单光子探测器及其发展
单光子检测技术的发展与应用

单光子检测技术的发展与应用光子是光的基本构成单位,它从一端传输到另一端时一直保持着自身的特性。
单光子检测技术就是检测光子的数量和时间精度,以满足对各种实验和应用的要求。
单光子检测技术的发展对于理论和实践方面都有重要的意义,在现代物理、信息科学、材料科学和生物医学等方面都有广泛的应用。
一、多通道单光子检测技术的发展传统的单光子检测技术一般采用光电倍增管,但它的量子效率和时间分辨率都不高。
近年来,多通道单光子检测技术逐渐发展起来。
它可以将多个光子检测通道串联起来,用于检测多个样本或对统计分析要求比较高的实验。
与传统的单个光子检测器相比,多通道单光子检测器的量子效率和时间分辨率都大为提高,拓展了光子检测技术的应用范围。
目前多通道单光子检测技术主要有两种类型:时间相关单光子计数(TCSPC)和多通道接收机(MCP)。
TCSPC采用一定的激光发射频率和强度,通过控制样品激发,得到光子计数率图谱。
它具有时间分辨率高、精度高的特点,可以用于荧光光谱分析、荧光成像和分子探针检测等。
MCP则通过增加大量的光子检测通道,实现了大范围、高分辨率、高速度的信号检测功能。
它适用于高精度物理实验、生物或化学分析和高速数字通信等领域。
二、单光子检测技术在信息加密领域的应用单光子检测技术拥有一定的信息加密能力。
它与激光等光源相结合,可以实现量子密钥分发(QKD),以实现全球通信网络的安全通信。
QKD采用了光子的量子计算技术,利用极强的干扰信号保护数据通信机密性,使黑客无法从中窃取数据信息。
它的安全级别可以达到理论上的不可破解,因此已引起广泛关注和研究。
三、单光子检测技术在生物医学领域的应用单光子检测技术在生物医学领域的应用十分广泛。
它可以检测分子自发辐射的信号,实现分子成像以及生物类似物质的分析等。
传统的生物检测技术的分辨率和灵敏度较低,往往会影响医学诊断的准确度。
而单光子检测技术,则可以有效提高检测分辨率和灵敏度,实现对生物组织和生物分子的定量分析和成像。
单光子探测器及其发展应用课件

暗物质探测
直接探测
在暗物质直接探测实验中,单光子探测 器用于探测暗物质粒子与原子核碰撞产 生的单个光子,以寻找暗物质存在的证 据。
VS
间接探测
在暗物质间接探测实验中,单光子探测器 用于探测暗物质湮灭或衰变产生的单个光 子,以研究暗物质的性质。
安全与防御
激光测距
在军事领域,单光子探测器用于激光测距和 目标识别,提高武器系统的精度和响应速度 。
类型与特点
类型
单光子探测器有多种类型,包括光电 倍增管、雪崩光电二极管和单光子计 数模块等。
特点
单光子探测器具有高灵敏度、低噪声 、快速响应等特点,能够在极低的光 子数密度下工作,广泛应用于量子通 信、量子计算、生物成像等领域。
应用领域
量子通信
生物成像
单光子探测器是量子通信中的关键器件, 用于实现安全的数据传输和密钥分发。
低温冷却技术能够提高单光子探测器的性能和稳定性。
详细描述
在低温环境下,探测器的性能得到提高,同时能够降低背景噪声和热噪声,从而提高探测器的信噪比 。这种技术需要使用低温冷却器或稀释制冷机等设备,以保证探测器在极低温度下稳定工作。
抗干扰技术
总结词
抗干扰技术能够提高单光子探测器的抗干扰能力和技术的发展,单光子探 测器有望实现更小尺寸和更高集成度 。
单光子探测器的关
03
键技术
高灵敏度探测技术
总结词
高灵敏度探测技术是单光子探测器的核心,能够实现单个光 子的探测。
详细描述
高灵敏度探测技术利用光电效应,将单个光子转化为电信号 ,从而实现对单光子的探测。这种技术需要高精度的光电转 换器件和优化的信号处理算法,以提高探测效率和准确性。
光电对抗
单光子光学信号探测技术研究

单光子光学信号探测技术研究随着科学技术日新月异的发展,单光子光学信号探测技术成为了现代光学研究领域的一个热点问题。
