出 N点到 AB和 AP的距离 .( 易错点 , 建系后, 关于 N 点的坐标的设法 , 也是自己的弱项 )

3.如图,在长方体ABCD― A1 B1 C1D1中, AD=AA1=1, AB=2,点 E 在棱 AB上移动 . (1)证明: D1E⊥A1D; (2)当 E 为 AB的中点时,求点 A 到面 ECD1的距离; (3)AE 等于何值时,二面角 D1― EC― D的大小为( 易错点 : 在找平面 DEC的法向量的时候 , 本 来法向量就己经存在了, 就不必要再去找, 但是我认为去找应该没有错吧, 但法向量找出来了, 和那个己经存在的法向量有很大的差别, 而且 , 计算结果很得杂, 到底问题出在哪里?) 4.如图,直四棱柱 ABCD - A1 B1C1D1中,底面 ABCD 是等腰梯形, AB ∥ CD , AB = 2DC = 2, E 为 BD 1的中点, F 为 AB 的中点,∠ DAB = 60°. (1)求证: EF ∥平面 ADD 1A1; 2 1 (2) 若BB12 ,求 A F 与平面 DEF 所成角的正弦值.

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳 一、基础知识 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b | ? , 其中a ,b 分别是直线a ,b 的方向 向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量, φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | ? . 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ? ,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值. 直线与平面所成角的范围为????0,π 2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值. 利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互

补,需要结合图形进行判断. 二、常用结论 解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2. 如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角 [典例精析] 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为7 21 ,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→ 方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0). (1)证明:DE ―→=(0,2,0),DB ―→ =(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则????? n ·DE ―→=0,n ·DB ―→=0, 即????? 2y =0,2x -2z =0. 不妨取z =1,可得n =(1,0,1).

向量知识点归纳与常见题型总结

向量知识点归纳与常见题型总结 高三理科数学组全体成员 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“>”错了,而||>||才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为(,),其中x 、y 满足 +2x 2 y =1(可用(cos θ,sin θ)(0≤θ≤2π)表示).特别:||AB AB →→表示与AB → 同向的单位向量。 例如:向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); 例1、O 是平面上一个定点,A 、B 、C 不共线,P 满足()[0,).|||AB AC OP OA AB AC λλ=++?∈+∞u u u r u u u r u u u r u u u r u u u r u u u u r 则点P 的轨迹一定通过三角形的内心。 (变式)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( ) A.三边均不相等的三角形 B.直角三角形C.等腰非等边三角形 D.等边三角形 (06陕西) ⑸0的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. (7)相反向量(长度相等方向相反的向量叫做相反向量。的相反向量是-。) 2.与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量.(三角形法则和平行四边形法则) ①当两个向量和不共线时,+的方向与、都不相同,且|+|<||+||; ②当两个向量a 和b 共线且同向时,+a b 、a 、b 的方向都相同,且=+||||||+; ③当向量a 和b 反向时,若|a |>|b |,b a +与 a 方向相同 ,且|b a +|=|a |-|b |; 若|a |<|b |时,b a +与b 方向相同,且|a +b |=|b |-|a |. ⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算. 三角形法则适用于首尾相接的向量求和;平行四边形法则适用于共起点的向量求和。 =+;=-

平面向量知识点及方法总结总结

平面向量知识点及方法总结总结 一、平面向量两个定理 1、平面向量的基本定理 2、共线向量定理。 二、平面向量的数量积 1、向量在向量上的投影:,它是一个实数,但不一定大于0、 2、的几何意义:数量积等于的模与在上的投影的积、三坐标运算:设,,则(1)向量的加减法运算:,、(2)实数与向量的积:、(3)若,,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标、(4)平面向量数量积:、(5)向量的模:、 四、向量平行(共线)的充要条件、 五、向量垂直的充要条件、六、七、向量中一些常用的结论 1、三角形重心公式在中,若,,,则重心坐标为、 2、三角形“三心”的向量表示(1)为△的重心、(2)为△的垂心、(3)为△的内心; 3、向量中三终点共线存在实数,使得且、 4、在中若D为BC边中点则 5、与共线的单位向量是七、向量问题中常用的方法 (一)基本结论的应用

1、设点M是线段BC的中点,点A在直线BC外,则(A)8 (B)4 (C)2 (D) 12、已知和点M满足、若存在实数m使得成立,则m= A、2 B、3 C、4 D、 53、设、都是非零向量,下列四个条件中,能使成立的条件是() A、 B、 C、 D、且 4、已知点____________ 5、平面向量,,(),且与的夹角等于与的夹角,则() A、 B、 C、 D、6、中,P是BN上一点若则m=__________ 7、o为平面内一点,若则o是____心 8、(xx课标I理)已知向量的夹角为,则、 (二)利用投影定义

