解方程 (2)
专题06 一元二次方程及其解法(二)-配方法(解析版)

九年级数学全册北师大版版链接教材精准变式练专题06 一元二次方程-配方法典例解读【典例1】解方程:x2+4x﹣1=0.【点拨】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【解析】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.【总结】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【典例2】用配方法解方程:2x2﹣12x﹣2=0.【点拨】首先将二次项系数化为1,再将方程的常数项移动方程右边,两边都加上9,左边化为完全平方式,右边合并,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解析】解:2x2﹣12x﹣2=0,系数化为1得:x2﹣6x﹣1=0,移项得:x2﹣6x=1,配方得:x2﹣6x+9=10,即(x﹣3)2=10,开方得:x﹣3=±10,则x 1=3+10,x 2=3﹣10.【总结】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移动方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.【典例3】若代数式221078M a b a =+-+,2251N a b a =+++,则M N -的值( )A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数【答案】B ;【解析】(作差法)22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>.故选B.【总结】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.【典例4】用配方法证明21074x x -+-的值小于0. 【点拨】本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致. 【解析】22271074(107)410410x x x x x x ⎛⎫-+-=-+-=--- ⎪⎝⎭27494910410400400x x ⎛⎫=--+-- ⎪⎝⎭274910420400x ⎡⎤⎛⎫=----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=--+-=---⎪ ⎪⎝⎭⎝⎭. ∵ 2710020x ⎛⎫--≤ ⎪⎝⎭,∴ 271111002040x ⎛⎫---< ⎪⎝⎭, 即210740x x -+-<.故21074x x -+-的值恒小于0.【总结】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明.【典例5】用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.【解析】解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣, ∵(x ﹣)2≥0, ∴﹣8(x ﹣)2≤0, ∴﹣8(x ﹣)2﹣<0, 即﹣8x 2+12﹣5的值一定小于0.【总结】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.【典例6】若把代数式x 2+2bx+4化为(x ﹣m )2+k 的形式,其中m ,k 为常数,则k ﹣m 的最大值是 . 【答案】417; 【解析】解:x 2+2bx+4=x 2+2bx+b 2﹣b 2+4 =(x+b )2﹣b 2+4; ∴m=﹣b ,k=﹣b 2+4, 则k ﹣m=﹣(b ﹣21)2+417. ∵﹣(b ﹣21)2≤0, ∴当b=21时,k ﹣m 的最大值是417. 故答案为:417.【总结】此题考查利用完全平方公式配方,注意代数式的恒等变形. 【典例7】已知223730216b a a b -+-+=,求4a b - 【点拨】解此题关键是把3716拆成91416+ ,可配成两个完全平方式.【解析】将原式进行配方,得2291304216b a a b ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭,即2231024a b ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,∴ 302a -=且104b -=, ∴ 32a =,14b =.∴ 31314422422a b -=-=-=-. 【总结】本题可将原式用配方法转化成平方和等于0的形式,进而求出a .b 的值.【教材知识必背】一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;教材知识链接④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【变式1】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0. 【答案】(1)方程变形为x 2-4x=2. 两边都加4,得x 2-4x+4=2+4.精准变式题利用完全平方公式,就得到形如(x+m)2=n 的方程,即有(x-2)2=6. 解这个方程,得x-2=或x-2=-. 于是,原方程的根为x=2+或x=2-.(2)将常数项移到方程右边x 2+6x=-8. 两边都加“一次项系数一半的平方”=32,得 x 2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1, ∴ x=-2或x=-4. 【变式2】用配方法解方程 (1)(2)20x px q ++=【答案】(1)2235x x +=2253x x -=-25322x x -=- 2225535()()2424x x -+=-+251()416x -=5144x -=±123,12x x ==.(2)20x px q ++=222()()22p px px q ++=-+224()24p p qx -+=①当240p q -≥时,此方程有实数解,221244p p q p p qx x -+----==②当240p q -<时,此方程无实数解.【变式3】求代数式 x 2+8x+17的最小值 【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1 ∵(x+4)2≥0,∴当(x+4)2=0时,代数式 x 2+8x+17的最小值是1.【变式4】试用配方法证明:代数式223x x -+的值不小于238. 【答案】 22123232x x x x ⎛⎫-+=-+ ⎪⎝⎭22211123244x x ⎡⎤⎛⎫⎛⎫=-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21123416x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2112348x ⎛⎫=--+ ⎪⎝⎭2123248x ⎛⎫=-+ ⎪⎝⎭.