这项技术可以在纳米尺度上精确探测物质的光学信号,并且具有高精度和高灵敏度的特点,因此在物理、化学、材料科学等领域都有不少应用。
光学信号探测技术是探究物质在光场中的响应和相互作用的重要手段。
在光学信号探测中,单光子光学信号探测技术则是利用单个光子探测物质的光学信号。
作为纳米尺度下最小的信号单位,单光子具有极高的能量敏感性和信号检测灵敏度,因此可以得到更加准确的信号数据。
单光子光学信号探测技术的研究现状单光子探测的方法主要有两种:一种是传统的单光电子倍增二极管探测器(SPAD)探测方法,另一种是新兴的超导探测器探测方法。
SPAD探测方法是通过探测单光子引发电子级联倍增的过程来实现探测,具有高速性和高效性的特点,但输出信号存在高能背景噪声的问题;超导探测器则是利用超导元件的特性进行光子探测。
由于其冷却要求极高,价格昂贵,目前仅有寥寥数家研究机构拥有该技术。
研究人员在对单光子光学信号探测技术的研究过程中,通过对材料、器件、信号处理、成像等方面的不断探索,逐步提高单光子探测的灵敏度和精度,使其在物理学、化学、生物学及信息科学等领域得到广泛应用。
单光子光学信号探测技术的应用前景单光子光学信号探测技术在各个领域的应用前景广泛。
物理学领域,可以通过单光子探测技术实现量子计算、量子通信、量子隐形传态等量子信息的研究;化学领域,可以利用单光子探测技术进行分子结构的测量和分析;生物学领域,可以通过单光子探测技术研究细胞分子结构和功能活动,进而探究与人类健康相关的疾病危险因素。
总之,单光子光学信号探测技术的应用前景十分广泛,并且仍然有许多研究方向有待深入挖掘。
结论单光子光学信号探测技术作为一种前沿技术,自问世以来就备受关注,其在多个领域的应用前景及其科技发展的前景都非常可观。
随着新材料、新器件和新算法的不断研发,单光子探测技术的灵敏度和精度也将会得到进一步提高,为更广泛的领域带来更为丰富的应用。
单光子干涉和单光子探测

单光子干涉和单光子探测在当今的科学研究领域中,量子光学是一个备受关注的重要领域。
量子光学研究的一个重要方面就是单光子干涉和单光子探测,这是对光子的精确控制和测量的关键技术。
本文将介绍单光子干涉和单光子探测的原理、应用以及未来的发展方向。
一、单光子干涉的原理单光子干涉是指只有一个光子参与干涉实验的现象。
在光子的波粒二象性理论中,光子既可以表现出粒子的特性,也可以表现出波动的特性。
当一个光子遇到一个波动的物体时,就会出现干涉现象。
单光子干涉实验是通过使用高分辨率的探测器来探测光子的波动性,并观察光子与光子之间的干涉效应。
在单光子干涉实验中,光通过一个光栅或者将光分割成两部分,然后光通过一个晶体或者光路的两个不同分支。
如果有两个光子同时通过这个实验系统,它们会在探测器中同时被探测到。
然而,如果只有一个光子通过实验系统,它会被探测器单独地检测到,而不会与其他光子产生干涉。
这种单光子干涉的实验现象揭示了光子的粒子性和波动性。
二、单光子探测的原理单光子探测是指使用高灵敏度的探测器来检测并记录光场中的单个光子。
单光子探测技术的发展对于量子通信、光子计算和量子信息处理等领域具有重要意义。
常用的单光子探测器包括光电倍增管、单光子雪崩二极管和超导单光子探测器。
其中,超导单光子探测器是当前研究的热点之一。
超导单光子探测器利用超导材料的特殊性质,可以实现高灵敏度和低噪声的单光子探测。
在单光子探测实验中,光子首先通过一个系统,然后被探测器探测到,并转换成电信号。
探测器会将光子的到达时间和强度信息记录下来,从而实现对单个光子的探测。
三、单光子干涉和单光子探测的应用单光子干涉和单光子探测技术在量子信息处理、量子通信和量子计算等领域具有广泛的应用。
首先,单光子干涉和单光子探测可以用于构建量子计算中的量子比特和量子门。
