高等数学重要公式(必记)
最完整高数公式大全,赶紧收藏了,以后用

高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sin α·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sin α·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tan β·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高等数学公式(完整版)

○高○等数学公式 导数公式:基本积分表:ax x aa a ctgx x x tgx x x xctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==拉格朗日中值定理。
高数公式大全

高等数学公式汇总第一章一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=± 和差角公式:sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos )cos()]21sin sin )cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x x x xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x -----==++==±+-+===+-双曲正弦双曲余弦;反双曲余弦双曲正切3322()()()a b a b a ab b ±=±+ ,222(1)(21)126n n n n +++++= 22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,lim 1n a >=;lim 1n →∞=ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan ;1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x na x a e x x ax x x--++++3、连续:定义:00lim 0;lim ()()x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或第二章导数与微分1、基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (co t )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ) (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====-222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n xn x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)[ln()]()(1)()n n n n n n nn n a x x a x x x -----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑ 3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
(完整版)大学应用数学(高等数学)最全公式知识点总结

高等数学初等函数正弦定理:I (R 为外接關的半径)Mn Λ Mn B Sln C余弦定理:a 2 = h 2 ÷c* -2∕κ cos4 同角三角:Sin Λ esc Λ = I CoSASeC 4 = I tan Aco< A一 ISirMtan 4 = ---- ;CoM cosΛ COM ∙=τ;sin 4两角和差:Sin(A 土 8)= Sin Λco ⅛ B ± cυ⅛ A Sill B ∙ cos(Λ ± Λ) = CoS A COS S z fSin Λ sin B; m m ZjlS <anΛ⅛tangITlanA tan R二倍角:sin2Λ = 2sin ACoS B;co,2A ≡ ex' 4 -sin : Λ ■ 2cos 2 A -12 tan 4积化和畫:»[sin(4 + fl)÷sin(4-Λ)l Cm AMn // = -[MΠ(∕I ÷ Λ)-MΠ(4-Λ)JCOS A CoS λ1:ICoS(Zl ÷ 8) +CoS(A -Mn AMn U = ■一[c<n(4 ÷ B)^Cm(A- 〃)}和差化积^・ n r Λ-Λ SIn Λ ÷ sin Λ = 2 Sln ------ ∙CoS ------------------2 2Sin ? A + cm' A ∙ II ÷ tan * A = see* A1-2M ∩2Λ; tan 2 A ■ ,I-Ian* ADr A^B . A-B sιnΛ -M∏β = ∖∙s∣∣∣2 2nC Λ + β Λ —ΛCoSA ÷cσsW = 2 cos - ∙cos ----- ;2 2 O O・ A^B ・ A-Bcos Λ - cos β = -2 Mn ——∙sm——反三角函数:Mn(afCM∏ r)≡ r;x€ [-1.l];cos(arccosx)≡ x:XG 卜 Ll}ian(arcun X)= x;je I-8.÷∞}co((arccot.v)=x;Xe ∣-∞.*<*}; 等差数列:≡<ιl ÷π2 +・・・*《 求 M√ ∏ 项% ≡α∣ (Λ-1M注:dl ⅛公淮求第n 项和= g等比数列:l÷2÷4÷8÷..→α19^求第n 顶^ S "广 求第n 项和:S Il ■止£)・竺空 I -q I -q算术平均数大于或等于几何平均数值:绝对值不等式:Il-IyI≤∣Λ±3⅛≤∣-t∣>∣)∙∣ 对数运算:Iog -M ≡⅛^;Iog^≡7J-gaIOgAa因式分解,<ι' ±b l =(α±b)((f' ^ab^b') 二项式定理,(4÷∕r)n =C> + C 1IIΛΛ ,Λ + C^Λ∙,4 ∙→Ctf w阶乘与半阶乗5为自然数): 阶乘:Λ!=∏X: =l×2×3×∙∙∙×∕∣ζθ!=li-4(2n)!!=ΓI(2⅛)=2×4×6×∙∙∙×(2Λ) = 24∙Λkυ!!=(λ半阶乘:l ∙l.(2M ÷ l>!= fl (2⅛ ÷ l)≡ I×3×5×-×(2Λ ÷ t)一元二次方程:ax : +bx÷c = O W 为 A = b' 4u< 当XO 时右•个虬当A>0时仃刈个解:当,0时无解:>0l∣∙t JFu 向上: a<0 时 JFl I 向下 方用组的解:,空坐二3Iaarvsin(-x)® -arcMn.r :x€ [-l.∣} arccos(- x) = Λ, -arccos.∏Λ G 卜 LIl arvtan(-j) = -arvtanx;j€ ∣-∞.⅛co); CIrC COt(-x)≡ ΛF-(IrCCOt x;xe [-oo,⅛coj韦达定理:Λl+Λ; =--IΛlΛy ≡-iΛl.Λ,为腐个根a a用韦达定理解三次方程:若F + p.『+g"r・0的三个根分别为x...r;.x, 则X| +X1 +X3= ./>;旺∙Λ2÷ X1∙ X j÷ X1∙ X1 = q;X\∙χ1∙χj≡-Γ 抛物线:抛物线y = αr ⅛ΛΛ÷C性质:对祢轴为:: 顶点为*竺MIa 4a抛物线标准方稈:√=2px⅛1=2p)∙) 焦点:卷.0): 准线方程:XT 楠圆:Iffi I 用标准方IV; ^j∙∙t∙^y — I为“ >b时c∙■ Jo匚b;•焦点F仕cθ);准线方程:x≡±-;C肉心率:r = — < 1a'l^a <b时C = JW ,焦点F(O,±c):准线方程:x = d-:离心那:r • - < Ih参数方程;I X=^oSj.(0<r<2π)(y ≡hsιnr双曲线,双曲线的标准方程:⅛='准线方程:x≡±≤- 渐近线方稈:y = t —x:离心率:e = — > 1 •其中c≈∖∣cι2 ÷fr'aaHx = α tan / '∣ y≡ΛsccJ初等几何公式,设/为、卜径.h 为氐f 为MJK. S 为而积•"为体职。
高数积分公式大全