∵ 21204x ⎛⎫-≥ ⎪⎝⎭,∴ 2123232488x ⎛⎫-+≥ ⎪⎝⎭.即代数式223x x -+的值不小于238. 【变式5】(1)的最小值是 ;(2)的最大值是 .【答案】(1)222222333152632(3)323()()32()2222x x x x x x x ⎡⎤+-=+-=++--=+-⎢⎥⎣⎦;所以的最小值是152-(2)22222245(4)5(422)5(2)9x x x x x x x -++=--+=--+-+=--+所以的最大值是9.1. 用配方法解一元二次方程x 2+4x ﹣3=0时,原方程可变形为( ) A .(x+2)2=1 B .(x+2)2=7 C .(x+2)2=13 D .(x+2)2=19 【答案】B .【解析】x 2+4x=3,x 2+4x+4=7,(x+2)2=7. 2.下列各式是完全平方式的是( )A .277x x ++B .244m m -- C .211216n n ++ D .222y x -+ 【答案】C ;【解析】211216n n ++214n ⎛⎫=+ ⎪⎝⎭.3.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -= B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x += D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭【答案】C ;【解析】选项C :2890x x ++=配方后应为2(4)7x +=.4.把一元二次方程x 2﹣6x+4=0化成(x+n )2=m 的形式时,m+n 的值为( ) A .8 B .6 C .3 D .2 【答案】D ;【解析】 x 2﹣6x=﹣4,∴ x 2﹣6x+9=﹣4+9,即得(x ﹣3)2=5,∴ n=﹣3,m=5, ∴ m+n=5﹣3=2.故选D .5.不论x 、y 为何实数,代数式22247x y x y ++-+的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 【答案】D ;【解析】2222247(1)(2)22x y x y x y ++-+=++-+≥.综合提升变式练6.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对 【答案】C ;【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±; 7.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 【答案】A ;【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ; 8.把方程x 2+3=4x 配方,得( )A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 【答案】C ;【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1. 9.用配方法解方程x 2+4x=10的根为( )A .2.-2..【答案】B ;【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-210.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2. 【答案】(1)4;2; (2)9;3; (3)16;4. 【解析】配方:加上一次项系数一半的平方.11.用配方法将方程x 2-6x+7=0化为(x+m )2=n 的形式为 . 【答案】(x ﹣3)2=2.【解析】移项,得x 2﹣6x=﹣7,在方程两边加上一次项系数一半的平方得,x 2﹣6x+9=﹣7+9, (x ﹣3)2=2.12.若226x x m ++是一个完全平方式,则m 的值是________. 【答案】±3;【解析】2239m ==.∴ 3m =±.13.求代数式2x 2-7x+2的最小值为 .【答案】-338;【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338,14.当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 . 【答案】-1,1【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1; 故答案为:﹣1,1.【解析】 -3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712. 15. 用配方法解方程 (1) (2)221233x x += 【解析】 (1)x 2-4x-1=0 x 2-4x+22=1+22(x-2)2=5 x-2=5± x 1=2+5x 2=2-5(2)221233x x += 226x x +=2132x x += 222111()3()244x x ++=+ 2149()416x +=1744 x+=±13 2x=22x=-16. 用配方法解方程.(1)解方程:x2﹣2x=4.(2)解方程:x2﹣6x﹣4=0.【解析】解:(1)配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.解方程:x2﹣6x﹣4=0.(2)解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.17.当x,y取何值时,多项式x2+4x+4y2﹣4y+1取得最小值,并求出最小值.【解析】解:x2+4x+4y2﹣4y+1=x2+4x+4+4y2﹣4y+1﹣4=(x+2)2+(2y﹣1)2﹣4,又∵(x+2)2+(2y﹣1)2的最小值是0,∴x2+4x+4y2﹣4y+1的最小值为﹣4.∴当x=﹣2,y=时有最小值为﹣4.18. 已知a2+b2﹣4a+6b+13=0,求a+b的值.【解析】解:∵a2+b2﹣4a+6b+13=0,∴a2﹣4a+4+b2+6b+9=0,∴(a ﹣2)2+(b+3)2=0,∴a ﹣2=0,b+3=0,∴a=2,b=﹣3,∴a+b=2﹣3=﹣1.19.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值;(2)判断三角形的形状.【解析】(1)由2226810500a b c a b c ++---+=,得222(3)(4)(5)0a b c -+-+-=又2(3)0a -≥,2(4)0b -≥,2(5)0c -≥,∴ 30a -=,40b -=,50c -=,∴ 3a =,4b =,5c =.(2)∵ 222345+= 即222a b c +=,∴ △ABC 是以c 为斜边的直角三角形.。
8.2 消元——解二元一次方程组(2)

巩固练习
2.一条船顺流航行,每小时行20 km;逆流航 行,每小时行16 km.求轮船在静水中的速度 与水的流速.