9、如图,在ΔABC中,,,,则= (A)(B)(C)(D 10、已知点、、、,则向量在方向上的投影为 A、 B、 C、 D、11设是边上一定点,满足,且对于边上任一点,恒有则 A、 B、 C、 D、 (二)利用坐标法 12、已知直角梯形中,//,,,是腰上的动点,则的最小值为____________、 13、(xx课标II理)已知是边长为的等边三角形,为平面内一点,的最小值是() (三)向量问题基底化 14、在边长为1的正三角形ABC中, 设则____________、 15、(xx天津理)在中,,,、若,,且,则的值为 ___________、 16、见上第11题 (四)数形结合代数问题几何化,几何问题代数化例题 1、中,P是BN上一点若则m=__________

向量知识点归纳与常见题型总结

向量知识点归纳与常见题型总结 高三理科数学组全体成员 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“>”错了,而||>||才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为(,),其中x 、y 满足 +2 x 2 y =1 (可用(cos θ,sin θ)(0≤θ≤2π)表示).特别: || AB AB → → 表示与AB → 同向的单位向量。 例如:向量()(0)|||| AC AB AB AC λλ+≠所在直线过ABC ?的内心(是BAC ∠的角平分线所在 直线); 例1、O 是平面上一个定点,A 、B 、C 不共线,P 满足()[0,).|||AB AC OP OA AB AC λλ=++?∈+∞则点P 的轨迹一定通过三角形的内心。 (变式)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( ) A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 (06陕 西) ⑸的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. (7)相反向量(长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。) 2.与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量.(三角形法则和平行四边形法则) ①当两个向量a 和b 不共线时,+a b 的方向与a 、b 都不相同,且|+a b |<|a |+|b |; ②当两个向量和共线且同向时,+、、的方向都相同,且=+||||||+; ③当向量和反向时,若||>||,+与 方向相同 ,且|+|=||-||; 若||<||时,+与 方向相同,且|+|=||-||. ⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算. 三角形法则适用于首尾相接的向量求和;平行四边形法则适用于共起点的向量求和。

机械制图知识点总结

机械识图知识点总结 图之功能各国标准尺度比例线之种类与用途角法与视图 图之功能 1. 信息传递:把设计者之构想绘制成图,传递给加工制作人员、检验人员等。 2. 国际性:图为技术界的国际语言,即须具有国际语言之性格,如图形表法,标注方法或符号定义必须完全统一规格。 3. 泛用性:随着技术的发展,目前在各种产业上的互相关连加深,因此需画出各种行业均能了解之图。 TOP 各国标准 TOP 尺度比例 尺度单位 工至机械制图用基本长度单位,通常采用 mm ,可以不用在图中表示。儒需使用其它单位时,则必须注明单位符号。英制则以 in. 为基本长度单位,而不必标注。

常用比例 机械制图再绘图时,因尽量画出较大之圆形,以便于微缩影储存。通常以 2,5,10 之倍数为常用比例或按实物大小画出。 长用比例如下所列: 实大比例:1:1 缩小比例:1:2,1:2.5,1:4,1:5,1:10,1:20,1:50,1:100,1:200,1:500,1:1000 。 放大比例:2 :1,5:1,10:1,20:1,50:1,100:1。 TOP 线之种类与用途

线之粗细与其使用 通常绘图时,粗实线之线宽须按图之大小与其复杂程度而订定,在同一张图中使用粗线之线宽必须均匀一致,中线与细线亦同理。 虚线之起讫与交会 虚线之起讫,如下图所示,虚线与其它线条交会时,除虚线无实线之延长外,其余应尽量维持相交。 1.实线与虚线相交 2.虚线与虚线相交 TOP

