实验8 植物组织中可溶性糖含量的测定(蒽酮比色法)

合集下载

蒽酮比色法测定植物组织中总糖和可溶和性糖的含量

蒽酮比色法测定植物组织中总糖和可溶和性糖的含量

实验九蒽酮比色法测定植物组织中总糖和可溶和性糖的含量一、实验目的掌握蒽酮法测定总糖和可溶性糖含量的原理和方法二、实验原理蒽酮比色法是一个快速而简便的定糖方法。

酸可使糖类(如已糖基,戊醛糖及已糖醛酸)脱水生成糠醛,生成的糠醛或烃甲基糖醛与蒽酮脱水缩合,形成糠醛的衍生物,呈蓝绿色,该物质在620nm处有最大光吸收值。

在10~100ug范围内其他颜色的深浅与可溶性糖含量成正比。

蒽酮也可以和其他一些糖类发生反应,但显现的颜色不同。

当存在含有较多色氨酸蛋白质时,反应不稳定,呈现红色。

而对于上述特定的糖类物质,反映较稳定。

多糖和寡糖可用酸水解成单塘和蒽酮试剂反应,因此利用蒽酮法可测组织中总糖和可溶性糖。

这一种方法具有很高的灵敏度,糖含量在30ug左右时就能侧进行测定,所以可作为微量测糖之用。

一般样品少的情况下,采用这一方法比较合适。

三、仪器,试剂和材料1、仪器(1)分光光度计; (6)漏斗,漏斗架个6个(2)电子天平;(7)容量瓶:50ml2个;(3)三角瓶:50ml2个(8)移液管;(4)刻度具塞试管;10ml13支;(9)水浴锅。

(5)试管架,试管夹各2个;2、试剂(1)葡萄糖标准液:100ug/ml;(2)浓硫酸;(2)蒽酮试剂:0.2g蒽酮,溶于100ml浓流酸中,现当日配制使用。

3、材料小麦幼苗分蕖节或其植物的幼嫩组织(红薯)。

四、操作步骤1、葡萄糖标准曲线的制作取7支试管,按下表配制一系列不同浓度的葡萄糖溶液;管号 1 2 3 4 5 6 7葡萄糖标准液/mL 0 0.1 0.2 0.3 0.4 0.5 0.6 蒸馏水/mL 1.0 0.9 0.8 0.7 0.6 0.7 0.8 葡萄糖含量/ug 0 10 20 30 40 50 60 在每支试管中,加入蒽酮试剂4.0ml,迅速浸入冰水浴中冷却。

各加完后一起浸入沸水浴中,管口加盖玻璃球,以防蒸发。

自水浴重新煮沸起,准确煮沸10min取出,用流水冷却,室温放置10min,在620nm波长下比色。

实验8-可溶性总糖的测定(蒽酮法)

实验8-可溶性总糖的测定(蒽酮法)

实验8-可溶性总糖的测定(蒽酮法)实验目的:2. 了解可溶性总糖在不同食品中的含量。

实验原理:蒽酮法测定可溶性总糖的原理是:原理是将待测样品中的可溶性总糖利用酸性条件水解成葡萄糖,再将葡萄糖与蒽酮在酸性条件下反应生成红色产物,在545nm处比色,通过测量产物的吸光度计算出样品中可溶性总糖的含量。

实验步骤:1. 预处理样品称取25g待测样品,加入100mL蒸馏水,加热煮沸5min,冷却至室温,定容到500mL。

2. 酸水解取10mL待测样品,加热至沸腾,加入10mL 0.6mol/L HCl,再加入2mL 66% L-酒精溶液,沸腾10分钟,冷却至室温。

3. 测定葡萄糖含量取上述溶液10mL,加入20mL 蒸馏水,加入0.5g硫代硫酸钠,加1mL4%酚酞酸指示剂,用0.5mol/L NaOH标准溶液滴定至颜色从紫红色变成淡黄色,观察指示剂颜色变化,记下滴定所需的NaOH体积V1。

4. 去色取剩余的水解溶液(约50mL),加45mL蒸馏水,加入0.5g氯化钠,用3.48×10^-3mol/L 二硫代磺酸钠溶液滴定至橙色转变为淡黄色(V2)。

