ARM嵌入式系统与应用实验报告

合集下载

arm嵌入式实验报告

arm嵌入式实验报告

arm嵌入式实验报告ARM嵌入式实验报告近年来,随着科技的不断进步,嵌入式系统在各个领域得到了广泛应用。

作为其中一种重要的嵌入式处理器架构,ARM架构以其高效能和低功耗的特点,成为了众多嵌入式系统的首选。

本实验报告将介绍我在ARM嵌入式实验中的学习和体会。

1. 实验背景和目的嵌入式系统是指将计算机技术应用于各种电子设备中,以完成特定任务的系统。

ARM架构作为一种低功耗、高性能的处理器架构,广泛应用于智能手机、平板电脑、物联网设备等领域。

本次实验的目的是通过学习ARM架构的基本原理和应用,了解嵌入式系统的设计和开发过程。

2. 实验内容本次实验主要包括以下几个方面的内容:2.1 ARM架构的基本原理首先,我们学习了ARM架构的基本原理,包括指令集、寄存器、内存管理等方面的知识。

ARM指令集具有丰富的指令种类和灵活的寻址方式,可以满足不同应用的需求。

同时,ARM处理器具有多个寄存器,用于存储和操作数据,提高了程序的执行效率。

此外,内存管理是嵌入式系统设计中非常重要的一环,ARM架构通过虚拟内存管理机制,实现了对内存的高效管理。

2.2 ARM开发工具的使用为了进行ARM嵌入式系统的开发,我们需要使用相应的开发工具。

本次实验中,我们学习了如何使用Keil MDK开发工具,进行ARM程序的编译、调试和下载。

Keil MDK提供了一套完整的开发环境,包括编译器、调试器和仿真器等,方便了我们进行ARM程序的开发和调试。

2.3 ARM嵌入式系统的设计和开发在掌握了ARM架构和开发工具的基本知识后,我们开始进行ARM嵌入式系统的设计和开发。

本次实验中,我们以一个简单的温度监测系统为例,设计了相应的硬件电路和软件程序。

硬件电路包括传感器、模拟转换电路和显示器等,用于采集和显示温度数据。

软件程序则负责控制硬件电路的运行,并将采集到的温度数据进行处理和显示。

3. 实验结果和分析通过实验,我们成功地设计和开发了一个基于ARM架构的温度监测系统。

嵌入式系统原理及应用实验报告

嵌入式系统原理及应用实验报告

嵌⼊式系统原理及应⽤实验报告嵌⼊式系统原理及应⽤1、实验⽬的练习ARM汇编语⾔程序设计。

2、实验环境PC个⼈计算机、Windows XP操作系统、ADS1.2集成开发环境软件。

3、实验要求⽤ARM指令集设计⼀段汇编语⾔程序,完成两个64位⼆进制数的乘法运算,两个乘数分别放在r1、r0和r3、r2中(r1和r3放⾼位字),结果存在r7、r6、r5、r4中。

4实验原理及基本技术线路图ARM的乘法指令把⼀对寄存器的内容相乘,然后根据指令类型把结果累加到其它的寄存器。

长整形的“乘累加”要使⽤代表64位的⼀对寄存器,最终的结果放在⼀个⽬标寄存器或者⼀对寄存器中。

乘法指令的语法:MLA {}{S} Rd,Rm,Rs,RnMUL{}{S} Rd,Rm,RsMLA 乘累加Rd=(Rm×Rs)+RnMUL 乘法Rd=Rm×Rs{}{S} RdLo,RdHi,Rm,RsSMLAL 长整型有符号乘累加[RdHi,RdLo]=[RdHi,RdLo]+(Rm×Rs)SMULL 长整型有符号乘法[RdHi,RdLo]=Rm×RsUMLAL 长整型⽆符号乘累加[RdHi,RdLo]=[RdHi,RdLo]+(Rm×Rs)UMULL 长整型⽆符号乘法[RdHi,RdLo]=Rm×Rs长整型乘法指令产⽣64位的结果。

由于结果太⼤,不能存放在⼀个32位寄存器,所以把结果存放在2个32位的寄存器RdLo和RdHi中。

RdLo存放低32位,RdHi存放⾼32位。

利⽤UMULL和SUMLL指令可以进⾏32位宽度的⽆符号或有符号的整数乘法运算,得到64位的结果。

在实际应⽤中,有许多需要长整型乘法运算的应⽤。

例如,处理C中long long整型算术运算等。

对于64位整数乘法运算可利⽤如下页图所⽰的扩展⽅法来实现。

其中:R0,R1分别存放被乘数的低32位和⾼32位;R2,R3分别存放乘数的低32位和⾼32位;128位结果由低到⾼依次存放在R4,R5,R6,R7中。

大学ARM嵌入式实验报告范文

大学ARM嵌入式实验报告范文

大学ARM嵌入式实验报告范文《嵌入式系统》实验报告姓名:学号:班级:2022年4月实验一ARM汇编指令实验1一、实验目的1.初步学会使用ADS1.2开发环境及ARM软件模拟器;2.通过实验掌握简单ARM汇编指令的使用方法。

