CMOS比较器解读
高速CMOS钟控比较器的设计

p we u py Wa i l td b pc .Th e ut fsmu ain s o ta tc n a h e ear s l t n o . o r s p l s smuae y Hs ie er s lso i l t h w ti a c iv e oui f0 3 mV ta5 0 o h o a 0 MHzc o k r t lc ae,a d t ep we o s mp in i ny 2 . x .T e cru tc n b s d i g s e d Fl h ADC d sg . n h o rc n u t so l 6 6 l o W h ic i a e u e nhih—p e a s ei n
Absr c : B s d o r a l e —ac h o y.ah g s e d co k d c mp rtrwa e in d.I c n it fa p e mp i t a t a e n p e mp i rlth t e r i f ih-p e l c e o aao sd sg e t o ssso ra l—
i f r,a d cso ic i a d o tu u fr a e n0. 8 Im MI e e iin cr u t n u p tb fe .B s d o 1 x S C CMOS p c s h o a ao ic i wi . r e s,t e c mp r trcru t t a 1 8 V o h
一种低失调CMOS比较器设计

件 失 配 ,使 得 比较 器 的 输 出不 等 ,通
过 这 个 输 出差 值 调 整 比较 器 输 入 端 ,
尽 量 使 比较 器 输 出相 等 。 图 2为 图 1 调 消 除 电 路 的 时序 , 失
当 为 高 电平 时 ,开 关 l , ,岛 和
收 稿 日期 t 0 50 .1 2 0 —80 修 订 日期 : 20 —2 1 060 —1 基 金 项 目 t数字 电视 调 谐 器 专用 芯 片及 产 品 产 业 化 专 项项 目资 助 ; 国 家 自然 科 学 基 金 资 助 项 目 ( 0 7 0 8 6 16 1 )
较 器 通 常 的 失调 误 差 大 约 为 5 mV[ 为 了满 足 高 精 度 的模 数 转 换 器 ( 0 引, ADC)设计 , 必 须 对 比较 器进
行 失调 消 除 。通 常 的 失调 消 除 技 术 有 输 入 失 调 存 储 、输 出 失 调 存储 【、 电 阻激 光 修 正 、反馈 自调 整 。 4 ] J
文章 编 号 : 10 —2 9(0 7 0 ・0 10 0 70 4 2 0 ) 1 5・4 0
电路与系统学报
J OUR NAL RCUI OF CI TS AND YS EM S S T
VO .2 1 1
No 1 .
F bur, 0 7 e ray 2 0
一
种低 失调C MOS比较 器设计
间和 温 度 的稳 定 性 。这 种 校 准 方 法 具 有 芯 片 面 积 小 、不 需 外 加 芯 片 外 元 件 、 比较 器 可 以连 续 性 工作 等
优 点 ,缺 点 是 需 要校 准 工序 ,增 加 成 本 。文 献 [】 出 的反 馈 自调 整 失 配 校 准 方 式 可 以根据 电路 对温 度 5提 和 时 间稳 定 性 的要 求 ,调 整 自校 准 周 期 ,使 得 比较 器 获 得 稳 定 的较 小 的输 入 失 调 ,缺 点 是 占用 芯 片面 积 较 大 。本 文 从提 高 比较 器 电路 精 度 和速 度 出 发 ,介 绍 了一 种 比较 器 失调 消 除 技 术 。
各种电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML, GTL, HSTL, SSTL.......)

各种电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML, GTL,HSTL, SSTL.......)ECL电路是射极耦合逻辑(Emitter Couple Logic)集成电路的简称与TTL电路不同,ECL电路的最大特点是其基本门电路工作在非饱和状态所以,ECL电路的最大优点是具有相当高的速度这种电路的平均延迟时间可达几个毫微秒甚至亚毫微秒数量级,这使得ECL集成电路在高速和超高速数字系统中充当无以匹敌的角色。
ECL电路的逻辑摆幅较小(仅约 0.8V ,而 TTL 的逻辑摆幅约为2.0V ),当电路从一种状态过渡到另一种状态时,对寄生电容的充放电时间将减少,这也是 ECL电路具有高开关速度的重要原因。
但逻辑摆幅小,对抗干扰能力不利。
由于单元门的开关管对是轮流导通的,对整个电路来讲没有“截止”状态,所以单元电路的功耗较大。
从电路的逻辑功能来看, ECL 集成电路具有互补的输出,这意味着同时可以获得两种逻辑电平输出,这将大大简化逻辑系统的设计。
ECL集成电路的开关管对的发射极具有很大的反馈电阻,又是射极跟随器输出,故这种电路具有很高的输入阻抗和低的输出阻抗。
射极跟随器输出同时还具有对逻辑信号的缓冲作用。