基本思路: 加减消元: 二元
一元
主要步骤: 变形 加减 求解 写解
同一个未知数的系 数相同或互为相反数 消去一个元 求出两个未知数的值 写出方程组的解
2. 二元一次方程组解法有: 代入法、加减法
二元一次方程组
消元 ①代入法
②加减法
一元一次方程。
解二元一次方程组,先观察方程组的特点,然后选择 适当的解法。
同一个未知数的系数相同或互为相反数
基本思路:
加减消元: 二元
一元
主要步骤: 加减
消去一个元
分别求出两个未知数的值
求解
写解
写出方程组的解
提问
1.两个方程加减后能够实现消元的前提条件是什么? 两个二元一次方程中同一未知数的系数 相反或相等. 2.加减的目的是什么? “消元”
3.关键步骤是哪一步?依据是什么?
Hale Waihona Puke 分析:① 当方程组中两方程未知数系 数不具备相同或互为相反数 的特点时 要建立一个未知数系数的绝 ③ 对值相等的,且与原方程组 同解的新的方程组。 再用加减消元法解.
3x 4 y 16, ② 5 x 6 y 33 .
解:①×3得: 9x+12y=48
②×2得:10x-12y=66 ④ 把x=6代入①,得 1 y= -
3x+10y=2.8
5.2-解一元一次方程的方法和步骤-(2)

方程中如果有分母,我 们一般根据等式的性 质2,将方程的两边同 乘以分母的最小公倍 数,去掉分母,这一步骤, 我们称之为去分母.
2021/4/6
6
2) 解方程的步骤归纳:
步骤
去分 母
具体做法 依据
注意事项
在方程两边都乘以各 等式 分母的最小公倍数 性质2 不要漏乘不含分母的项
去括 号 移项
合并 同类 项 系数 化1
将方程两边都除以未知 等式
数2系021数/4/6a,得解x=b/a 性质2
解的分子,分母位置7 不要颠倒
做一做 解方 x程 x6: 22x 3 12 3
2021/4/6
8
例2 解方程:
1.5x1.5x0.5
0.6
2
解:将原方程化为
5x1.5x0.5 22
去分母,得 5x-(1.5-x)=1
去括号,得
(等式性质2) (分配律,去括号法则)
(3)移项
(等式性质1)
(4)合并同类项
(合并同类项法则)
(5)两边都除以未知数的系数
即未知数系数化为1, (等式性质2)
2021/4/6
4
解方程:
1(x14)1(x20)
7
4
解:去括号,得
1 7
x
+2=
1 4
x
+5
移项,得
1 7
x
-
1x 4
=
5-2
合并同类项,得
5
2
解:去分母,得 1 0x1 032x1x0
5
2
即 2x-5(3-2x)=10x
去括号,得 2x-15+10x=10x
移项, 得 2x+10x-10x=15
六年级方程(二)

学员姓名:学科教师:年级:辅导科目:授课日期××年××月××日时间A / B / C / D / E / F段主题方程(二)教学内容1.在会解简单的两步方程的基础上,初步学会解三步的方程;2.掌握解三步方程的顺序和方法.(此环节设计时间在20-30分钟)复习回顾上次课的内容:1.下面括号中的x的值,哪个是方程的解?3x+6=12 (x=2,x=6)3.5-2x=2.1 (x=2.8,x=0.7)0.7(x-2)=5.6 (x=8,x=10)(x+0.4)÷2.5=1 (x=2,x=2.1)2.解方程,并写出检验过程10-1.4x=7.2 (x-3)÷1.3=0.23.化简下列的算式:(1) 4x+3x=________ (2) 7a-5a=________ (3)3(2x-1)________(4) 20t-5t-3t=________ (5) 20x-(3+5x)=________ (6) 2(3x+4)-5=________(7) 5+2(x-2)=__________ (8) 3(3x+1)-10=_________ (9) 30-2(3x-2)=__________(此环节设计时间在40-50分钟)例题1:解方程(1)(23+x+18)÷2=30;(2)7x+9-3x=17.8教法说明:引导学生观察方程与上次课学过的方程有什么区别,对于这样的方程,能计算的先计算出来,如(1)中的23+18和(2)中的7x-3x。
再想含有未知数的一项是一个什么数,用学过的解方程的知识来求方程的解。