光子作为量子比特具有易于操控、传输和测量的优点,因此很适合用于量子计算。
借助单光子干涉和单光子探测技术,可以实现对光子量子比特的精确控制和测量。
基于单光子探测的观测系统开发与应用研究

基于单光子探测的观测系统开发与应用研究在当今物理和光学领域中,单光子探测已经成为研究的热点之一。
基于单光子探测的观测系统不仅具有高精度、高灵敏度和高分辨率等特点,还可以被广泛应用于量子信息、光学成像等领域。
本文将探讨基于单光子探测的观测系统的开发与应用研究。
一、单光子探测技术的发展在过去的几十年中,随着基于半导体器件的单光子探测技术的不断发展,人们实现了对单个光子的检测和观测。
这种技术已经被广泛应用于光学通信、量子通信、光学成像等领域。
在单光子探测技术中,常用的探测器有光电倍增管、超导单光子探测器等。
二、基于单光子探测的观测系统的开发随着基于单光子探测技术的发展,越来越多的研究人员开始开发基于单光子探测的观测系统。
这种系统能够实现高精度的测量和高分辨率的成像,因此被广泛应用于量子信息、光学成像等领域。
基于单光子探测的观测系统主要包括以下几个部分:单光子探测器、控制和测量系统、样品和光源。
其中,单光子探测器是关键的部分。
目前,常用的单光子探测器有基于光电倍增管的探测器和基于超导材料的探测器两种。
基于光电倍增管的探测器是非常常见的,它的优点是具有高效率和高灵敏度。
然而,它的缺点是需要噪声较低的环境,因此不太适合在实际应用中使用。
与之相比,基于超导材料的探测器则不仅具有高效率和灵敏度,而且可以在较高的噪声环境中使用。
除了单光子探测器,控制和测量系统也很重要。
在基于单光子探测的观测系统中,控制和测量系统负责检测样品的光学性质,并将结果传输到计算机中进行分析和处理。
同时,为了提高系统的精度和可靠性,还需要对样品和光源进行优化设计。
三、基于单光子探测的观测系统的应用研究基于单光子探测的观测系统已经被广泛应用于量子信息、光学成像等领域。
其中,量子信息是应用这种技术的重要领域之一。
量子信息是一种基于量子物理现象实现信息传递和存储的新型技术。
量子信息处理的基本单元是量子比特,也就是用来存储和处理信息的量子态。
由于基于单光子探测的观测系统能够实现精确测量和高效光源的控制,因此它被广泛应用于量子比特的实现和量子计算机的开发中。
单光子发射与探测技术的发展及应用

单光子发射与探测技术的发展及应用随着物理学和量子力学的飞速发展,单光子发射与探测技术也日益成熟,并广泛应用于通信、量子计算、医学等领域。
本文将介绍单光子发射与探测技术的发展历程、原理和应用。
一、单光子发射技术单光子发射技术是指在一个稳定的光源中产生一个单一的光子。
早期的单光子发射技术主要是通过一些狭缝和中心缝,将光子束缩小到微小的尺寸,然后通过减小光的强度来减少光子的数量,实现单光子发射。
这种方法虽然可行,但操作要非常精确,也比较复杂,容易受到来自光源的环境干扰。
随着技术的不断发展,出现了很多新的单光子发射技术,如基于超冷原子的单光子发射、基于单个量子点的单光子发射等。
超冷原子是最早的单光子发射来源之一。
物理学家通过不断减小温度,将气体冷却到几个微开尔文以下,使其在极低温下形成玻色-爱因斯坦凝聚体。
此时,原子会产生强烈的减速效应,使其停留在光诱导的陷阱中,随后进行激光冷却,最终产生单光子。
量子点是一种半导体结构,可以产生单光子。
通过将量子点添加到纳米结构中,可以产生单光子发射。
二、单光子探测技术单光子探测技术是指当光子到达某一位置时,将其转换为电信号进行检测的技术。
单光子探测技术主要有光电倍增器探测器、超导单光子探测器等。
其中,光电倍增器探测器是一种比较常见的技术,它将光子转换为电子,并将电子倍增,放大其信号。
这种技术具有检测灵敏度高、时间分辨率高等优点,但同时也受到光子吸收效应的影响,从而限制了其检测距离和灵敏度。