高数积分公式大全高等数学中的积分是数学分析的重要内容之一,它是求函数面积、定积分、不定积分等的方法,被广泛应用于科学和工程领域。
下面是高等数学中常用的积分公式大全,供大家参考和学习。
一、基本积分公式:1. 常数函数积分公式:∫c dx = cx + C(其中c为常数,C为积分常数)2. 幂函数积分公式:∫x^n dx = (1/(n+1)) * x^(n+1) + C(其中n不等于-1,C 为积分常数)3. 指数函数积分公式:∫e^x dx = e^x + C4. 三角函数积分公式:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C5. 乘方函数积分公式:∫(a^x) dx = (1/log(a)) * (a^x) + C(其中a为正数且不等于1,C为积分常数)6. 对数函数积分公式:∫(1/x) dx = ln|x| + C二、常用积分公式:1. 三角函数的复合积分:∫sin(ax) dx = - (1/a) * cos(ax) + C∫cos(ax) dx = (1/a) * sin(ax) + C2. 反三角函数的积分:∫1/(√(1-x^2)) dx = arcsin(x) + C∫1/(1+x^2) dx = arctan(x) + C3. 指数函数的积分:∫e^(ax) dx = (1/a) * e^(ax) + C4. 对数函数的积分:∫(1/x) dx = ln|x| + C5. 分式函数的积分:∫(1/(x-a)) dx = ln|x-a| + C(其中a不等于0)∫(1/(x^2+a^2)) dx = (1/a) * arctan(x/a) + C(其中a不等于0)6. 三角函数的积分:∫sin^n(x) cos^m(x) dx7. 部分分式的积分:∫(p(x)/q(x)) dx8. 具体函数的特殊积分:∫e^x sin(x) dx∫e^x cos(x) dx∫(sin(x))^n (cos(x))^m dx(其中n和m为正整数)三、数列求和公式:1. 等差数列求和公式:S_n = (n/2)(a_1 + a_n)(其中S_n为前n项和,a_1为首项,a_n为末项)2. 等比数列求和公式:S_n = (a_1(1-q^n))/(1-q)(其中S_n为前n项和,a_1为首项,q为公比)以上是高等数学中一些常见的积分公式,通过掌握和灵活运用这些公式,可以帮助我们更好地解决数学中的问题。
大学高等数学公式汇总大全(珍藏版)