参考答案及解题过程(1)先化简,(41+x)÷2=30 (2)先化简,4x+9=17.8再求(41+x),41+x=30×2 再求4x,4x=17.8-941+x=60 4x=8.8最后求x,x=60-41 最后求x,x=8.8÷4x=19 x=2.2试一试:解方程(1)(26+x-18)÷3=10 (2)8x-4x+1=25参考答案:(1)x=22;(2)x=6例题2:解方程x+6=3x教学说明:思考,这个方程与前面所学过的方程有什么不同?(方程的左右两边都有未知数x);让学生小组内讨论解决并归纳方法。
2.3解二元一次方程组(2)

2.3解二元一次方程组(2)课型:新授课 主备人: 审核人:班级: 姓名:【学习目标】1、解二元一次方程组的基本思想是消元,化二元为一元;2、能说出加减消元法解二元一次方程组的一般步骤.3、会解一般的二元一次方程组【学习重、难点】用加减法解二元一次方程组的关键是必须使两个方程中同一个未知数的系数的绝对值相等.【学习过程】一、加减消元法通过上一节的学习,我们已经知道用代入法可以达到消元的目的,那么还有没有其它的消元方法吗?请你认真观察下面的图片,理解图片中的表达的意思.如图4-5,图4-6所示的天平处于平衡状态.设每个“量为x(g)y(g),你能根据图示列出求x ,y 的方程组吗?(1)如果从图4-6的天平左盘拿掉2个“3右盘拿掉100g 的砝码,如图4-7,此时天平还平衡吗?如果平衡,写出图4-7所示的方程;图4-5所表达的方程是 ,图4-6所表达的方程是 .图4-7所表达的方程是 .(2)图4-7表示的方程是由方程组中两个方程进行怎样的等式变形得到的?由此你得到什么结论?二、用加减消元法解方程组1、模仿课本例3,解方程组⎩⎨⎧-=-=+②①563323y x y x整理栏2、模仿例4(解法一、二),模仿例2(解法三)完成下面题目2.解方程组⎩⎨⎧=+=-②①134743y x y x解法一:(先消去x) 解法二:(先消去y)解法三:(用代入消元法,并比较哪种解法比较方便)通过将方程组中的两个方程 ,消去 ,转化为 方程.这种解二元一次方程组的方法叫做加减消元法,简称 .加减法也是解二元一次方程组常用的方法之一.用加减法解二元一次方程组的一般步骤是:1.2.3.4.5.三、巩固练习1.用加减消元法解下列方程组:(1)⎩⎨⎧=-=+5231323y x y x (2)⎩⎨⎧-=+=-2341252v u v u整理栏(3)⎪⎩⎪⎨⎧=-+=-75223y x yx yx (4)()()⎩⎨⎧=+-+=210352y x x y x x2.已知2v +t =3v -2t =3,求v ,t 的值.3.若(3x -2y +4)2与⎪4x -y -3⎪互为相反数,则x = ,y = .4.一个两位数,十位上的数是个位上数字的2倍.如果交换十位数与个位数的位置,那么所得的数就比原数小36,求原来的两位数.请你尝试列二元一次方程组来解决这个问题。
五年级上册简易方程解方程 (例2例3)课件

2. 列方程并解答。 x元
x元 x元
12.6元
3x=12.6 解:3x÷3=12.6÷3
x=4.2
问题:请你根据数量关系列出不同的方程,并解答。
七、布置作业
作业:第70页练习十五,第2题(后4道)、 第3题(最后一道)。
第70页练习十五,第1题。 第71页练习十五,第7题。
3. 列方程并解答。
方程2: 18÷x=12
问题:方程2你会解吗?我们下节课继续研究。
四、复习导入
解方程。
x+3.2=4.6 x=1.4
1.6x=6.4 x=4
x-1.8=4 x=5.8
x÷4=1.6 x=6.4
问题:请你运用等式的性质解方程,并具体说说你的想法。
五、问题引入、探究新知 (一)合作交流,解决问题
五年级上册
第五单元 简易方程
解方程 例2例3
一、复习导入 列方程并解答。
解: x+1.2=4 x+1.2-1.2=4-1.2 x=2.8
问题:在解方程过程中你运用了什么知识?请具体说一说。
二、引入问题,探究新知 (一)自主迁移,解决问题
解方程 3x=18。 3x=18
解: 3x÷3=18÷3 x=6
3. 第二步与第三步有什么不同?为什么要这样做?