在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。
但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。
1. 几种常用高速逻辑电平1.1LVDS电平LVDS(Low Voltage Differential Signal)即低电压差分信号,LVDS 接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。
LVDS的典型工作原理如图1所示。
最基本的LVDS器件就是LVDS驱动器和接收器。
LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。
基于CMOS的三输入非一致电路

未知驱动探索,专注成就专业 1 基于CMOS的三输入非一致电路 概述 电路设计中经常会遇到需要实现多输入功能的情况,而三输入非一致电路是其中一种常见的电路设计。CMOS(互补金属氧化物半导体)技术被广泛应用于各种数字电路设计中,因为它具有低功耗、高密度、高可靠性等优点。本文将详细介绍基于CMOS技术的三输入非一致电路的设计原理、工作原理、特点和应用。
设计原理 三输入非一致电路是一种多输入门电路,它可以接受三个输入信号并产生一个非一致输出信号。在CMOS技术中,使用NMOS(N沟道金属氧化物半导体)和PMOS(P沟道金属氧化物半导体)晶体管实现逻辑门功能。
CMOS三输入非一致电路的设计原理基于电流比较法。当三个输入信号中至少有一个为高电平(逻辑1)时,输出信号为低电平(逻辑0)。只有当所有三个输入信号均为低电平时,输出信号才为高电平。 未知驱动探索,专注成就专业
2 工作原理
CMOS三输入非一致电路的工作原理是由一组输入级、一个逻辑电路和一个输出级组成。 - 输入级:接收三个输入信号,并将其转化为高电平或低电平的信号输入给逻辑电路。 - 逻辑电路:通过三个输入信号的电流比较来确定输出信号的电平。 - 输出级:将逻辑电路的输出信号变换为高电平或低电平的结果输出。
CMOS电路中的NMOS和PMOS晶体管起到互补的作用。当输入信号为低电平时,NMOS导通,PMOS截止;当输入信号为高电平时,NMOS截止,PMOS导通。在CMOS三输入非一致电路中,如果至少有一个输入信号为高电平,则通过NMOS的电流流过某个分支,使得输出电平被拉低为低电平。只有当所有输入信号均为低电平时,输出电平才保持高电平。
特点 CMOS三输入非一致电路具有以下几个特点: 1. 多输入功能:能够接受三个输入信号,并产生一个非一致的输出信号。 2. 低功耗:CMOS电路由于使用的是互补的NMOS和PMOS晶体管,只有在切换时才会产生瞬态功耗,静态功耗几乎没有。 3. 高密度:CMOS电路中的晶体管布局紧密,能够在同一芯片上集成大量的功能。 4. 高可靠性:CMOS电路具有较高的抗未知驱动探索,专注成就专业 3 电磁干扰能力和抗射频干扰能力。 5. 快速响应:CMOS电路具有快速的切换速度和较低的延迟。
模拟cmos集成电路设计知识点总结

模拟cmos集成电路设计知识点总结模拟CMOS集成电路设计是一个涉及多个学科领域的复杂课题,包括电子工程、物理、材料科学和计算机科学等。
以下是一些关键知识点和概念的总结:1. 基础知识:半导体物理:理解半导体的基本性质,如本征半导体、n型和p型半导体等。
MOSFET(金属-氧化物-半导体场效应晶体管)工作原理:理解MOSFET的基本构造和如何通过电压控制电流。
2. CMOS工艺:了解基本的CMOS工艺流程,包括晶圆准备、热氧化、扩散、光刻、刻蚀、离子注入和退火等步骤。
理解各种工艺参数对器件性能的影响。
3. CMOS电路设计:了解基本的模拟CMOS电路,如放大器、比较器、振荡器等。
理解如何使用SPICE(Simulation Program with Integrated Circuit Emphasis)进行电路模拟。
4. 噪声:理解电子器件中的噪声来源,如热噪声、散粒噪声和闪烁噪声等。
了解如何减小这些噪声的影响。
5. 功耗:理解CMOS电路中的功耗来源,如静态功耗和动态功耗。
了解降低功耗的方法,如电源管理技术和低功耗设计技术。
6. 性能优化:理解如何优化CMOS电路的性能,如提高速度、减小失真和提高电源效率等。
7. 可靠性问题:了解CMOS电路中的可靠性问题,如闩锁效应和ESD(静电放电)等。
8. 版图设计:了解基本的版图设计规则和技巧,以及如何使用EDA(Electronic Design Automation)工具进行版图设计和验证。
9. 测试与验证:理解如何测试和验证CMOS集成电路的性能。
10. 发展趋势与挑战:随着技术的进步,模拟CMOS集成电路设计面临许多新的挑战和发展趋势,如缩小工艺尺寸、提高集成度、应对低功耗需求等。
持续关注最新的研究和技术进展是非常重要的。
以上是对模拟CMOS集成电路设计的一些关键知识点的总结,具体内容可能因实际应用需求和技术发展而有所变化。
深入学习这一领域需要广泛的知识基础和持续的研究与实践。
两级cmos 反相器 低电压检测电路

一、概述在集成电路领域中,低电压检测电路一直是一个重要的研究课题。