超导单光子探测器是一种能够在极低温下运行的技术。
它由超导材料、微波和光探测器组成,具有灵敏度高、探测距离远等优点,但需要针对不同光源进行不同的调整,操作和维护较为麻烦。
三、单光子技术的应用单光子技术广泛应用于通信、量子计算、医学、生物学等领域。
在通信领域,单光子技术可以用于实现秘密的密钥分发、光学量子计算等。
在医学和生物学领域,单光子技术可以用于分子成像、神经元成像等应用。
在量子计算领域,单光子技术可以用于量子纠缉、量子错误更正等方面,为量子计算的实现提供了关键的技术支持。
单光子探测器的研究与发展

单光子探测器的研究与发展章节一:引言单光子探测器是利用光能量的离散性质,极为敏感地探测和测量单个光子的设备。
它的研究和发展深化了人们对光子特性和相互作用的认识,对常规摄影、光学通信、量子信息等领域都产生了巨大影响。
本文将系统地介绍单光子探测器的研究背景、原理、分类、性能评价和应用等方面,对该领域的热点和趋势进行深入分析。
章节二:原理光子是光学中最基本的量子组成部分,它具有波粒二象性和纯量性,同时能在空气、水和固体等媒介中传播。
单光子探测器利用了光子的纯量性和可控性,通过吸收、分离和测量单个光子,形成了高效、准确、灵敏的光子检测系统。
单光子探测器的核心一般有两个部分:光子探测器和信号处理器。
光子探测器依类型可分为光电二极管、单光子计数器、超导单光子探测器、低噪声单光子计数器等等,但基本原理都是利用光子在探测介质中的光电效应产生电子,再测量电子的位置或时间分布,从而得到光子信息;信号处理器依据具体探测器的输出信号,采用前置放大、噪声滤波、计数电路等技术手段,实现对光子信号的精确检测和处理。
章节三:分类根据光子探测器的特性和用途,可将其分为以下几类:1. 光电二极管型单光子探测器:它是最常见的单光子探测器,基于光电二极管的光生电效应,利用电子被激发出来的原理实现单光子计数。
主要特点是价格低廉、稳定可靠、使用范围广泛。
2. 低噪声单光子计数器:该探测器通过降低检测器的噪声,从而提高了信号噪比,实现更高的灵敏度和分辨率。
主要特点是信噪比高、响应速度快、精度高。
3. 超导单光子探测器:这种探测器利用超导体的特性,能够在光谱范围内实现单光子探测,其优点是低噪声、高探测效率和快速响应速度。
4. 单光子计数仪:它是一种高效、精度高的光子计数系统,通过将单个光子转化为电子脉冲信号,并通过前置放大和计数电路等处理获得单光子信号的计数信息。
5. 其他型号:如光学谐振腔型单光子探测器、超快上转换探测器、单光子红外探测器等等。
单光子探测技术3篇

单光子探测技术篇一:单光子探测技术的引言单光子探测技术的出现,为量子光学和量子信息领域带来了一次重大的革命。
单光子探测器能够高效地探测单个光子,是光量子通信、光量子计算和高精度光学测量的重要基础。
以前,用于探测光子的探测器往往不能根据光子寄存的电荷测量探测强度,这就限制了用光子进行高灵敏度、高分辨度测量的能力。
单光子探测技术的出现改变了这种现状,同时极大地推动了基于光的新型量子测量方案的出现。
单光子探测技术是光学社会长期关注的研究课题,在文献中也有很多闪光点。
本文将围绕单光子探测技术进行深入探讨。
首先,我们将介绍单光子探测器的工作原理和分类,并对几种重要的单光子探测技术进行详细讲解。
然后,我们将概述单光子探测器的应用场景,包括光子间的量子通信、量子密钥分发、量子计算等。
最后,我们将关注单光子探测器的未来展望,对技术实现和推广应用提出建议。
篇二:单光子探测器的工作原理和分类单光子探测器是一种能够在光子级别上探测光强的探测器,其工作原理基于单个光子与它所经过的介质发生交互产生的光信号。
单光子探测器的分类方法多种多样,但大多数分类方法基于探测器的工作原理。