4. x=11是方程的解吗?请你检验一下。
五、问题引入、探究新知 (二)对比反思,总结方法
20-x=9
x-1.8=4
解:20-x+x=9+x 解:x-1.8+1.8=4+1.8
20=9+x
x=5.8
9+x=20
9+x-9=20-9
x=11
问题:1. 今天学的解方程与以前解决的方程进行比较, 有什么不同?
专训2特殊一元一次方程的解法技巧 (2)
专训 2特别一元一次方程的解法技巧名师点金:解一元一次方程潜存着很多解题技巧,只需在解题过程中着重研究其构造特色和特别规律,奇妙地运用某些基天性质、法例就能够达到事半功倍的成效.分子、分母含小数的一元一次方程技巧 1 巧化分母为 14x- 1.6 3x-5.4 1.8- x1.解方程:0.5-0.2=0.1.技巧 2 巧化同分母2.解方程:x -0.16-0.5x=1.0.60.06技巧 3 巧约分去分母4- 6x0.02- 2x 3.解方程:0.01 -6.5=0.02-7.5.技巧 4 巧化小数为整数x0.17 - 0.2x4.解方程:0.7-0.03=1.分子、分母为整数的一元一次方程技巧 1 巧用拆分法x- 1 2x - 36- x5.解方程:2-6=3.x x x x6.解方程:2+6+12+20=1.技巧 2 巧用抵消法x x-2 3 6- 3x7.解方程:3+5=37-15.技巧 3 巧通分x+ 3 x+ 2 x+ 1 x+4 8.解方程:7-5=6-4.含括号的一元一次方程技巧 1 利用倒数关系去括号3 2 x9.解方程: 2 3 4-1- 2 - x = 2.技巧 2整体归并去括号1x - 1( x -9) =110.解方程: x -3 3 9(x -9). 技巧 3 整体归并去分母1211.解方程: 3(x - 5)= 3- 3(x - 5).技巧 4 不去括号反而添括号1 12 12.解方程:2 x-2( x- 1)=3(x- 1).技巧 5 由外向内去括号1 1 113.解方程:3 4 3x-1-6+2=0.技巧 6 由内向外去括号421 314.解方程:23x-3x-2=4x.答案1. 解: 去分母,得 2(4x - 1.6)- 5(3x - 5.4)= 10(1.8-x). 去括号、移项、归并同类项,得3x =- 5.8.系数化为 1,得 x =-2915.点拨: 本题将各分数分母化为整数1,进而奇妙地去掉了分母,给解题带来了方便 .0.1x - 0.16-0.5x = 0.062. 解: 化为同分母,得 0.060.060.06.去分母,得 0.1x - 0.16+0.5x = 0.06.11解得 x = 30.4- 6x + 1= 0.01-x3. 解: 原方程可化为 0.010.01 .去分母,得 4-6x + 0.01= 0.01- x.4解得 x = 5.点拨: 本题将第二个分数经过约分办理后,使两个分数的分母同样,便于去分母.4. 解: 整理,得 10x - 17-20x= 1.7 3 去分母 (方程两边同乘 21),得 30x - 7(17-20x) = 21.去括号,得 30x - 119+ 140x = 21.移项、归并同类项,得 170x = 140.14系数化为 1,得 x =.5. 解: 拆项,得 x - 1- x +1= 2- x.2 23 2 3 移项、归并同类项,得x= 2.2系数化为 1,得 x = 4.点拨: 方程经过拆项办理后,便于归并同类项,使复杂方程简单化.6. 解: 拆项,得 x -x+ x - x+ x -x+ x -x= 1.22 33 4 4 5x5整理得 x -= 1.解得 x = .54点拨: 因为 x 2= x - x 2, x 6= x 2- x 3, 12x = x 3- x 4, 20x = x 4-x5,所以把方程的左侧每一项拆项分解后再归并就很简易.7. 