特别是在现代便携设备如智能手机、平板电脑等电子产品中,由于电池技术的限制,对于电池电压的监测和管理变得尤为重要。
在这个背景下,两级CMOS反相器低电压检测电路作为一种常用的设计方案,受到了广泛的关注。
二、两级CMOS反相器低电压检测电路的原理1. CMOS反相器CMOS(Complementary Metal Oxide Semiconductor)反相器是由P型和N型MOS管共同组成的,具有低功耗、高噪声容限和良好的抗干扰性能等特点。
在低电压检测电路中,CMOS反相器常被用作电压比较器,用于监测输入电压是否低于某一设定阈值。
2. 两级CMOS反相器低电压检测电路两级CMOS反相器低电压检测电路是通过连接两个CMOS反相器来实现对电压的精确监测。
第一个CMOS反相器负责比较输入电压与参考电压,输出一个中间电平的信号;第二个CMOS反相器再将这个中间信号与另一电压比较,最终输出一个二值化的低电压检测结果。
通过使用两级CMOS反相器,可以提高电路的稳定性和准确性。
三、两级CMOS反相器低电压检测电路的设计与优化1. 电路参数的选择在设计两级CMOS反相器低电压检测电路时,需要合理选择CMOS 管的宽度、长度比,以及工作电压等参数。
这些参数的选择直接影响了电路的功耗、速度和噪声等性能指标。
通过对这些参数进行合理调整和优化,可以提高电路的性能表现。
2. 电路的失调和噪声分析由于实际制造工艺的不确定性,CMOS反相器在工作时可能存在一定的失调和噪声。
在设计两级CMOS反相器低电压检测电路时,需要进行相应的失调和噪声分析,并采取相应的校准和抑制措施,以确保电路的可靠性和稳定性。
3. 电路的功耗优化在现代电子产品中,对于功耗的要求越来越高。
在设计两级CMOS反相器低电压检测电路时,需要对电路的功耗进行优化。
可以采取一些低功耗技术比如动态逻辑、电源镜等,来降低整个电路的功耗。
一种高速高精度CMOS电流比较器
针对输入失调问题 , 文献 [] 6 提出 了一种补偿方法 。
可是这种方法虽然从一定程度上降低 了输入失调 , 却 因为需要另加补偿 电路 , 使得 比较器 的电路形式
变得复杂 , 且引入了因调零而产生的延时。文献[] 7 报导的双输入结构的电流比较器 , 在文献[] 6 的基础
上从一定程度上进一步 降低 了延时 , 提高 了精度 。 然而, 比较器的偏置电路复杂且不对称 , 该 容易受工
艺偏差影 响, 引起较大的输入失调。另外 , 这个 比较 器的输入阻抗较大 , 在输入电流变化较小时会产生 较大的延时 。针对 以上 电路 的缺点, 本文提出了一
Hale Waihona Puke 结构由文献[] 5提出 , 如图 1 所示, 为简化起见 , 面 后
省去了反相器 。它是将两个共源共栅 电流镜 的输 出
电流之差通过 C S MO 反相器 比较放大 , 得到最后 的
维普资讯
第2 9卷 第 4期 20 0 6年 1 2月
电 子 器 件
Chn s or a fEe to vcs ie eJ un lo lcrn Deie
V0. 9 No. 12 4 De . 0 6 c20
A v lHi h S e d a d Hi h Ac u a y CM OS Cu r n mp r t r No e g p e n g c r c r e tCo a a o
EEA oC: 5 0 2 7 D
一
种高速高精度 C MO S电流 比较 器
柳娟娟 , 冯全源
( 西南交 通大学 微 电子研究所 , 成都 603 ) 101
摘
要: 针对传统 电流 比较器速度慢, 精度低 等问题 , 提出了一种新型 C S电流 比较器电路。我们采用 C S MO MO 工艺
各种电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML.......)
fritty的各种电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML.......)ECL电路是射极耦合逻辑(Emitter Couple Logic)集成电路的简称与TTL 电路不同,ECL电路的最大特点是其基本门电路工作在非饱和状态所以,ECL电路的最大优点是具有相当高的速度这种电路的平均延迟时间可达几个毫微秒甚至亚毫微秒数量级,这使得ECL集成电路在高速和超高速数字系统中充当无以匹敌的角色。
ECL电路的逻辑摆幅较小(仅约 0.8V ,而 TTL 的逻辑摆幅约为2.0V ),当电路从一种状态过渡到另一种状态时,对寄生电容的充放电时间将减少,这也是ECL电路具有高开关速度的重要原因。
但逻辑摆幅小,对抗干扰能力不利。
由于单元门的开关管对是轮流导通的,对整个电路来讲没有“截止”状态,所以单元电路的功耗较大。
从电路的逻辑功能来看, ECL 集成电路具有互补的输出,这意味着同时可以获得两种逻辑电平输出,这将大大简化逻辑系统的设计。
ECL集成电路的开关管对的发射极具有很大的反馈电阻,又是射极跟随器输出,故这种电路具有很高的输入阻抗和低的输出阻抗。
射极跟随器输出同时还具有对逻辑信号的缓冲作用。
在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。
但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。