5. 比色取2mL去色溶液,加0.50mL 1%蒽酮溶液,加0.50mL 4%氢氧化钠溶液,加入烧杯中,隔水加热沸腾5分钟,冷却后用0.5mol/L HCl标准溶液掉定至颜色由深红色变成粉色(V3)。

6. 计算结果计算样品中可溶性总糖的含量(y):y=(V1-V2)×1000/6.9×V3 (单位:g/100g或mg/L)实验提示:1. 为了减小误差,应使用称量精度较高的电子天平。

2. 滴定时应慢慢加入标准溶液,用玻璃棒搅拌均匀,直到指示剂颜色变化停止。

3. 比色前需要将产物稳定,此步骤是较关键的实验步骤之一,需要加热沸腾不超过5分钟,并且不要在加热沸腾时将实验管口对准自己。

实验结果:利用蒽酮法测定了不同食品中的可溶性总糖的含量,样品1(西瓜)为0.58g/100g,样品2(草莓)为0.67g/100g,样品3(苹果)为0.49g/100g,样品4(香蕉)为0.59g/100g。

可溶性糖的测定(蒽酮比色法)

可溶性糖的测定(蒽酮比色法)

可溶性糖的测定——蒽酮比色法原理:可溶性糖与浓硫酸反应生成羟甲基糠醛,其与蒽酮生黄绿或蓝绿的糠醛衍生物,该物质在630nm(620)处有最大吸收峰,其浓度与可溶性糖的含量成正比。

试验用品:电子天平、分光光度计、恒温水浴锅、1mL,2mL,5mL 移液管各一支、容量瓶(根据需稀释倍数选择25或50mL)、10mL 刻度试管或离心管、试管架(别用胶的)、指型管(大一点的便于震荡混匀液体)、漏斗、滤纸、洗瓶试验药品:蒽酮、乙酸乙酯、分析纯蔗糖、浓硫酸(优级纯或分析纯)、蒸馏水试验样品:玉米叶(干样)标液及标曲配制:蒽酮-乙酸乙酯试剂:称取分析纯蒽酮1g溶于50mL乙酸乙酯中,贮于棕色瓶,至于黑暗中保存,如有结晶析出可加热溶解。

1%蔗糖标准液:精确称取1.000g分析纯蔗糖加少量蒸馏水溶解后转入100mL容量瓶中,加0.5mL浓硫酸,用蒸馏水定容至刻度线;100mg/L蔗糖标准液:精确吸取1%蔗糖标准液1mL,加入100mL容量瓶,加水至刻度线。

标曲:项目管号0 1 2 3 4 5各管中蔗糖含量(ug) 0 20 40 60 80 100 100mg/L蔗糖液(ml)0.0 0.2 0.4 0.6 0.8 1.0 蒸馏水(ml) 2.0 1.8 1.6 1.4 1.2 1.0 蒽酮乙酸乙酯试剂(ml)0.5 0.5 0.5 0.5 0.5 0.5浓硫酸(ml) 5 5 5 5 5 5 吸光度A630样品测定:称取0.05g样品于干燥的10mL刻度试管中,加蒸馏水10mL后放入水浴锅内沸水浴30min,再过滤到50mL容量瓶内混匀。

取干燥的指型管分别加入1.5mL蒸馏水、0.5mL蒽酮乙酸乙酯试剂、0.5mL样品溶液和5mL浓硫酸快速震荡摇匀后冷至室温比色(摇匀后反应10min左右可放入冷水中冷却)。

结果计算:可溶性糖含量=Mx×V×D×100V1×W×103Mx:标准溶液查得的糖含量(ug)V :样品总体积(mL)V1:测定时的取用体积(mL)D :稀释倍数(mg)103:样品重量单位由mg换算成ug的倍数。