解: 原方程可化为x+x -2=24+x -2,3 5 7 5x 24 72即 3= 7 .所以 x = 7 .点拨: 本题不要急于去分母,经过察看发现-6-3x=x -2,两边消去这一项可防止去155分母运算.5(x + 3)- 7( x + 2)8.解:方程 两边分别 通分后相 加 ,得=352( x + 1)- 3( x + 4)12.化简,得 - 2x +1 - x - 10=12 .35解得 x =- 36211.点拨: 本题若直接去分母,则两边应同乘各分母的最小公倍数420,运算量大简单出错,可是把方程左右两边分别通分后再去分母,会给解方程带来方便.x9. 解: 去括号,得 4- 1- 3- x = 2.3移项、归并同类项,得-4x = 6.系数化为 1,得 x =- 8.点拨: 察看方程特色,因为32与23互为倒数,所以让 32乘以括号内的每一项,则可先去中括号,同时又去小括号,特别简易.11110. 解:原方程可化为 x -3x + 9(x - 9)- 9(x - 9)=0.归并同类项,得 2 3x = 0.系数化为 1,得 x = 0.1211. 解:移项,得 3(x - 5)+ 3(x - 5)= 3.归并同类项,得 x - 5= 3.解得 x = 8.点拨: 本题将 x - 5 当作一个整体,经过移项、归并同类项进行解答,这样防止了去分母,给解题带来简易.1 1 212. 解:原方程可化为 2[(x - 1)+ 1-2(x - 1)] =3(x - 1).去中括号,得1 1 1 2.(x -1) + - (x - 1)= (x -1)22 4 3移项、归并同类项,得-5 112(x - 1)=- 2.解得 x=115.1 113.解:去中括号,得12 3x-1-2+2=0.去小括号,得11= 0.36x-12移项,得1 1 36x=12.系数化为1,得 x= 3.4 2 1 314.解:去小括号,得2[3x-3x+2]=4x.4 3去中括号,得3x+ 1=4x.7移项,归并同类项,得12x=- 1.12系数化为 1,得 x=-7 .别想一下造出海洋,一定先由小河川开始。
4.2一元二次方程的解法(2)学案
主备人
学科
主备时间
集体备课时间
执教人
执教时间ቤተ መጻሕፍቲ ባይዱ
执教班级
教时
课题
4.2一元二次方程的解法(2)
教学
目标
1、会用配方法解二次项系数不为1的一元二次方程,进一步体会配方法是一种重要的数学方法
2.、经历探究将一般一元二次方程化成( 形式的过程,进一步理解配方法的意义
3、在用配方法解方程的过程中,体会转化的思想
解:两边都除以2,得x2- x+1=0
移项,得x2- x=-1
配方,得x2- x+ 即
开方,得
∴x1= ,x2=2
问题2:如何解方程-3x2+4x+1=0?
...
2.概括总结.
对于二次项系数不为1的一元二次方程,用配方法求解时要做什么?
首先要把二次项系数化为1,用配方法解一元二次方程的一般步骤为:系数化为一,移项,配方,开方,求解,定根
3用配方法将方程 变形为 的形式是__________________.
4、用配方法解方程2x2-4x+3=0,配方正确的是()
A.2x2-4x+4=3+4 B. 2x2-4x+4=-3+4
C.x2-2x+1= +1 D. x2-2x+1=- +1
5、用配方法解下列方程:
(1) ;(2)
(3) (4)6x2-4x+1=0
2、用配方法解下列方程:
(1)x2-6x-16=0;(2)x2+3x-2=0;
3、请你思考方程x2- x+1=0与方程2x2-5x+2=0有什么关系?