二.实验设备1.硬件:PC机;2.软件:ADS1.2集成开发环境。

Window98/2000/NT/某P。

三.实验内容1.熟悉开发环境的使用,并使用LDR/STR和MOV等指令访问寄存器或存储单元。

2.使用ADD/SUB/LSL/LSR/AND/ORR等指令,完成基本数学/逻辑运算。

四.实验原理ARM处理器共有37个寄存器:31个通用寄存器,包括程序计数器(PC),这些寄存器都是32位;6个状态寄存器,这些寄存器也是32位,但只使用了其中的12位。

1.ARM通用寄存器通用寄存器(R0~R15)可分为3类,即不分组寄存器R0~R7.分组寄存器R8~R14.程序计数器R15。

2.存储器格式ARM体系结构将存储器看作是从零地址开始的字节的线性组合。

字节0~3存放第一个字,字节4~7存放第2个字,以此类推。

ARM体系结构可以用两种方法存储字数据,分别称为大端格式和小端格式。

五.实验程序1.实验A参考程序某EQU45:定义变量某,并赋值为45YEQU64:定义变量y,并赋值为64STACK_TOPEQU0某1000:定义栈顶0某1000AREAE某ample,CODE,READONLY:声明代码段ENTRY:标识入口STARTMOVSP,#STACK_TOPMOVR0,#某:某的值放入R0STRR0,[SP]:R0的值保存到堆栈MOVR0,#Y:y的值放入R0LDRR1,[SP]:取堆栈中的数到R1ADDR0,R0,R1STRR0,[p]STOPBSTOP:死循环END:结束2.实验B参考程序某EQU45:定义变量某,并赋值为45YEQU64:定义变量y,并赋值为64ZEQU87:定义变量z,并赋值为87STACK_TOPEQU0某1000:定义堆栈顶0某1000AREAHU某IANG,CODE,READONLY:声明代码段,只读ENTRY:标识入口STARTMOVR0,#某:某的值放入R0MOVR0,R0,LSL#8:R0的值乘以2的8次方MOVR1,#Y:y的值放入R1ADDR2,R0,R1,LSR#1:R1的值除以2加上r0的值放入R2MOVSP,#0某1000STRR2,[SP]MOVR0,#Z:z的值放入R0ANDR0,R0,#0某FF:取R0的低八位MOVR1,#Y:y的值放入R1ADDR2,R0,R1,LSR#1:R1的值除以2加上r0的值放入R2LDRR0,[SP]:y的值放入R1MOVR1,#0某01ORRR0,R0,R1MOVR1,R2:y的值放入R1ADDR2,R0,R1,LSR#1:R1的值除以2加上r0的值放入R2STOPBSTOP:死循环END:结束六.实验结果及分析1.程序A的实验结果截图如下:实验分析;本实验使用LDR、STR、MOV等指令访问寄存器和存储单元,使用堆栈和寄存器R0,R1存储变量。

arm嵌入式实验报告完整版

arm嵌入式实验报告完整版

arm嵌入式实验报告完整版篇一:ARM嵌入式系统实验报告1郑州航空工业管理学院嵌入式系统实验报告第赵成,张克新院姓专学系:名:业:号:电子通信工程系周振宇物联网工程 121309140电子通信工程系XX年3月制实验一 ARM体系结构与编程方法一、实验目的了解ARM9 S3C2410A嵌入式微处理器芯片的体系结构,熟悉ARM微处理器的工作模式、指令状态、寄存器组及异常中断的概念,掌握ARM指令系统,能在ADS1.2 IDE中进行ARM汇编语言程序设计。

二、实验内容1.ADS1.2 IDE的安装、环境配置及工程项目的建立;2.ARM汇编语言程序设计(参考附录A):(1)两个寄存器值相加;(2)LDR、STR指令操作;(3)使用多寄存器传送指令进行数据复制;(4)使用查表法实现程序跳转;(5)使用BX指令切换处理器状态;(6)微处理器工作模式切换;三、预备知识了解ARM嵌入式微处理器芯片的体系结构及指令体系;熟悉汇编语言及可编程微处理器的程序设计方法。

四、实验设备 1. 硬件环境配置计算机:Intel(R) Pentium(R) 及以上;内存:1GB及以上;实验设备:UP-NETARM2410-S嵌入式开发平台,J-Link V8仿真器; 2. 软件环境配置操作系统:Microsoft Windows XP Professional Service Pack 2;集成开发环境:ARM Developer Suite (ADS)1.2。