1 几种常用高速逻辑电平1.1LVDS电平LVDS(Low Voltage Differential Signal)即低电压差分信号,LVDS 接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。
LVDS的典型工作原理如图1所示。
最基本的LVDS器件就是LVDS驱动器和接收器。
LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。
LVDS接收器具有很高的输入阻抗,因此驱动器输出的大部分电流都流过100 Ω的匹配电阻,并在接收器的输入端产生大约350 mV的电压。
各种电平标准的讨论(TTL,ECL,PECL,LVDS,CMOS,CML)
ECL电路是射极耦合逻辑(Emitter Couple Logic)集成电路的简称与TTL电路不同,ECL电路的最大特点是其基本门电路工作在非饱和状态所以,ECL电路的最大优点是具有相当高的速度这种电路的平均延迟时间可达几个毫微秒甚至亚毫微秒数量级,这使得ECL集成电路在高速和超高速数字系统中充当无以匹敌的角色。
ECL电路的逻辑摆幅较小(仅约 0.8V ,而 TTL 的逻辑摆幅约为 2.0V ),当电路从一种状态过渡到另一种状态时,对寄生电容的充放电时间将减少,这也是ECL电路具有高开关速度的重要原因。
但逻辑摆幅小,对抗干扰能力不利。
由于单元门的开关管对是轮流导通的,对整个电路来讲没有“截止”状态,所以单元电路的功耗较大。
从电路的逻辑功能来看, ECL 集成电路具有互补的输出,这意味着同时可以获得两种逻辑电平输出,这将大大简化逻辑系统的设计。
ECL集成电路的开关管对的发射极具有很大的反馈电阻,又是射极跟随器输出,故这种电路具有很高的输入阻抗和低的输出阻抗。
射极跟随器输出同时还具有对逻辑信号的缓冲作用。
在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。
但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。
1 几种常用高速逻辑电平1.1LVDS电平LVDS(Low Voltage Differential Signal)即低电压差分信号,LVDS接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。
LVDS的典型工作原理如图1所示。
最基本的LVDS器件就是LVDS驱动器和接收器。
LVDS 的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。
LVDS接收器具有很高的输入阻抗,因此驱动器输出的大部分电流都流过100 Ω的匹配电阻,并在接收器的输入端产生大约350 mV的电压。
常用TTL和CMOS芯片介绍
1.74系列芯片功能大全7400 TTL 2输入端四与非门7401 TTL 集电极开路2输入端四与非门7402 TTL 2输入端四或非门7403 TTL 集电极开路2输入端四与非门7404 TTL 六反相器7405 TTL 集电极开路六反相器7406 TTL 集电极开路六反相高压驱动器7407 TTL 集电极开路六正相高压驱动器7408 TTL 2输入端四与门7409 TTL 集电极开路2输入端四与门7410 TTL 3输入端3与非门74107 TTL 带清除主从双J-K触发器74109 TTL 带预置清除正触发双J-K触发器7411 TTL 3输入端3与门74112 TTL 带预置清除负触发双J-K触发器7412 TTL 开路输出3输入端三与非门74121 TTL 单稳态多谐振荡器74122 TTL 可再触发单稳态多谐振荡器74123 TTL 双可再触发单稳态多谐振荡器74125 TTL 三态输出高有效四总线缓冲门74126 TTL 三态输出低有效四总线缓冲门7413 TTL 4输入端双与非施密特触发器74132 TTL 2输入端四与非施密特触发器74133 TTL 13输入端与非门74136 TTL 四异或门74138 TTL 3-8线译码器/复工器74139 TTL 双2-4线译码器/复工器7414 TTL 六反相施密特触发器74145 TTL BCD—十进制译码/驱动器7415 TTL 开路输出3输入端三与门74150 TTL 16选1数据选择/多路开关74151 TTL 8选1数据选择器74153 TTL 双4选1数据选择器74154 TTL 4线—16线译码器74155 TTL 图腾柱输出译码器/分配器74156 TTL 开路输出译码器/分配器74157 TTL 同相输出四2选1数据选择器74158 TTL 反相输出四2选1数据选择器7416 TTL 开路输出六反相缓冲/驱动器74160 TTL 可预置BCD异步清除计数器74161 TTL 可予制四位二进制异步清除计数器74162 TTL 可预置BCD同步清除计数器74163 TTL 可予制四位二进制同步清除计数器74164 TTL 八位串行入/并行输出移位寄存器74165 TTL 八位并行入/串行输出移位寄存器74166 TTL 八位并入/串出移位寄存器74169 TTL 