1− x 21− x 2∫ 大学高等数学公式汇总大全(珍藏版)高等数学(上册)常用导数公式:(tgx )′ = sec 2x (ctgx )′ = −csc 2x (sec x )′ = sec x ⋅tgx (arcsin x )′ =1(arccos x )′ = − 1(csc x )′ = −csc x ⋅ctgx (a x )′ = a x ln a (arctgx )′ =11+ x 2(log a x )′ =1 x ln a(arcctgx )′ = −11+ x 2常用基本积分表:∫tgxdx = −ln cos x + C ∫ctgxdx = ln sin x + Cdx=cos 2 x dx∫sec 2 x dx = t g x + C ∫sec xdx = ln sec x + tgx + C ∫ sin 2 = csc2xdx = −ctgx + Cx ∫ csc xdx = ln csc x − c tg x + C dx = 1 arctg x +C∫sec x ⋅tgxdx = sec x + C∫csc x ⋅ctgxdx = −csc x + C∫ a 2+ x2a dx =1a ln x − a+ C∫a xdx =a xCln a ∫ x 2 − a 2 dx a 2 − x 2 2a x + a= 1 ln a + x + C 2a a − x ∫shxdx = chx + C∫chxdx = shx + C ∫ d x = arcsin x + C ∫d x = ln(x + x 2 ± a 2 ) + Ca 2 − x2a x 2 ± a 2π2I n = ∫ sin 0 π 2xdx =∫ cos nxdx =n −1 nI n −22 2x 2 2 a 2 ∫ x ∫ x 22+ a dx = 2 − a 2 dx = 2 x + a + 2 − a 2 2 a 2ln(x + ln x + x ) + C+ C ∫ a − x dx = + arcsin + C2 a三角函数的有理式积分:x 2 + a 2x 2 x 2 − a 2 x 2 − a 2 x 2 a 2 − x 2 ∫ ∫ + nsin x = 2u 1+ u 2 , cos x =1− u 2 , 1+ u 2 u = tg x 2dx = 2du 1+ u 2一些初等函数:两个重要极限:e x − e −x双曲正弦: shx =lim sin x = 1 2 x →0 x双曲余弦:chx = e x + e−xlim(1+ 1)x = e = 2.718281828459045...双曲正切:thx =2 shx = chx e x − e −xe x + e −xx →∞ xarshx = ln(x +archx = ± ln(x + x 2 +1)x 2 −1)arthx = 1 ln 1+ x2 1− x三角函数公式:· 诱导公式:· 和差角公式: ·和差化积公式:sin(α± β) = sin αcos β± cos αsin βsin α+ sin β = 2 s inα+ β cos α− βcos(α± β) = cos αcos β∓ s in αsin β2 2tg α± tg βsin α− sin β = 2 cos α+ βsin α− βtg (α± β) = 1∓ t g α⋅t g βctg α⋅ctg β∓1cos α+ cos β = 2 cos 2 α+ β 2 cos 2α− β2ctg (α± β) =ctg β± ctg αcos α− cos β = 2sinα+ βsin α− β22,(uv )= ∑C u v· 倍角公式:sin 2α = 2 sin αcos αcos 2α = 2 cos 2 α−1 = 1− 2 sin 2 α= cos 2 α− sin 2 αc t g 2α−1sin 3α = 3sin α− 4sin 3 α cos3α = 4 cos 3 α− 3cos α ctg 2α =tg 2α=2ctg α2tg αtg 3α=3t g α−t g 3α1− 3tg 2α1− tg 2α· 半角公式:sin α = ± 2α 1− cos α2 1− cos α 1− cos αsin α cos α = ± 2α 1+ cos α2 1+ cos α 1+ cos αsin α tg = ± 21+ cos α = sin α =1+ cos α c t g = ± 21− cos α = sin α =1− cos α· 正弦定理:a = sin Ab = sin B csin C= 2R · 余弦定理: c2= a 2 + b 2 − 2ab cos C· 反三角函数性质: arcsin x = π 2− arccos xarctgx = π 2− arcctgx高阶导数公式——莱布尼兹(L e i b n i z )公式:n(n )k (n −k ) (k )nk =0= u (n )v + nu (n −1)v ′ +n (n −1) u (n −2)v ′′ + ⋯+ n (n −1)⋯(n − k +1) u (n −k )v (k )+ ⋯+ uv (n ) 2! k !中值定理与导数应用:拉格朗日中值定理:f (b ) − f (a ) = f ′(ξ)(b − a ) f (b ) − f (a ) f ′(ξ)柯西中值定理: F (b ) − F (a ) =F ′(ξ)当F(x ) = x 时,柯西中值定理就是拉格朗日中值定理。
高等数学公式必背大全