植物体内可溶性糖含量的测定

植物体内可溶性糖含量的测定

植物体内可溶性糖含量的测定(蒽酮法)糖类物质是构成植物体的重要组成成分之一,也是新陈代谢的主要原料和贮存物质。

不同载培条件,不同成熟度都可以影响水果、蔬菜中糖类的含量。

因此对水果、蔬菜中可溶性糖的测定,可以了解和鉴定水果、蔬菜品质的高低。

一、目的:糖类物质是构成植物体的重要组成成分之一,也是新陈代谢的主要原料和贮存物质。

不同载培条件,不同成熟度都可以影响水果、蔬菜中糖类的含量。

因此对水果、蔬菜中可溶性糖的测定,可以了解和鉴定水果、蔬菜品质的高低。

二、原理糖类遇浓硫酸脱水生成糖醛或其衍生物,反应如下:糠醛或羟甲基糠醛进一步与蒽酮试剂缩合产生蓝绿色物质,其在可见光区620nm波长处有最大吸收,且其光吸收值在一定范围内与糖的含量成正比关系。

此法可用于单糖、寡糖和多糖的含量测定,并具有灵敏度高,简便快捷,适用于微量样品的测定等优点。

三、实验材料、仪器及试剂1.材料:植物组织叶片2.仪器:分光光度计恒温水箱20ml具塞刻度试管(3支)漏斗100ml 容量瓶刻度试管试管架剪刀研钵3.试剂:(1)200μg/ml标准葡萄糖:AR级葡萄糖100mg,蒸馏水溶解,定容至500ml。

(2)蒽酮试剂:1g蒽酮,用乙酸乙酯溶解,定容至50ml,棕色瓶避光处贮藏;(3)浓硫酸四、实验方法1.葡萄糖标准曲线的制作取6支20ml具寒试管,编号,按下表数据配制一系列不同浓度的标准葡萄糖溶液。

在每管中均加入0.5ml蒽酮试剂,再缓慢地加入5ml浓H2SO4,摇匀后,打开试管塞,置沸水浴中煮沸10分钟,取出冷却至室温,在620nm波长下比色,测各管溶液的光密度值(O D),以标准葡萄糖含量为横坐标,光密度值为纵坐标,作出标准曲线。

2.样品中可溶性糖的提取称取1克叶片,剪碎,置于研钵中,加入少量蒸馏水,研磨成匀浆,然后转入20ml刻度试管中,用10ml蒸馏水分次洗涤研钵,洗液一并转入刻度试管中。

置沸水浴中加盖煮沸10分钟,冷却后过滤,滤液收集于100ml容量瓶中,用蒸馏水定容至刻度,摇匀备用。

可溶性糖

可溶性糖

实验15 植物组织中可溶性糖含量的测定(蒽酮法)一、目的学会植物组织中可溶性糖含量的测定方法,了解不同的植物组织可溶性糖含量的高低。

二、材料用具及仪器药品1.材料:水果或蔬菜2.仪器用具:分光光度计、天平、恒温水浴锅、研钵、三角烧瓶、烧杯、容量瓶、试管、移液管、漏斗3.药品:乙醚、草酸钠、饱和醋酸铅标准葡萄糖母液:在电子天平上称取100mg分析纯无水葡萄糖,溶于蒸馏水中,定容至500ml,则得每ml 含糖量为200ug的标准溶液。

蒽酮试剂:称取1g蒽酮结晶粉末,溶解于1000ml稀硫酸溶液中即得。

[稀硫酸溶液由760ml浓硫酸(比重1.84)稀释成1000ml而成]三、原理植物在个体发育的各个时期代谢活动都发生相应的变化,碳水化合物的代谢也不例外,其含量也随之发生变化,本实验介绍的是蒽酮比色法,糖在硫酸存在下生成糠醛,糠醛再和蒽酮作用形成蓝绿色的缩合物,其颜色的深浅代表着糖含量的高低。

H2SO4糖糠醛脱水糠醛+蒽酮蓝绿色的缩合物四、方法步骤1.标准曲线的制作。

取标准糖溶液将其稀释成一系列不同浓度的溶液各10毫升,浓度分别为每毫升含糖0、25、50、75、100、120、150、200微克。

将试管编号,依次将每管中加入1毫升上述葡萄糖标准溶液及5毫升的蒽酮试剂,震荡使之完全混合,在沸水浴中煮沸10分钟,取出冷却,然后在分光光度计波长620纳米下比色,测定各溶液的光密度,以光密度为纵坐标,糖溶液浓度为横坐标,在坐标纸上绘出标准曲线。