下面我将通过三种基本的单光子探测器,即光电倍增管探测器、接收机识别探测器和超导单光子探测器,来介绍单光子探测器的工作原理和分类方法。
1. 光电倍增管探测器光电倍增管探测器是一种基于光电子发射原理工作的单光子探测器,在光电增益和倍增过程的作用下将单光子转换成尽可能多的电子。
光电倍增管探测器的工作原理基于外部光子的荷电粒子散射(如真空紫外光照射下),使得光电发射电子在经过高电场加速器之后,产生高倍数增益。
基本结构包括光信号输出窗口、电子收集极和光阴极。
2. 接收机识别探测器接收机识别探测器是一种快速探测单个光子的探测器,它是基于光量子的相互作用,将光子在探测器上产生的信号电流转换成探测器输出电压,通过输入波形区分信号与噪声。
它通过对输入光和标准量子态的比较,可以实现单光子探测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单光子探测器及其发展摘要:本文介绍了光电倍增管单光子探测器、雪崩光电二极管单光子探测器和真空单光子探测器以及它们的基本工作原理和特性,分析了它们各自的优缺点和未来的发展方向。
关键词:单光子探测;光电倍增管(PMT);雪崩光电二极管(APD);真空雪崩光电二极管(VAPD)中图分类号:TP21.14 文献标识码:A一、引言单光子探测技术在高分辨率的光谱测量、非破坏性物质分析、高速现象检测、精密分析、大气测污、生物发光、放射探测、高能物理、天文测光、光时域反射、量子密钥分发系统等领域有着广泛的应用。
由于单光子探测器在高技术领域的重要地位,它已经成为各发达国家光电子学界重点研究的课题之一。
二、单光子探测器的原理及种类单光子探测是一种极微弱光探测法,它所探测的光的光电流强度比光电检测器本身在室温下的热噪声水平(10-14W)还要低,用通常的直流检测方法不能把这种湮没在噪声中的信号提取出来。
单光子计数方法利用弱光照射下光子探测器输出电信号自然离散的特点,采用脉冲甄别技术和数字计数技术把极其弱的信号识别并提取出来。
这种技术和模拟检测技术相比有如下优点[1]:(1)测量结果受光电探测器的漂移、系统增益变化以及其它不稳定因素的影响较小;(2)消除了探测器的大部分热噪声的影响,大大提高了测量结果的信噪比;(3)有比较宽的线性动态区;(4)可输出数字信号,适合与计算机接口连接进行数字数据处理。
入射的光子信号打到光电倍增器件上产生光电子,然后经过倍增系统倍增产生电脉冲信号,称为单光子脉冲。
计数电路对这些脉冲的计数率随脉冲幅度大小的分布如图1所示。
脉冲幅度较小的脉冲是探测器噪声,其中主要是热噪声;脉冲幅度较大的是单光电子峰。
V h为鉴别电平,用它来把高于V h的脉冲鉴别输出,以实现单光子计数。
可用来作为单光子计数的光电器件有许多种,如光电倍增管(PMT)、雪崩光电二极管(APD)、增强型光电极管(IPD)、微通道板(MCP)、微球板(MSP)和真空光电二极管(VAPD)等。
1、光电倍增管(PMT)单光子探测器光电倍增管是利用光的外光电效应的一种光电器件,主要由光电阴极和打拿极构成。
其工作原理如下:首先光电阴极吸收光子并产生外光电效应,发射光电子,光电子在外电场的作用下被加速后打到打拿极并产生二次电子发射,二次电子又在电场的作用下被加速打到下一级打拿极产生更多的二次电子,随着打拿极的增加,二次电子的数目也得到倍增,最后由光电阳极接收并产生电流或者电压输出信号。
当可见光的辐射光功率低于1.0×10-12~1.0×10-14时,光电倍增管的光电阴极上产生的光电流不再是连续的,这样,在光电倍增管的输出端就有离散的数字脉冲信号输出。
当有一个光子信号打到光电阴极上,就会产生一定数量的光电子。
这些光电子在电场的作用下,经过打拿极倍增,在输出端就有相应的电脉冲输出。
输出端电脉冲的数目与光子数成正比,对这些电脉冲进行计数也就能够相应地确定光子的数目。