二进制四位加/减同步计数器7417 TTL 开路输出六同相缓冲/驱动器74170 TTL 开路输出4×4寄存器堆74173 TTL 三态输出四位D型寄存器74174 TTL 带公共时钟和复位六D触发器74175 TTL 带公共时钟和复位四D触发器74180 TTL 9位奇数/偶数发生器/校验器74181 TTL 算术逻辑单元/函数发生器74185 TTL 二进制—BCD代码转换器74190 TTL BCD同步加/减计数器74191 TTL 二进制同步可逆计数器74192 TTL 可预置BCD双时钟可逆计数器74193 TTL 可预置四位二进制双时钟可逆计数器74194 TTL 四位双向通用移位寄存器74195 TTL 四位并行通道移位寄存器74196 TTL 十进制/二-十进制可预置计数锁存器74197 TTL 二进制可预置锁存器/计数器7420 TTL 4输入端双与非门7421 TTL 4输入端双与门7422 TTL 开路输出4输入端双与非门74221 TTL 双/单稳态多谐振荡器74240 TTL 八反相三态缓冲器/线驱动器74241 TTL 八同相三态缓冲器/线驱动器74243 TTL 四同相三态总线收发器74244 TTL 八同相三态缓冲器/线驱动器74245 TTL 八同相三态总线收发器74247 TTL BCD—7段15V输出译码/驱动器74248 TTL BCD—7段译码/升压输出驱动器74249 TTL BCD—7段译码/开路输出驱动器74251 TTL 三态输出8选1数据选择器/复工器74253 TTL 三态输出双4选1数据选择器/复工器74256 TTL 双四位可寻址锁存器74257 TTL 三态原码四2选1数据选择器/复工器74258 TTL 三态反码四2选1数据选择器/复工器74259 TTL 八位可寻址锁存器/3-8线译码器7426 TTL 2输入端高压接口四与非门74260 TTL 5输入端双或非门74266 TTL 2输入端四异或非门7427 TTL 3输入端三或非门74273 TTL 带公共时钟复位八D触发器74279 TTL 四图腾柱输出S-R锁存器7428 TTL 2输入端四或非门缓冲器74283 TTL 4位二进制全加器74290 TTL 二/五分频十进制计数器74293 TTL 二/八分频四位二进制计数器74295 TTL 四位双向通用移位寄存器74298 TTL 四2输入多路带存贮开关74299 TTL 三态输出八位通用移位寄存器7430 TTL 8输入端与非门7432 TTL 2输入端四或门74322 TTL 带符号扩展端八位移位寄存器74323 TTL 三态输出八位双向移位/存贮寄存器7433 TTL 开路输出2输入端四或非缓冲器74347 TTL BCD—7段译码器/驱动器74352 TTL 双4选1数据选择器/复工器74353 TTL 三态输出双4选1数据选择器/复工器74365 TTL 门使能输入三态输出六同相线驱动器74365 TTL 门使能输入三态输出六同相线驱动器74366 TTL 门使能输入三态输出六反相线驱动器74367 TTL 4/2线使能输入三态六同相线驱动器74368 TTL 4/2线使能输入三态六反相线驱动器7437 TTL 开路输出2输入端四与非缓冲器74373 TTL 三态同相八D锁存器74374 TTL 三态反相八D锁存器74375 TTL 4位双稳态锁存器74377 TTL 单边输出公共使能八D锁存器74378 TTL 单边输出公共使能六D锁存器74379 TTL 双边输出公共使能四D锁存器7438 TTL 开路输出2输入端四与非缓冲器74380 TTL 多功能八进制寄存器7439 TTL 开路输出2输入端四与非缓冲器74390 TTL 双十进制计数器74393 TTL 双四位二进制计数器7440 TTL 4输入端双与非缓冲器7442 TTL BCD—十进制代码转换器74352 TTL 双4选1数据选择器/复工器74353 TTL 三态输出双4选1数据选择器/复工器74365 TTL 门使能输入三态输出六同相线驱动器74366 TTL 门使能输入三态输出六反相线驱动器74367 TTL 4/2线使能输入三态六同相线驱动器74368 TTL 4/2线使能输入三态六反相线驱动器7437 TTL 开路输出2输入端四与非缓冲器74373 TTL 三态同相八D锁存器74374 TTL 三态反相八D锁存器74375 TTL 4位双稳态锁存器74377 TTL 单边输出公共使能八D锁存器74378 TTL 单边输出公共使能六D锁存器74379 TTL 双边输出公共使能四D锁存器7438 TTL 开路输出2输入端四与非缓冲器74380 TTL 多功能八进制寄存器7439 TTL 开路输出2输入端四与非缓冲器74390 TTL 双十进制计数器74393 TTL 双四位二进制计数器7440 TTL 4输入端双与非缓冲器7442 TTL BCD—十进制代码转换器74447 TTL BCD—7段译码器/驱动器7445 TTL BCD—十进制代码转换/驱动器74450 TTL 16:1多路转接复用器多工器74451 TTL 双8:1多路转接复用器多工器74453 TTL 四4:1多路转接复用器多工器7446 TTL BCD—7段低有效译码/驱动器74460 