2.测定样品的可溶性糖含量称取重量5g的新鲜植物叶子,于研钵中仔细研磨,研磨时加乙醚少许,直至为止,倒入烧杯中,用热水(70o C)洗涤研钵,洗涤液并入烧杯中,再加入蒸馏水约30~40ml。

将烧杯放在水浴锅上加热,保持温度70~80o C半小时,冷却后一滴一滴地加入饱和中性醋酸铅以除去混合液中的蛋白质,直至不再形成白色沉淀为止,然后将此混合物连同残渣一并洗水100ml容量瓶中,加水至刻度,充分摇荡,用漏斗过滤到三角烧瓶中,瓶中事先放有少量(约0.2——0.4g)的草酸钠粉末,以除去滤液中过量的醋酸铅,使生成草酸铅沉淀,再行过滤,所得透明滤液即为可溶性糖提取液。

植物组织中可溶性糖含量的测定实验报告

植物组织中可溶性糖含量的测定实验报告

植物组织中可溶性糖含量的测定实验报告10科四谭晓东20102501024一、实验目的掌握蒽酮比色法测定可溶性糖含量的提取和方法原理;掌握分光光度计中标准曲线制作的使用程序。

二、实验原理植物组织中的糖(包括还原糖和非还原糖)可以与浓硫酸反应生成糠醛,糠醛和蒽酮反应可以生成蓝绿色络合物,在625nm处有最大光吸收值。

三、实验材料大白菜叶片与叶柄四、实验步骤1. 可溶性糖的提取大白菜叶柄和叶片各0.5g鲜重,研磨+10ml 80%乙醇80度水浴30mi n过滤后定容至25ml2.标准葡萄糖液的配制(200ug/ml)葡萄糖浓度020*********(ug/ml)标准匍萄糖液吸00.10.20.30.40.5取量(ml)蒸馏水(ml)10.90.80.70.60.5蒽酮(ml)5混匀,沸水浴10min,冷却后在625nm下比色3.样品液显色和比色0.1ml提取液+0.9ml蒸馏水冷却后对照标准曲线比色五、实验结果1.葡萄糖标准曲线标准方程:y=184.6x-1.973 R=0.99402. 根据标准曲线测到,叶片的吸光度是0.249,葡萄糖浓度为43.96ug/ml,含糖量为13.82% ;叶柄的吸光度为0.276,葡萄糖浓度为49.01ug/ml,含糖量为15.41%六、分析与讨论植物体内的可溶性糖和淀粉均是光合作用产物。

可溶性糖以蔗糖为主,是植物糖类运输的主要形式,其次是葡萄糖、果糖、麦芽糖、戊糖和糖苷等。

可溶性糖在硫酸作用下生成糖醛或羟甲基糠醛化合物,糖醛或羟甲基糠醛可与蒽酮作用形成蓝绿色络合物(糖醛衍生物),在一定波长范围内,其颜色的深浅与糖含量有定量关系,在625 nm波长下的吸光值与可溶性糖含量成正比。

由于蒽酮与可溶性糖反应的呈色强度随时间变化,故必须在反应后立即在同一时间内比色。

该实验方法简便,灵敏度高,可溶性糖含量在30卩g左右就能进行测定,所以可作为测定微量可溶性糖之用。

该法的特点是几乎可以测定所有的碳水化合物,不但可以测定戊糖与己糖含量,而且可以测所有寡糖类和多糖类,其中包括淀粉、纤维素等(因为反应液中的浓硫酸可以把多糖水解成单糖而发生反应),所以用蒽酮法测出的碳水化合物含量,实际上是溶液中全部可溶性碳水化合物总量.在没有必要细致划分各种碳水化合物的情况下,用蒽酮法可以一次测出总量,省去许多麻烦,因此,有特殊的应用价值•但在测定水溶性碳水化合物时,则应注意切勿将样品的未溶解残渣加入反应液中,不然会因为细胞壁中的纤维素、半纤维素等与蒽酮试剂发生反应而增加了测定误差.此外,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅,故测定糖的混合物时,常因不同糖类的比例不同造成误差,但测定单一糖类时,则可避免此种误差。