光电倍增管单光子探测器主要采用的是一种逐个记录单光电子产生的脉冲数目的探测技术。
这种探测器主要由光电倍增管、制冷系统、宽带放大器、比较器、计数器组成。
光电倍增管是整个系统的基础,单光子信号经过光电倍增管,把光子信号转换为电信号。
在这过程中,要避免噪声把有用信号湮没。
光电倍增管性能的好坏直接决定了单光子探测器性能的好坏,因此选择合适的光电倍增管是非常关键的。
单光子探测需要的光电倍增管要求增益高、暗电流小、噪声低、时间分辨率高、量子效率高、较小的上升和下降时间。
影响光电倍增管单光子探测的一个重要因素就是光电倍增管的暗电流,尽管暗电流的成因很复杂,但一般认为光电倍增管的暗电流主要来源于光电倍增管阴极和第一发射极的热电子发射,即热噪声,因此降低热噪声是提高光电倍增管光子计数率的关键。
对于金属来说热发射电流密度j为[2]:j=(1)式中,W—金属热发射的逸出功;T—温度;e—电子的电荷;m—电子的质量;k—玻尔兹曼常数;h—普朗克常数。
本征半导体的热发射电流密度为:j=(2)式中,EA—电子亲和能;E—禁带宽度。
G在掺杂半导体中,热发射来源于杂质能级,热发射电流密度公式为:(3) 式中,E F—从价带顶算起的费米能级;n—杂质浓度。
由式(1)~(3)可以看出,要降低热发射噪声,必须降低环境温度。
同时,对于掺杂半导体来说,热发射噪声还与半导体的掺杂浓度有关,通常由于掺杂浓度不同,同一种型号的光电倍增管的热发射电流也是不同的。
因此在选择光电倍增管时要先对其进行测试,选择适合自己要求的管子。
由于光电倍增管不仅在单光子探测领域,而且在其它的光电检测领域也有很广泛的应用,因此有不少的国家和企业投入了大量的人力和物力进行研究。
PMT具有高的增益(104~107)、大光敏面积、低噪声等效功率(NEP)等优点;但是它体积庞大、量子效率低下、反向偏压高、仅能够工作在UV和可见光谱范围内,抗外部磁场能力较差。
2、雪崩光电二极管(APD)单光子探测器雪崩光电二极管不同于光电倍增管,它是一种建立在内光电效应基础上的光电器件。
雪崩光电二极管具有内部增益和放大的作用,一个光子可以产生10~1 00对光生电子空穴对,从而能够在器件内部产生很大的增益。
雪崩光电二极度管工作在反向偏压下,反向偏压越高,耗尽层当中的电场强度也就越大。
当耗尽层中的电场强度达到一定程度时(材料不同,电场大小也不一样,如:Si-A PD为105V/cm),耗尽层中的光生电子空穴对就会被电场加速,而获得巨大的动能,它们与晶格发生碰撞,就会产生新的二次电离的光生电子空穴对,新的电子空穴对又会在电场的作用下获得足够的动能,再一次与晶格碰撞又产生更多的光生电子空穴对,如此下去,形成了所谓的“雪崩”倍增,使信号电流放大。
外加电压的变化会使倍增因子发生较大的变化,倍增因子M的经验公式为:M=1/[1-(V/V B)n] (4)式中,V B—APD的雪崩电压。
式中的n因子与PN结低掺杂边是N型还是P型有关,且与入射波长有关。
理论上,当APD的工作电压趋近于雪崩电压时,M将趋于无穷大。
但实际上,当工作电压小于雪崩值时,M到1000左右就会饱和,这样的倍增还不足以探测到单光子信号。
在单光子探测中,APD一般是工作在所谓的“盖革模式”下,在这种模式下,雪崩光电二极管两端的偏压大于雪崩电压。
当有光子信号到达APD时,被APD吸收,并使APD迅速雪崩。
为了能够对下一个光子信号产生响应,需要采取一定的抑制电路,使雪崩发生后迅速地被切断,并使APD恢复到接收光子的状态。
通常采取的方式有:无源抑制和有源抑制。
一种简单的无源抑制工作方式的工作原理图如图2[3]:在无源抑制电路中,APD和一个大电阻R L以及一个小电阻R S串联,其等效电路图如图2(b)。