五、实验分析1.安装的ADS1.2 IDE中包括两个软件组件。

在ADS1.2中建立 ARM Executable Image(ARM可执行映像)类型的工程,工程目标配置为 Debug;接着,还需要对工程进行目标设置、语言设置及链接器设置;最后,配置仿真环境为ARMUL仿真方式。

2.写出ARM汇编语言的最简程序结构,然后在代码段中实现两个寄存器值的加法运算,给出运算部分相应指令的注释。

ARM嵌入式实验报告

ARM嵌入式实验报告

实验一ARM 汇编指令使用实验——基本数学/ 逻辑运算一、实验目的1. 初步学会使用ARM ADS / Embest IDE for ARM 开发环境及ARM 软件模拟器。

2. 通过实验掌握数据传送和基本数学/ 逻辑运算的ARM 汇编指令的使用方法。

二、实验设备1. 硬件:PC机。

2. 软件:ADS 1.2 / Embest IDE 200X 集成开发环境。

三、实验内容1 .熟悉ADS 1.2 / Embest IDE 200X 开发环境的使用,使用LDR/STR和MOV等指令访问寄存器或存储单元,实现数据的加法运算。

具体实验程序如下:/* armasm1a.s */• EQU X, 45 /*定义变量X,并赋值为45*/.EQU Y, 64 /*定义变量Y,并赋值为64*/.EQU STACK_TOP, 0X1000 /* 定义栈顶0X1000*/.GLOBAL _START.TEXT_START: /* 程序代码开始标志*/MOV SP, #STACK_TOPMOV R0, #X/*X 的值放入R0*/STR R0, [SP]/*R0 的值保存到堆栈*/MOV R0, #Y/*Y 的值放入R0*/LDR R1, [SP]/* 取堆栈中的数到R1*/STRR0, [SP] STOP: B STOP/* 程序结束,进入死循环 */.END等指令,完成基本数学 / 逻辑运算。

具体实验程序如下:/* armasm1b.s */ .EQU X, 45 /*定义变量X ,并赋值为45*/ .EQU Y, 64 /*定义变量Y ,并赋值为64*/ .EQU 乙87/*定义变量Z ,并赋值为87*/.GLOBAL _START .TEXT_START: /* 程序代码开始标志 */MOV R0, #X/*X 的值放入 R0*/MOV R0, R0, LSL #8 /*R0 的值乘以 2 的 8 次方 */ MOV R1, #Y/*Y 的值放入 R1*/ADD R2, R0, R1, LSR #1 /*R1 的值除以 2 再加上 R0 后的值放入 R2*/MOV SP, #0X1000 STR R2, [SP] MOV R0, #Z/*Z 的值放入 R0*/ AND R0, R0, #0XFF /* 取 R0 的低八位 */ MOV R1, #Y/*Y 的值放入 R1*/ADD R2, R0, R1, LSR #1 /*R1 的值除以 2 再加上 R0 后的值放入 R2*/ADDR0, R0, R1 2.使用 ADD/SUB/LSL/LSR/AND/ORR .EQU STACK_TOP, 0X1000 /* 定义栈顶 0X1000*/1.新建工程。

嵌入式arm实习报告

嵌入式arm实习报告

嵌入式arm实习报告嵌入式arm实习报告嵌入式系统开发与应用概述在今日,嵌入式ARM 技术已经成为了一门比较热门的学科,无论是在电子类的领域,你都可以看到嵌入式ARM 的影子。

如果你还停留在单片机级别的,那么实际上你已经落下时代脚步了,ARM 嵌入式技术正以几何的倍数高速发展,它几乎渗透到了几乎你所想到的领域。

由于嵌入式系统具有体积小、性能强、功耗低、可靠性高以及面向行业具体应用等突出特征,目前已经广泛地应用于军事国防、消费电子、信息家电、网络通信、工业控制等各个领域。

嵌入式的广泛应用可以说是无所不在。

linux系统linux系统主要是由用户空间和内核空间再加上外部的硬件平台构成,用户空间就是用户应用程序的运行空间,主要包括两方面的内容:用户应用程序和GNU C Library(glibc)。

而内核空间有三方面的内容,一是系统调用接口,它作为用户空间和内核空间相互转移的一种方式,二是内核空间,三是体系相关内核代码,在linux内核代码中,可以看到arch目录下有许多子目录,其中每一个子目录代表一种硬件平台。

而为什么要把linux系统划分为用户空间和内核空间呢?主要是一旦用户空间和内核空间没有分开,那用户将拥有很大的权限去操控内核或用户应用程序的崩溃将会造成系统的崩溃,而linux系统是利用cpu的模式分级来分别运行用户空间和内核空间,这样就可以使操作系统得到充分的保护。