蒽酮比色法测定可溶性糖

蒽酮比色法测定可溶性糖

实验三蒽酮比色法测定可溶性糖
一、原理:糖在浓硫酸作用下可经脱水反应生成糖醛,并能进一步与蒽酮反应生成蓝绿色的糖醛衍生物,在一定浓度范围内,其颜色深浅与浓度大小成正比。

二、材料与仪器
植物叶片、分光光度计、水浴锅、漏斗、容量瓶、烧杯
三、步骤
1、取植物叶片0.15g,放入刻度试管中,加蒸馏水10ml。

2、将试管置于沸水中加热提取30min。

3、将提取液过滤,定容于25ml容量瓶。

4、取0.5ml提取液,依次加入1.5ml蒸馏水、0.5ml蒽酮乙酸乙酯溶液和5ml硫酸。

5、沸水浴保温1min。

6、630nm波长下,测定溶液吸光度值。

四、结果计算
可溶性糖含量(mg/g)=217.37X−3.0742∗25
w∗1000∗0.5。

植物组织中可溶性糖含量测定

植物组织中可溶性糖含量测定

实验报告课程:植物生理学实验题目:植物组织中可溶性糖含量的测定一.【实验原理】植物的代谢活动随着植物的发育过程而不断发生着变化,碳水化合物的代谢也不例外,其含量也随之发生变化,在种子萌发过程中,在光合作用受到影响时和受到外界环境的胁迫等情况下植物可溶性糖含量都会发生变化。

了解植物可溶性糖含量的变化,在生理上与实践上都有重要意义。

蒽酮比色法是常用的测定可溶性五碳糖和六碳糖的方法,糖在硫酸的作用下脱水生成糠醛,糠醛再与蒽酮作用形成一种绿色的络合物,在一定的浓度范围内颜色的深浅与糖含量成正比,可以用比色法测定。

该法简便,但没有专一性,绝大部分的碳水化合物都能与蒽酮反应产生颜色。

二.【实验步骤】1、标准曲线的绘制2、可溶性糖的提取3、提取液的显色及比色三.【实验结果】实验中测得的数据如下所示:若以1号管调零,处理后数据如下:作出标准曲线如下:将y=0.261,0.269,0.247分别代入上述函数公式,得到:x=45.000,46.379,42.586;即三样品溶液中糖浓度分别为:45.000μg/mL,46.379μg/mL,42.586μg/mL。

样品中可溶性糖含量(m g·g-1)= A × c/(W × 103)式中,A——植物样品稀释后的体积(mL);C——提取液的含糖量(μg/mL);W——植物组织鲜重(g)。

四.【讨论】1、误差分析实验中的误差来源主要有:(1)植物材料称取的误差;(2)植物样品在转移过程中的损失;(3)最后过滤得到的提取液中尚有未除尽的醋酸铅;(4)移液管未润洗等等。

2、注意事项(1)样品提取液的显色应与标准曲线的绘制同步;(2)比色时以蒸馏水调零;(3)醋酸铅一定要除尽;(4)在样品转移过程中,尽量减少材料的损失;(5)进行第二次过滤时要更换滤纸,并将漏斗洗净。

3、植物组织中糖的测定方法还有很多种,举例说明它们的原理和优缺点。

(1)苯酚-硫酸法原理:糖在浓硫酸作用下,脱水生成的糠醛或羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10~100mg范围内其颜色深浅与糖的含量成正比,且在485nm 波长下有最大吸收峰,故可用比色法在此波长下测定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验方案一、实验目的通过实验,掌握测定萝卜品质的方法(一)萝卜外部形态的测定1、实验材料取鲜样3个∕小区直尺、蒸馏水、笔、记录本、吸水纸2、实验方法.用自来水将各组萝卜洗净后,再用蒸馏水洗涤,擦干表面水分.每个小区取3个重复,用电子天平称量每株的鲜重,用直尺测量植株的茎长、茎粗、叶长,取平均值作为指标值实验(二) 植物体内可溶性糖含量的测定(蒽酮法)一、实验目的了解蒽酮法测定可溶性糖含量的原理;掌握分光光度计的使用二、实验原理糖类物质是构成植物体的重要组成成分之一,也是新陈代谢的主要原料和贮存物质。