投影与视图 第一角法与第三角正投影法之比较 第一角投影法起于法国,盛行于欧洲大陆、德、法、义、俄等国,其中美、日及荷兰等国原先亦采用第一角投影法,后来改采用第三角法讫今。目前国内使用第一角投影法之机构约 35% ,而采用第三角投影法之机构约 65% 。因此为适应国内使用者之需求,于最新修订之 CNS3 , CNS3-1 , CNS3-2 ,…, CNS3-11 等工程制图国家标准规定“第一角法及第三角法同等适用”。唯于同一张图中,不的同时使用两种投影法,且每张图上均应于明显部位标示“投影法”,以资鉴别。 第一角投影法与第三角投影法之异同如下: (1) 对同一投影方向上而言,两者投影面之位置不同。第一角投影法之投影面在物体之后方,而第三角投影法之投影面则在物体前方。 (2) 两中投影法之各视图彼此完全相同。 (3) 两者之投影相于展开后视图排列,则因投影面之不同而有所分别,以前视图为基准而展开时,除前视图以外,其它各视图之位置相反。 (4) 判断视图为第一角或第三角时,可先假定为其中任一者,以侧视图之轮廓线判断误,表示假定正确,若虚实线相反,表示假定错误。 剖视图 对物体作假想剖切,以了结其内部形状,假想之割切面称为割面,而割面体所见之线,称为割面线,如图 1-1 所示。割面线可以转折,两端及转折处用粗实线画出,中间以细链线连接。转折处之大小如图 1-2 所示。 如有多个割面图时,应以大楷拉丁字母区别之,同一割面之两端以相同字母标示,字母写在箭头外侧,书写方向一律朝上。割面线箭头标示剖视图方向,割面线之两端需伸出视图外约10mm ,其箭头之大小形状如图 1-3 所示。 割面及剖面线 假想剖切所得剖面,须以细实线画出剖面线,剖面线虚为与主轴线或机件外形线成45 °之均匀并行线,(但应避免将剖面线画成垂直或水平)。若剖面线与轮廓线平行或近平行时,必须改变方向如图 1-4 所示。 同一机件被剖切后,其剖面线之方向与间隔必须完全相同。在组合图中,相邻两机件,其剖面线应取不同之方向或不同之间隔,如图 1-5 所示。机件剖面之面积较大时,其中间部分之剖面线可以省略,但画出之剖面线须整齐,如图 1-6 所示机件剖面之面积甚为狭小时,

高中数学平面向量知识点总结[1]

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法),(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?| a |= 由于0 的方向是任意的,且规定0 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b (即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必 须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同 ),(),(2211y x y x =???==?2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b == ,则a +b =AB BC + =A C (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

向量知识点归纳与常见总结

向量知识点归纳与常见题型总结 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“>”错了,而||>||才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量 ⑷单位向量是模为1的向量,其坐标表示为(y x ,),其中x 、y 满足 +2x 2 y =1(可用(cos θ,sin θ)(0≤θ≤2π)表示).特别:||AB AB →→表示与AB → 同向的单位向量。 例如:向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); 例1、O 是平面上一个定点,A 、B 、C 不共线,P 满足()[0,).|||AB AC OP OA AB AC λλ=++?∈+∞u u u r u u u r u u u r u u u r u u u r u u u u r 则点P 的轨迹一定通过三角形的内心。 (变式)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( ) A.三边均不相等的三角形 B.直角三角形C.等腰非等边三角形 D.等边三角形 (06陕西) ⑸0的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. (7)相反向量(长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。) 2.与向量运算有关的问题

高中数学平面向量知识点总结82641

平面向量知识点总结 第一部分:向量的概念与加减运算,向量与实数的积的运算。 一.向量的概念: 1. 向量:向量是既有大小又有方向的量叫向量。 2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:可表示为 3.模的概念:向量的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 二.向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三.向量的加法: 1.定义:求两个向量的和的运算,叫做向量的加法。 注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则: 强调: a b c a + b A A A B B B C C a +b a + b a a b b b a a

1?“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2?可以推广到n 个向量连加 3?a a a =+=+00 4?不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1?向量加法的平行四边形法则(三角形法则): 2?向量加法的交换律:+=+ 3?向量加法的结合律:(+) +=+ (+) 4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。 四.向量的减法: 1.用“相反向量”定义向量的减法 1?“相反向量”的定义:与a 长度相同、方向相反的向量。记作 -a 2?规定:零向量的相反向量仍是零向量。-(-a ) = a 任一向量与它的相反向量的和是零向量。a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法。 2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.向量减法做图:表示a - b 。强调:差向量“箭头”指向被减数 总结:1?向量的概念:定义、表示法、模、零向量、单位向量、平行向量、 相等向量、共线向量 2?向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律 五:实数与向量的积(强调:“模”与“方向”两点) 1.实数与向量的积 实数λ与向量a ρ的积,记作:λa ρ 定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ 1?|λa ρ|=|λ||a ρ | 2?λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ = 2.运算定律:结合律:λ(μa ρ)=(λμ)a ρ ① 第一分配律:(λ+μ)a ρ=λa ρ+μa ρ ② 第二分配律:λ(a ρ+b ρ)=λa ρ +λb ρ ③ 3.向量共线充要条件:

相关文档
最新文档