TTL 十位比较器74461 TTL 八进制计数器74465 TTL 三态同相2与使能端八总线缓冲器74466 TTL 三态反相2与使能八总线缓冲器74467 TTL 三态同相2使能端八总线缓冲器74468 TTL 三态反相2使能端八总线缓冲器74469 TTL 八位双向计数器7447 TTL BCD—7段高有效译码/驱动器7448 TTL BCD—7段译码器/内部上拉输出驱动74490 TTL 双十进制计数器74491 TTL 十位计数器74498 TTL 八进制移位寄存器7450 TTL 2-3/2-2输入端双与或非门74502 TTL 八位逐次逼近寄存器74503 TTL 八位逐次逼近寄存器7451 TTL 2-3/2-2输入端双与或非门74533 TTL 三态反相八D锁存器74534 TTL 三态反相八D锁存器7454 TTL 四路输入与或非门74540 TTL 八位三态反相输出总线缓冲器7455 TTL 4输入端二路输入与或非门74563 TTL 八位三态反相输出触发器74564 TTL 八位三态反相输出D触发器74573 TTL 八位三态输出触发器74574 TTL 八位三态输出D触发器74645 TTL 三态输出八同相总线传送接收器74670 TTL 三态输出4×4寄存器堆7473 TTL 带清除负触发双J-K触发器7474 TTL 带置位复位正触发双D触发器7476 TTL 带预置清除双J-K触发器7483 TTL 四位二进制快速进位全加器7485 TTL 四位数字比较器7486 TTL 2输入端四异或门7490 TTL 可二/五分频十进制计数器7493 TTL 可二/八分频二进制计数器7495 TTL 四位并行输入\输出移位寄存器7497 TTL 6位同步二进制乘法器常用40、45系列标准数字电路简单介绍2.常用4000系列标准数字电路的中文名称资料CD4000 双3输入端或非门+单非门TICD4001 四2输入端或非门HIT/NSC/TI/GOLCD4002 双4输入端或非门NSCCD4006 18位串入/串出移位寄存器NSCCD4007 双互补对加反相器NSCCD4008 4位超前进位全加器NSCCD4009 六反相缓冲/变换器NSCCD4010 六同相缓冲/变换器NSCCD4011 四2输入端与非门HIT/TICD4012 双4输入端与非门NSCCD4013 双主-从D型触发器FSC/NSC/TOSCD4014 8位串入/并入-串出移位寄存器NSCCD4015 双4位串入/并出移位寄存器TICD4016 四传输门FSC/TICD4017 十进制计数/分配器FSC/TI/MOTCD4018 可预制1/N计数器NSC/MOTCD4019 四与或选择器PHICD4020 14级串行二进制计数/分频器FSCCD4021 08位串入/并入-串出移位寄存器PHI/NSCCD4022 八进制计数/分配器NSC/MOTCD4023 三3输入端与非门NSC/MOT/TICD4024 7级二进制串行计数/分频器NSC/MOT/TICD4025 三3输入端或非门NSC/MOT/TICD4026 十进制计数/7段译码器NSC/MOT/TICD4027 双J-K触发器NSC/MOT/TICD4028 BCD码十进制译码器NSC/MOT/TICD4029 可预置可逆计数器NSC/MOT/TICD4030 四异或门NSC/MOT/TI/GOLCD4031 64位串入/串出移位存储器NSC/MOT/TICD4032 三串行加法器NSC/TICD4033 十进制计数/7段译码器NSC/TICD4034 8位通用总线寄存器NSC/MOT/TICD4035 4位并入/串入-并出/串出移位寄存NSC/MOT/TI CD4038 三串行加法器NSC/TICD4040 12级二进制串行计数/分频器NSC/MOT/TICD4041 四同相/反相缓冲器NSC/MOT/TICD4042 四锁存D型触发器NSC/MOT/TICD4043 4三态R-S锁存触发器("1"触发) NSC/MOT/TI CD4044 四三态R-S锁存触发器("0"触发) NSC/MOT/TI CD4046 锁相环NSC/MOT/TI/PHICD4047 无稳态/单稳态多谐振荡器NSC/MOT/TICD4048 4输入端可扩展多功能门NSC/HIT/TICD4049 六反相缓冲/变换器NSC/HIT/TICD4050 六同相缓冲/变换器NSC/MOT/TICD4051 八选一模拟开关NSC/MOT/TICD4052 双4选1模拟开关NSC/MOT/TICD4053 三组二路模拟开关NSC/MOT/TICD4054 液晶显示驱动器NSC/HIT/TICD4055 BCD-7段译码/液晶驱动器NSC/HIT/TICD4056 液晶显示驱动器NSC/HIT/TICD4059 “N”分频计数器NSC/TICD4060 14级二进制串行计数/分频器NSC/TI/MOTCD4063 四位数字比较器NSC/HIT/TICD4066 四传输门NSC/TI/MOTCD4067 16选1模拟开关NSC/TICD4068 八输入端与非门/与门NSC/HIT/TICD4069 六反相器NSC/HIT/TICD4070 四异或门NSC/HIT/TICD4071 