不同载培条件,不同成熟度都可以影响水果、蔬菜中糖类的含量。

因此对水果、蔬菜中可溶性糖的测定,可以了解和鉴定水果、蔬菜品质的高低。

蒽酮比色定糖法是一个快速而方便的定糖方法,在强酸性条件下,蒽酮可以与游离的或多糖中存在的己糖、戊糖及己糖醛酸(还原性和非还原性)作用生成蓝绿色的糖醛衍生物,其颜色的深浅与糖的含量在一定范围内成正比。

蒽酮也可以和其他一些糖类发生反应,但显现的颜色不同。

当存在含有较多色氨酸的蛋白质时,反应不稳定,呈现红色。

上述特定的糖类物质,反应较稳定。

该法特点:灵敏度高,测定量少,快速方便。

三、材料、仪器及试剂1.材料:植物种子、白菜叶、柑桔2.仪器:分光光度计;恒温水箱; 20ml具塞刻度试管(3支)漏斗;100ml容量瓶;刻度试管;试管架;剪刀;研钵3.试剂(1)200μg/ml标准葡萄糖:AR级葡萄糖100mg,蒸馏水溶解,定容至500ml。

(2)蒽酮试剂:1g蒽酮,用乙酸乙酯溶解,定容至50ml,棕色瓶避光处贮藏;(3)浓硫酸四、实验方法1.葡萄糖标准曲线的制作取6支20ml具寒试管,编号,按下表数据配制一系列不同浓度的标准葡萄糖溶液。

在每管中均加入0.5ml蒽酮试剂,再缓慢地加入5ml浓H2SO4,摇匀后,打开试管塞,置沸水浴中煮沸10分钟,取出冷却至室温,在620nm波长下比色,测各管溶液的光密度值(OD),以标准葡2.称取1克白菜叶,剪碎,置于研钵中,加入少量蒸馏水,研磨成匀浆,然后转入20ml刻度试管中,用10ml蒸馏水分次洗涤研钵,洗液一并转入刻度试管中。

置沸水浴中加盖煮沸10分钟,冷却后过滤,滤液收集于100ml容量瓶中,用蒸馏水定容至刻度,摇匀备用。

3.糖含量测定用移液管吸收1ml提取液于20ml具塞刻度试管中,加1ml水和0.5ml 蒽酮试剂。

再缓慢加入5ml浓H2SO4(注意:浓硫酸遇水会产生大量的热!),盖上试管塞后,轻轻摇匀,再置沸水浴中10分钟(比色空白用2ml蒸馏水与0.5ml蒽酮试剂混合,并一同于沸水浴保温10分钟)。

冷却至室温后,在波长620nm下比色,记录光密度值。

查标准曲线上得知对应的葡萄糖含量(μg)。

五、结果计算样品含糖量(g/100g鲜重)=查表所得糖含量(μg)×稀释倍数×100/样品重(g)×106六、注意事项(1)加浓H2SO4时应缓慢加入,以免产生大量热量而爆沸,灼伤皮肤,如出现上述情况,应迅速用自来水冲洗。