人教版七年级数学上《解一元一次方程(二)——去括号与去分母》第3课时课堂练习
《解一元一次方程(二)——去括号与去分母》第3课时课堂练习基础训练1.将方程x+24=2x+36的两边同乘 可得到3(x+2)=2(2x+3),这种变形叫 ,其依据是 . 2.解方程3y -14-1=2y+76时,为了去分母应将方程两边同时乘以( )A.10B.12C.24D.6 3. 在解方程1-2x 3=3x+17-3时,去分母正确的是( )A.7(1-2x)=3(3x+1)-3B.1-2x=(3x+1)-3C.1-2x=(3x+1)-63D.7(1-2x)=3(3x+1)-63 4.方程2x -13-x -14=1,去分母得到了8x-4-3x+3=1,这个变形( )A.分母的最小公倍数找错了B.漏乘了不含分母的项C.分子中的多项式没有添括号,符号不对D.正确5.下面的方程变形中,正确的是( ) A.2x+6=-3变形为2x=-3+6 B.x+33-x+12=1变形为2x+6-3x+3=6C.25x-23x=13变形为6x-10x=5D.35x=2(x-1)+1变形为3x=10(x-1)+16.方程x -13+x+26=4-x 2的解是( )A.x=1B.x=2C.x=4D.x=67.解方程56(65x -1)=2.下面几种解法中,较简便的是( ) A.先两边同乘6 B.先两边同乘5 C.先去括号再移项 D.括号内先通分 8.在解方程1-10x -16=2x+13的过程中,①去分母,得6-10x-1=2(2x+1);②去括号,得6-10x+1=4x+2;③移项,得-10x-4x=2-6-1;④合并同类项,得-14x=-5;⑤系数化为1,得x=145.其中开始出现错误的步骤是 .(填序号) 9.下面是解方程0.3x+0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x+52=2x -13,去分母,得3(3x+5)=2(2x-1).( ) 去括号,得9x+15=4x-2.( ) ( ),得9x-4x=-15-2.( ) ( ),得5x=-17. ( ),得x=-175.( ) 10.解方程:x+23-2x -35=-2.11. 解方程:2x -53-3x -174=-1-5x 2.12.解方程:0.5x -10.2-0.1x+20.3=-1.提升训练13.将方程x0.3-2x -30.7=5变形为103x-207x=50-307,甲、乙、丙、丁四名同学都认为是错误的,对于错误的原因,四名同学给出了各自的解释,其中正确的是( ) A.甲:移项时没有改变符号B.乙:不应该将分子、分母同时扩大为原来的10倍C.丙:去括号时,括号外面是负号,括号里面的项未变号D.丁:5不应该变为5014. 解方程0.1x 0.2-0.01x -0.010.06=x-13.15.解下列方程:(1)18{16[14(x -1)+5]+7}+8=9;(2)1-6x 15-1-x 6=-2x -15+2x+118.16.解方程:4(2x -1)3+1=3(2x -1)4.17.已知方程14+5(3x -12 015)=12,求3+203x-12 015的值. 18.若方程1-2y 6+2y+14=1-y+13与关于y 的方程y+6y -a 3=a6-3y 的解相同,则a= .19.已知m,n 是定值,关于y 的方程2ky+m 3-y -nk 6=2,无论k 取何值,方程的解总是y=1,求m,n 的值.20.(模拟·广益)某同学在对方程2x-13=x+a3-2去分母时,方程右边的-2没有乘3,其他步骤都正确,这时方程的解为x=2,试求a的值,并求出原方程的解.参考答案基础训练1.12;去分母;等式的性质22.B3.D4.B5.C6.B7.C8.①9.等式的性质2;去括号法则;移项;等式的性质1;合并同类项;系数化为1;等式的性质2.10.错解:去分母,得5(x+2)-3(2x-3)=-2.去括号,得5x+10-6x+9=-2.移项、合并同类项,得-x=-21.系数化为1,得x=21.诊断:去分母时,方程两边应都乘各分母的最小公倍数,不能漏乘不含分母的项.本题的错解正是忽视了这一点.正解:去分母,得5(x+2)-3(2x-3)=-30.去括号,得5x+10-6x+9=-30.移项、合并同类项,得-x=-49.系数化为1,得x=49.11.错解:去分母,得8x-5-9x-17=-6-5x.移项、合并同类项,得4x=16.系数化为1,得x=4. 诊断:分数线除了代替“÷”外,还具有括号的作用,本题的错解正是忽视了这一点.正解:去分母,得4(2x-5)-3(3x-17)=-6(1-5x).