其中虚线框中的部分为APD的等效电路,R d为APD的电阻(一般为几百欧姆到几千欧姆不等),V A为APD的雪崩电压,C d为APD的结电容,C S 为分布电容。
当没有光子到达时,相当于开关K断开,APD处于等待状态,C d和C s被充电;当有光子到达时,APD发生雪崩,相当于图2(b)图中的K闭合,此时APD 处于接收光子状态,C d和C s通过R d和R s放电。
当C s和C d两端电压等于雪崩抑制电压V q时,雪崩停止,一般认为V q近似等于V A。
此时V B通过R L给C d和C s充电,恢复到接收光子状态。
无源抑制电路虽然简单,但是却限制了光子的计数率。
由上面的分析可知,雪崩光电二极管有一个“猝灭时间”和恢复时间,而这个时间主要是由R L、R d、C、C d决定。
由于R L必须很大才能够使APD猝灭,这样就使恢复时间增大。
这s个时间一般为几百纳秒,时间分辨率至多为400ps。
有源抑制可以大大地提高APD的计数性能。
在过去几年的发展中,已经有部分产品商品化。
有源抑制的响应时间主要是受晶体管开关的限制,而不是受R和C的限制,从而大大地降低了猝灭时间,提高了时间分辨率。
这种死时间已降低到了50ns,时间分辨率高达20ns。
目前应用的APD主要有三种,即Si-APD、Ge-APD和InGaAs-APD。
它们分别对应不同的波长。
Si-APD主要工作在400nm~1100nm,Ge-APD在800nm~15 50nm,InGaAs-APD则在900nm~1700nm。
对于光谱响应重叠的部分,InGaAs-A PD具有更低的噪声和更高的频率响应特性,因而价格也是最高的。
Ge-APD则处于两者之间。
用Si-APD制作的单光子探测器已经逐渐趋于成熟,国外一些半导体公司(如美国的EG&G公司)已经有产品在出售。
在国外,光通信三个波段(即850nm、1310nm和1550nm)的单光子探测器用于量子密钥系统已经有了相关的报道。
在国内,中科院物理所与中国科大(北京)研究生院合作,成功地制作了850nm波长的单光子探测器,并在850nm的单模光纤中完成了1.1km的量子密码通信演示性实验。
但在1310nm和1550nm波段的红外单光子探测国内还未见报道。
总的来说,比起国外目前的水平,我国在单光子探测领域还有较大差距。
APD单光子计数具有量子效率高、功耗低、工作频谱范围大、体积小、工作电压较低等优点,但是同时也有增益低、噪声大,外围控制电路及热电制冷电路较复杂等缺点。
3、真空雪崩光电二极管(VAPD)单光子探测器[5]针对PMT和APD的缺点,研究者开发出一种真空雪崩光电二极管(VAPD)单光子探测器,它是由光阴极和一个具有大光敏区面积的半导体硅APD组成。
光阴极和APD之间保持高真空态,光子信号打到光阴极上,产生光电子,这些光电子在高压电场的作用下加速,然后再打到APD上。
对于硅APD,这些光电子的能量约为硅带隙能量的2000倍,这样一个光电子就能产生大于2000对的电子空穴对。
在VAPD中,Si-APD的典型增益为500倍,因而VAPD的增益可以达到106倍(2000×500)。
VAPD单光子探测器是一种PMT和APD相结合的产物,具有许多PMT和APD 无法比拟的优点。
其主要特点有:低噪声、动态范围大、分辨率高、抗磁干扰能力强、探测光谱范围宽等特点。
这种单光子探测器的出现,对人们探索高技术领域将起到积极的推动作用。
三、单光子探测器的现状及其发展对于可见光探测,光电倍增管有很好的响应度,暗电流也非常小,很早就用于单光子计数,现在技术已经比较成熟,市场上也有了不少类似的产品。
然而随着人们对红外光研究的不断深入,特别是近年来量子通信技术、量子密码术的研究不断引起各国的重视,对红外通信波段(850nm、1310nm和1550nm)单光子探测器的研究也就显得尤为迫切。