(2)水浴加热时应打开试管塞。

实验(三)维生素C的定量测定(2,6-二氯酚靛酚滴定法)一、目的要求:(1)学习并掌握定量测定维生素C的原理和方法。

(2)了解蔬菜、水果中维生素C含量情况。

二、实验原理:维生素C是人类营养中最重要的维生素之一,缺少它时会产生坏血病,因此又称为抗坏血酸(ascorbic acid)。

它对物质代谢的调节具有重要的作用。

近年来,发现它还有增强机体对肿瘤的抵抗力,并具有化学致癌物的阻断作用。

维生素C是具有L系糖型的不饱和多羟基物,属于水溶性维生素。

它分布很广,植物的绿色部分及许多水果(如橘子、苹果、草莓、山楂等)、蔬菜(黄瓜、洋白菜、西红柿等)中的含量更为丰富。

维生素c具有很强的还原性。

它可分为还原性和脱氢型。

金属铜和酶(抗坏血酸氧化酶)可以催化维生素C氧化为脱氢型。

根据它具有还原性质可测定其金属含量。

还原型抗坏血酸能还原染料2,6-二氯酚靛酚(DCPIP),本身则氧化为脱氢型。

在酸性溶液中,2,6-二氯酚靛酚呈红色,还原后变为无色。

因此,当用此染料滴定含有维生素C的酸性溶液时,维生素C 尚未全部被氧化前,则滴下的染料立即被还原成无色。

一旦溶液中的维生素C已全部被氧化时,则滴下的染料立即使溶液变成粉红色。

所以,当溶液从无色变成微红色时即表示溶液中的维生素C刚刚全部被氧化,此时即为滴定终点。

如无其它杂质干扰,样品提取液所还原的标准染料量与样品中所含还原型抗坏血酸量成正比。

本法用于测定还原型抗坏血酸,总抗坏血酸的量常用2,4-二硝基苯肼法和荧光分光光度法测定。

三、试剂和器材:(一)试剂2%草酸溶液: 草酸2g溶于100ml蒸馏水中。

1%草酸溶液: 草酸1g 溶于100ml 蒸馏水中。

标准抗坏血酸溶液(1mg/ml ): 准确称取100mg 纯抗坏血酸(应为洁白色,如变为黄色则不能用)溶于1%草酸溶液中,并稀释至100ml ,贮于棕色瓶中,冷藏。

最好临用前配制。

0.1% 2,6-二氯酚靛酚溶液: 250mg 2,6-二氯酚靛酚溶于150ml 含有52mg NaHCO 3的热水中,冷却后加水稀释至250ml ,贮于棕色瓶中冷藏(4℃)约可保存一周。

每次临用时,以标准抗坏血酸溶液标定。

(二)材料辣椒、苹果、卷心菜等。

(三)器材锥形瓶(100ml ),组织捣碎器,吸量管(10ml ),漏斗,滤纸,微量滴定管(5ml ),容量瓶(100ml ,250ml )。

四、操作方法: 1.提取水洗干净整株新鲜蔬菜或整个新鲜水果,用纱布或吸水纸吸干表面水分。

然后称取20g ,加入20ml 2%草酸,用研钵研磨,四层纱布过滤,滤液备用。

纱布可用少量2%草酸洗几次,合并滤液,滤液总体积定容至50ml 。

2.标准液滴定准确吸取标准抗坏血酸溶液1ml 置100ml 锥形瓶中,加9ml 1%草酸,用微量滴定管以0.1% 2,6-二氯酚靛酚溶液滴定至淡红色,并保持15s 不褪色,即达终点。

由所用染料的体积计算出1ml 染料相当于多少毫克抗坏血酸(取10ml 1%草酸作空白对照,按以上方法滴定)。

3.样品滴定准确吸取滤液两份,每份10ml, 分别放入2个锥形瓶内,滴定方法同前。

另取10ml 1%草酸作空白对照滴定。

4.计算(-)100C mg/100g A B V V C TD W ⨯⨯⨯⨯维生素含量(样品)=式中:V A 为滴定样品所耗用的染料的平均毫升数;V B 为滴定空白对照所耗用的染料的平均毫升数; C 为样品提取液的总毫升数;D 为滴定时所取的样品提取液毫升数;T 为1ml 染料能氧化抗坏血酸毫克数(由操作二计算出); W 为待测样品的重量(g )。

五、注意事项:1.某些水果、蔬菜(如橘子、西红柿等)浆状物泡沫太多,可加数滴丁醇或辛醇。

2.整个操作过程要迅速,防止还原型抗坏血酸被氧化。

滴定过程一般不超过2min 。

滴定所用的染料不应小于1ml 或多于4ml ,如果样品含维生素C 太高或太低时,可酌情增减样液用量或改变提取液稀释度。

3.本实验必须在酸性条件下进行。

在此条件下,干扰物反应进行得很慢。

4.2%草酸有抑制抗坏血酸氧化酶的作用,而1%草酸无此作用。

5.干扰滴定因素有:若提取液中色素很多时,滴定不易看出颜色变化,可用白陶土脱色,或加1ml 氯仿,到达终点时,氯仿层呈现淡红色。

Fe 2+可还原二氯酚靛酚。

对含有大量Fe 2+的样品可用8%乙酸溶液代替草酸溶液提取,此时Fe 2+不会很快与染料起作用。

样品中可能有其它杂质还原二氯酚靛酚,但反应速度均较抗坏血酸慢,因而滴定开始时,染料要迅速加入,而后尽可能一点一点地加入,并要不断地摇动三角瓶直至呈粉红色,于15s内不消退为终点。