去括号,得8x-20-9x+51=-6+30x.移项、合并同类项,得-31x=-37.系数化为1,得x=3731.12.错解:原方程可转化为5x -102-x+203=-10.去分母,得3(5x-10)-2(x+20)=-60.去括号,得15x-30-2x-40=-60.移项、合并同类项,得13x=10.系数化为1,得x=1013. 诊断:利用分数的基本性质将分母化为整数时,只是将0.5x -10.2和0.1x+20.3的分子、分母同时乘10,分数的大小不变.而错解中给-1也乘了10. 正解:原方程可转化为5x -102-x+203=-1.去分母,得3(5x-10)-2(x+20)=-6.去括号,得15x-30-2x-40=-6.移项、合并同类项,得13x=64.系数化为1,得x=6413. 提升训练 13.D14.解:根据分数的基本性质,得 x 2-x -16=x-13.去分母,得3x-(x-1)=6x-2.去括号,得3x-x+1=6x-2.移项,得3x-x-6x=-2-1.合并同类项,得-4x=-3.系数化为-1,得x=34. 15.解:(1)移项、合并同类项,得1816[14(x -1)+5]+7=1.两边同时乘8,得16[14(x -1)+5]+7=8. 移项、合并同类项,得16[14(x -1)+5]=1.两边同时乘6,得14(x-1)+5=6.移项、合并同类项,得14(x-1)=1.两边同时乘4,得x-1=4.移项,得x=5. (2)移项,得1-6x 15+2x -15=1-x 6+2x+118.通分,得(1-6x )+3(2x -1)15=3(1-x )+(2x+1)18,即-215=4-x18.去分母,得-12=20-5x.移项,得5x=20+12.合并同类项,得5x=32. 系数化为1,得x=6.4.点拨:观察两个方程,都比较特殊,方程(1)有多重括号,可逐层去括号,但计算量较大,因此我们可以采用连续去分母、移项、合并同类项的变形方法;方程(2)采用去分母的方法很麻烦,我们通过观察分母的特点,将分母有倍数关系的结合在一起进行通分合并,则简便得多. 16.解:去分母,得16(2x-1)+12=9(2x-1), 移项,得16(2x-1)-9(2x-1)=-12, 合并同类项,得7(2x-1)=-12. 两边同除以7,得2x-1=-127. 移项,合并同类项,得2x=-57. 系数化为1,得x=-514.17.解:由14+5(3x -12 015)=12得3x-12 015=120.所以3+20(3x -12 015)=3+20×120=4. 18.619.解:将y=1代入方程,得2k+m 3-1-nk 6=2,去分母,得2(2k+m)-(1-nk)=12,整理得:(4+n)k+2m-1=12.因为m,n 为定值,上式对任意k 都成立,所以4+n=0,2m-1=12,解得n=-4,m=132. 20.解:由题意可知x=2是方程2x-1=x+a-2的解,把x=2代入,得2×2-1=2+a-2,所以a=3,把a=3代入原方程,得2x-13=x+33-2,去分母得2x-1=x+3-6,移项、合并同类项得x=-2.。
17.2.3配方法(二)(一元二次方程的解法)
平方根的意义: 如果x2=a,那么x= a. 完全平方式:式子a2±2ab+b2叫完全平方式,且
a2±2ab+b2 =(a±b)2.
概括总结
1.对于二次项系数不为1的一元二次方程, 用配方法求解时首先要怎样做 ?
首先要把二次项系数化为1
2.用配方法解一元二次方程的一般步骤:
1.化1:把二次项系数化为1(方程两边都除以二次项系 数);
用配方法解下列方程.
1.x2 – 2x = 3 解:x2 2x 1 3 1
3.3x2 +8x –3=0
(x 1)2 4
这个方程与前2个方程不
x 1 2
一样的是二次项系数不是
x1 3, x2 1
1,而是3.
2.
x2
3x
1 4
0
解:
x2
Байду номын сангаас
3x
1 4
基本思想是: 如果能转化为前2个方程
回顾与复习 2
配方法
用配方法解一元二次方程的步骤:
1.移项:把常数项移到方程的右边; 2.配方:方程两边都加上一次项系数一半的 平方;
3.变形:方程左边分解因式,右边合并同类项 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
随堂练习 1
你能行吗
4.x1
1 5
21
;
x2
1 5
21 .
下课了!
结束寄语
• 配方法是一种重要的数学方法— —配方法,它可以助你到达希望 的顶点.
• 一元二次方程也是刻画现实世界 的有效数学模型.
试一试
3.用配方法求2x2-7x+2的最小值