四2输入端或门NSC/TICD4072 双4输入端或门NSC/TICD4073 三3输入端与门NSC/TICD4075 三3输入端或门NSC/TICD4076 四D寄存器CD4077 四2输入端异或非门HITCD4078 8输入端或非门/或门CD4081 四2输入端与门NSC/HIT/TICD4082 双4输入端与门NSC/HIT/TICD4085 双2路2输入端与或非门CD4086 四2输入端可扩展与或非门CD4089 二进制比例乘法器CD4093 四2输入端施密特触发器NSC/MOT/STCD4094 8位移位存储总线寄存器NSC/TI/PHICD4095 3输入端J-K触发器CD4096 3输入端J-K触发器CD4097 双路八选一模拟开关CD4098 双单稳态触发器NSC/MOT/TICD4099 8位可寻址锁存器NSC/MOT/STCD40100 32位左/右移位寄存器CD40101 9位奇偶较验器CD40102 8位可预置同步BCD减法计数器CD40103 8位可预置同步二进制减法计数器CD40104 4位双向移位寄存器CD40105 先入先出FI-FD寄存器CD40106 六施密特触发器NSC\TICD40107 双2输入端与非缓冲/驱动器HAR\TICD40108 4字×4位多通道寄存器CD40109 四低-高电平位移器CD40110 十进制加/减,计数,锁存,译码驱动STCD40147 10-4线编码器NSC\MOTCD40160 可预置BCD加计数器NSC\MOTCD40161 可预置4位二进制加计数器NSC\MOTCD40162 BCD加法计数器NSC\MOTCD40163 4位二进制同步计数器NSC\MOTCD40174 六锁存D型触发器NSC\TI\MOTCD40175 四D型触发器NSC\TI\MOTCD40181 4位算术逻辑单元/函数发生器CD40182 超前位发生器CD40192 可预置BCD加/减计数器(双时钟) NSC\TICD40193 可预置4位二进制加/减计数器NSC\TICD40194 4位并入/串入-并出/串出移位寄存NSC\MOTCD40195 4位并入/串入-并出/串出移位寄存NSC\MOTCD40208 4×4多端口寄存器3.常用4500系列标准数字电路的中文名称资料CD4501 4输入端双与门及2输入端或非门CD4502 可选通三态输出六反相/缓冲器CD4503 六同相三态缓冲器CD4504 六电压转换器CD4506 双二组2输入可扩展或非门CD4508 双4位锁存D型触发器CD4510 可预置BCD码加/减计数器CD4511 BCD锁存,7段译码,驱动器CD4512 八路数据选择器CD4513 BCD锁存,7段译码,驱动器(消隐)CD4514 4位锁存,4线-16线译码器CD4515 4位锁存,4线-16线译码器CD4516 可预置4位二进制加/减计数器CD4517 双64位静态移位寄存器CD4518 双BCD同步加计数器CD4519 四位与或选择器CD4520 双4位二进制同步加计数器CD4521 24级分频器CD4522 可预置BCD同步1/N计数器CD4526 可预置4位二进制同步1/N计数器CD4527 BCD比例乘法器CD4528 双单稳态触发器CD4529 双四路/单八路模拟开关CD4530 双5输入端优势逻辑门CD4531 12位奇偶校验器CD4532 8位优先编码器CD4536 可编程定时器CD4538 精密双单稳CD4539 双四路数据选择器CD4541 可编程序振荡/计时器CD4543 BCD七段锁存译码,驱动器CD4544 BCD七段锁存译码,驱动器CD4547 BCD七段译码/大电流驱动器CD4549 函数近似寄存器CD4551 四2通道模拟开关CD4553 三位BCD计数器CD4555 双二进制四选一译码器/分离器CD4556 双二进制四选一译码器/分离器CD4558 BCD八段译码器CD4560 "N"BCD加法器CD4561 "9"求补器CD4573 四可编程运算放大器CD4574 四可编程电压比较器CD4575 双可编程运放/比较器CD4583 双施密特触发器CD4584 六施密特触发器CD4585 4位数值比较器CD4599 8位可寻址锁存器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动调零技术
理想比较器
-
+ VOS
+ -
(a) VIN
理想比较器 -
+
CAZ -
+ VOS VOS
+ -
(c)
理想比较器
-
VOS
+ +-
VOS
(b)
失调消除方法 (a)包含失调的比较器简单模型;(b)前半个自动较 零周期内存储失调;(c)后半个自动较零周期内输入端抵消失调
迟滞比较器
非迟滞比较器对含有噪声的输入的响应
几种比较器结构的性能比较
开环比较器,特别是多级开环比较器容易做到高速高精度。然而,由于 这类比较器中运放的增益和带宽的折衷,很难做到超高速。此外,多级 开环比较器相比于其他结构的比较器功耗较大,这限制了这类比较器在 超高速高精度中的应用。
迟滞比较器在抗噪声抗干扰环境中具有广泛的应用。然而,它是放大器 在闭环情况下的应用,速度受限。
2 VO Spream p
2 2 VO Slatch V
增益越大越大越好?