6.提取的浆状物如不易过滤,亦可离心,留取上清液进行滴定。

六、思考题:1.为了测得准确的维生素C含量,实验过程中都应注意哪些操作步骤?为什么?2.试简述维生素C的生理意义。

实验(四)蛋白质含量测定(考马斯亮蓝G-250法)一、目的1.学习一种蛋白质染色测定的方法2.掌握考马斯亮蓝法测定蛋白质含量的基本原理和方法二、原理蛋白质的存在影响酸碱滴定中所用某些指示剂的颜色变化,从而改变这些染料的光吸收。

在些基础上发展了蛋白质染色测定方法。

涉及的指示剂有甲基橙、考马斯亮蓝、溴甲酚绿和溴甲酚紫。

目前广泛使用的染料是考马斯亮蓝。

考马斯亮蓝G-250在酸性溶液中为棕红色,当它与蛋白质通过范德华键结合后,变为蓝色,且在蛋白质一定浓度范围内符合比尔定律,可在595nm处比色测定。

2~5分钟即呈最大光吸收,至少稳定1小时。

在0.01~1.0 mg蛋白质/ml范围内均可。

该法操作简便迅速,消耗样品量少,但不同蛋白质之间差异大,且标准曲线线性差。

高浓度的Tris、EDTA、尿素、甘油、蔗糖、丙酮、硫酸铵和去污剂时测定有干扰。

缓冲液浓度过高时,改变测定液pH值会影响显色。

考马斯亮蓝染色能力强,比色杯不洗干净会影响光吸收值,不可用石英怀测定。

三、器材与试剂1.仪器(1)分析天平;(2)具塞刻度试管10ml×8;(3)吸管0.lml×I,lml×Z,5ml×I;(4)研钵;(5)漏斗;(6)离心管10ml;(7)容量瓶10ml;(8)离心机;(9)721型分光光度计2.试剂(1)标准蛋白质溶液称取10mg牛血清白蛋白,溶于蒸馏水并定容至100ml,制成100 pg/ml的原液。

(2)考马斯亮蓝G-250蛋白试剂称取100mg考马斯亮蓝G-250,溶于50ml 90%乙醇中,加入85%(m/v)的磷酸100ml,最后用蒸馏水定容到1000ml。

此溶液在常温下可放置一个月。

3.材料植物种子四、操作步骤1.标准曲线的制作取6支具塞试管,编号后,按下表加入试剂。

盖上塞子,摇匀。

放置2min后在595 nm波长下比色测定(比色应在l h内完成)。

以牛血清白蛋白含量(μg)为横坐标,以吸光度为纵坐标,绘出标准曲线。

2.样品中蛋白质含量的测定(1)准确称取约200mg绿豆芽下胚轴,放入研钵中,加入5ml蒸馏水在冰浴中研成匀浆,离心(4000r /min,10min),将上清液倒入10ml容量瓶,再向残渣中加入2ml蒸馏水,悬浮后再离心10min,合并上清液,定至刻度。

(2)另取1支具塞试管,准确加入0.l ml样品提取液,再加入0.9 ml蒸馏水,5ml考马斯亮蓝G-250试剂,充分混合,放置2min后,以标准曲线1号试管做参比,在595 nm波长下比色,记录吸光度。

3.结果处理根据所测样品提取液的吸光度,在标准曲线上查得相应的蛋白质含量(μg),按下式计算:样品蛋白质含量(μg/g鲜重)=(查得的蛋白质含量(μg)×提取液总体积(ml))/(样品鲜重(g)×测定时取用提取液的体积(ml))六、注意事项1.由于染料本身的两种颜色形式的光谱有重叠,试剂背景值会因与蛋白质结合的染料增加而不断降低,因而当蛋白质浓度较大时,标准曲线稍有弯曲,但直线弯曲程度很轻,不致影响测定2.测定工作应在蛋白质染料混合后2min开始,力争1hr内完成,否则会因蛋白质一染料复合物发生凝集沉淀而影响测定结果。

相关文档
最新文档