高等数学必背公式说明:这里有你想要的东西,高等数学必备公式一应俱全。
导数公式:a = sec" x (cfgx)f = -csc 2 x (secx)f = secx-^x (cscx/ = -cscx-ctgx {a x y = a x \na(arcsinx)'=〔——=vl-x 2 (arc COSY )"=1 x\na基本积分表:j tgxdx = -In |c osx| + C j ctgxdx = In |sin x| + C j secxdx = ln|secx ++ Cj c scxdx = In |cscx - ctg^ + C r dx1 x -I —一 =-arctg-+C J^r+对 aaf —2— = f sec 2 xdx = tgx+ C Jcos" x 」| ] *'、— = jcsc 2 xdx = -ctgx + C J secx ・ tgxclx = secx + C J c sex ・ ctgxdx = - c sex + Cjshxdx = chx + C f chxdx = shx + C72]I n = jsin ,xdx =jcos" xdx =-——on_______ _____________ 2 ______________ j* ylx 2 +a 2dx =扌 \/x 2 +a 2 + 牛ln(x + >Jx 2 +a~) + Cf y/x 2 -erdx =丄yjx 2 -a 2 J2 2-x 2+ —arcsin —+ C 2 a. 2u 1-M 2 Xsin x = ------- , cosx = -------- - , u =tQ —9\ + u 2 1 + M 2 2Per -;r= arcsin —+ C =ln(x + 土/ ) + C+ C- — In x + yjx 2 -a 2 +Cj* yja 1 -x 2dx = y 三角函数的有理式积分:1 + w2 a + x一些初等函数: 两个重要极限:双曲正弦皿r -X-x双曲余弦:C/2X =匚丄2双曲正切:〃X=—=chx e x +e ']・ sinxlim ------ = 1lim (1 + 丄)x=e = 2.718281828459045...xX->Xarshx = ln(x + V%2 +1)archx = ±\n(x + Jx? _])1 1 + xart hx = —In ----2 1 — x三角函数公式:•诱导公式:数角sin cos tg ctg-a -sina cosa -tga -ctga90°-a cosa sina ctga tga90°+a cosa -sina -ctga -tga180°-a sma -cosa -tga -ctga180°+a -sina ・ cosa tga ctga27O°-a -cosa -sina ctga tga27O°+a -cosa sma -ctga -tga360°-a -sina cosa -tga -ctga360°+a sma cosa tga ctga•和差化积公式:sin(a ±0) = sinacos0 土cosasin 0 sin a + sin 0 = 2sin a + ^cos—―— cos(tz±^)= cosacos/7 + sinasin 03土tg/3•和差角公式:恥±0匕珂"0 亦匕±0)仝曲50期2 2 sin a-sin 0 = 2cos Q "sin ―—2 2q c a + fl a_ 卩cosa + cosp = 2cos ---------- cos ------ —2 2 cosa-cos0 = 2sin ° + " sin ——2 2•倍角公式:•半角公式^叫宀+響宀+…W+…+S,中值定理与导数应用拉格朗日中值定理:f(b) - /(d) = f 《)0 - a)当F(x) = x 时,柯西中值定理就是立格朗日中值定理<:曲率:sin la = 2sincrcosacos2a = 2cos 2 cr-1 = l-2sin 2 a = cos' a-sin' a ctg2a = ------------2ctga fg2a = 2弋sin 3a = 3sina-4sin 、a cos3a = 4cos a-3cosa1一3妙 a・a sin —= 2a U-cosa l-cosa sin a tg — = ± \ ----------------------- = ----------- = ----------- '2 V 1 + cosa sine? 1 + cosaa , /1 + cosaCOS — =±a ---------2 V 2a ll + cosa 1 + cosa sin er etg — = ±A i---------- = ------------ = ------------ 2 Vl-cosa sin a l-cosa^— = 2RsinC•余弦定理:c 2=«2 +b 2 - labeQsC•反三角函数性质:arcsinx = — -arc COST 2aretgx = —- arcctgx高阶导数公式一莱布尼兹(Leibniz)公式: 柯西中值定理:F(b)-F ⑷广⑷ 陀)-正弦定理:bsinB弧微分公式:ds = y ]\ + y ,2dx,其中y = Fga平均曲率斤彳予卜a:从M 点到M ,点,切线斜率的倾角变化量;As : MM 弧长。
高数公式大全

高等数学公式汇总第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin coscos 22cos 1 12sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1n a >=;lim 1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学重要公式(必记)一、导数公式:二、基本积分表:三、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:四、三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖ⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A ϖϖ多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuF v uG F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:上的投影。