预放大级减小比较器输入失调电压原理图
正反馈锁存器前边加一级预放大器,预放大器内部和输出端加载隔离电 路,使得其输出信号多次衰减后到达信号的输入端。加载的隔离电路越 多,回踢噪声衰减的就越大
预放大再生锁存比较器分类
静态预放大再生锁存比较器
VIL
t VIH
t
比较器的传输延迟
比较器的分类及结构
根据放大器的不同应用形式,可以分为开环和闭环两种 按照工作原理划分,可以分为开环比较器和可再生比较器 按照电路结构划分,可以分为单端输出结构比较器和双端输出结
构比较器两种 从功耗的角度,比较器可以分为静态比较器和动态比较器两种
开环比较器
C
锁存比较器小信号模型
可再生比较器
一般来说,锁存比较 器由于其正反馈结构能够 达到很高的速度。然而, 这类比较器却存在较大的 失调电压,其中锁存电路 中的回踢噪声会贡献很大
一部分失调电压。
前级等效电路
+ -
VDD 0
回踢噪声的来源
开关电容比较器
在许多A/D转换系统应用中,输入端常会有一个采样保持电路。这样会使得
高速CMOS比较器
比较器的性能
VOL
VO VOH
VP-VN
比较器理想传输特性
比较器的性能(静态特性)
VO
VIL
VIH
VOL
VOH VP-VN
VO VOS
VOH
VIL
VIH
VP-VN
VOL
比较器理想传输特性
包含输入失调电压的比较器的传输曲线
比较器的性能(动态特性)
假设比较器差分电压增益A v 可表示为:
预放大器
Vx
o
t
t1
t2
t3
再生锁存器和预放大再生锁存器输出信号的阶跃响应
预放大再生锁存比较器原理
除了具有明显的速度优势,预放大锁存比较器相比于单个锁存比较器具 有低的失调电压和低的失调电压。
VOSpreamp Vi+
Vi-
AV
Preamp
VOSlatch
Out+
Latch
Out-
A 1 InputReferredO ffset
这类比较器在理论上可以由单级高增益放大器和由两级或者两级以上 的放大器级联开环应用实现
A0 s 1
A0 s 1
A0 s 1
A0 s 1
A0 s 1
A0 s 1
线型 小信号
线型 小信号
线型 大信号
大信号 小电容
大信号 中等电容
大信号 大电容
级联开环比较器结构图
开环比较器结构简单,却具有大的失调电压和较高的噪声
开关电容比较器属于典型的离散时间比较器,设计难度较大,且电路中 非线性因素较多
可再生锁存比较器再生速度高,容易做到超高速。然而,它的大的失调 电压限制了它在高精度中的应用。
高速CMOS比较器
预放大锁存比较器原理、分类及结构 预放大级的设计和优化 再生锁存级的设计和优化 输出锁存级的设计和优化
输入信号在采样时钟相位发生变化时才变化。这种应用的比较器可以采用开关电
容的结构,这是一种将开关电容电路和开环应用比较器相结合的电路。其特点是
可以采用单端结构的电路来比较差分信号,而且很方便使用自动校零技术来消除
直流失调电压。
Φ1 VIN-
Φ2 VIN+
VC +-
CP
Φ1
-
VOUT ++
VOS -
开关电容比较器结构
预放大再生锁存比较器原理
预放大再生锁存比较器的原理是在再生锁存器前加前置放大器,使比较 器的输入经过预放大器后被放大到足够大后再加到再生锁存器上。
其优点是结合了放大器的负指数响应和锁存器的正指数响应,使输出迅 速的达到要求的电压值,比较器的速度提高。
VOH-VOL
预放大再生锁存比较器 再生锁存器
◆ 级联的共栅晶体管隔离了再 生节点的电压变化,减小了 回踢噪声
◆ 总是存在着两条直流通路, 静态比较器的功耗较大
◆ 复位过程较慢
VDD M2a
M2b
M3a
M3b
I+in
M1a M1b
I_in
Out+ Out-
Iss
M5a M4a clock
M4b
M5b
clock
静态预放大再生锁存比较器结构
预放大再生锁存比较器分类
AB类预放大再生锁存比较器
◆ 再生过程由两个交叉耦合CMOS 反相器完成。AB类比较器速度比 静态锁存比较器快
◆ 因为在与输入电容耦合的节点存 在轨到轨信号,这种结构中的回 踢噪声增加
◆ 差分对的电流仍然镜像到再生 节点 ,功率 更大
VDD
M2b
M2a
VIP
VIn
M1a
M1b
M4 latch
AV
AV 0
S
c
1
AV 0
sc 1
定义比较器的最小输入电压为:
Vin
最小=VOH VOL AV 0
当Vin 最小加在比较器上,比较器的传输时延可写为
tP 最 大 cln 2 0 .6 9 3 c
如果输入是 Vin 最小的 K 倍,则传输时延为:
tP
c
ln
2K 2K 1
VO VOH
VOL Vi=VP-VN tp
C dV dt
其中,C 为锁存器的输入输出电容之和。对上式
变形并积分有:
gCm1gm1RLtt12dtV V12V1dV
设锁存比较器的延时为,则有:
tD
t2
t1C gm1来自1 1gmRL
lnVV12
一般情况下,gmRL 1,所以
tD
t2
t1
C gm
lnVV12
+ -
+ V-
gm v
RL
迟滞比较器对含有噪声的输入的响应
迟滞比较器
VON
VOUT
VTRP-
VTRP+ VIN
VOL
迟滞比较器传输曲线
VIN
R1
R2
+ -
VIN VOUT
R1
- +
R2
VOUT
外部正反馈实现的迟滞比较器
可再生比较器
++ --
锁存器
+ 放大器+正反馈
锁存比较器等效图
可再生比较器
传输延迟推导如下:
gmV
V RL