而现代的cpu通常实现了不同的工作模式,以ARM处理器为例实现了7种运行模式,分别为:1)用户模式(usr):ARM微处理器正常程序执行模式2)系统模式(sys):运行具有特权的操作系统任务3)中断模式(irq):用于通用的中断处理4)外部中断模式(fiq):用于高速数据传输或通道处理5)数据访问终止模式(abt):当数据或指令预取终止时进入该模式,可用于虚拟存储及存储保护6)管理模式(svc):操作系统使用的保护模式7)未定义指令中止模式(und):当未定义的指令执行时进入该模式,可用于支持硬件协处理器的软件仿真ARM微处理器的运行模式可以通过软件改变,也可以通过外部中断或异常处理改变,除用户模式外,模式都是非用户模式或特权模式,除用户模式和系统模式外,其他模式都是异常模式,常用于处理异常或中断,以及需要访问受保护的系统资源等情况。

嵌入式实训报告范文2篇2

嵌入式实训报告范文2篇2

嵌入式实训报告范文 (2)嵌入式实训报告范文 (2)精选2篇(一)嵌入式实训报告一、实训背景嵌入式系统是一种以具体任务为中心,集成了硬件与软件的计算机系统。

由于其体积小、功耗低、功能强大等特点,嵌入式系统被广泛应用于各个领域,如家电、汽车、医疗等。

通过参与嵌入式实训,我希望能够掌握嵌入式开发的基本原理和方法,提高自己的实践能力。

二、实训目标1.掌握嵌入式系统的基本知识和开发工具的使用;2.了解嵌入式系统的硬件架构和软件设计流程;3.能够根据需求设计并实现简单的嵌入式系统。

三、实训内容1.学习嵌入式系统基础知识:通过课堂教学和自主学习,了解了嵌入式系统的概念、特点及应用领域。

深入学习了ARM架构和C语言的基本知识,并进行了相应的实践操作。

2.学习嵌入式开发工具的使用:学习了Keil MDK和IAR Embedded Workbench等常用的嵌入式开发工具的安装和配置方法。

通过实操操作,掌握了调试、编译、下载等基本功能的使用。

3.学习嵌入式系统设计流程:了解了嵌入式软件开发的常用流程,包括需求分析、系统设计、编码实现、调试测试、系统验证等。

通过案例分析和实践操作,对嵌入式系统设计流程有了更深入的了解。

4.设计并实现简单的嵌入式系统:根据实训要求,我选择了一个简单的嵌入式系统项目,通过分析需求、设计系统架构、编写软件代码、调试测试等环节,最终成功完成了项目。

四、实训总结及收获通过参与嵌入式实训,我不仅掌握了嵌入式系统的基本知识和开发工具的使用,还锻炼了自己的实践能力。

我深刻认识到嵌入式系统开发需要全面的知识储备和较高的技术水平,同时也需要良好的分析、设计和沟通能力。

通过实训,我对嵌入式系统开发流程有了更深入的理解,对嵌入式系统的设计和开发也有了更高的认识和要求。

在未来的学习和工作中,我会继续深入学习嵌入式系统开发相关知识,并不断提高自己的实践能力。

嵌入式系统是未来的发展方向,通过不断探索和实践,我相信我能够在这个领域取得更好的成果。

嵌入式实训报告范文2篇

嵌入式实训报告范文2篇

嵌入式实训报告范文嵌入式实训报告范文精选2篇(一)嵌入式实训报告一、实训目的和背景嵌入式实训的目的是通过设计和实现一个嵌入式系统,培养学生的嵌入式系统开发才能和团队协作才能。

本次实训的背景是为了满足社会对嵌入式系统开发人才的需求,进步学生的实际动手才能。

二、实训内容1. 硬件平台的选择和搭建:选择了一款ARM开发板作为硬件平台,并搭建了相应的开发环境。

2. 系统设计和分析:根据实训要求,我们团队设计了一个智能门锁系统,包括用户认证、门锁控制和远程监控功能。

3. 软件开发:使用C语言和嵌入式开发工具进展软件开发,实现了用户认证、门锁控制和远程监控等功能。

4. 硬件连接和调试:将开发板和相关传感器、执行器等硬件设备进展连接和调试,确保系统可以正常运行。

5. 功能测试和调优:对系统进展全面测试,发现并修复了一些问题,并对系统进展了性能优化。

三、实训心得和体会通过本次实训,我深入认识到嵌入式系统开发的复杂性和挑战性。

在实训过程中,我们团队遇到了许多问题,比方硬件和软件的兼容性、性能优化等方面。

但是通过团队的努力和合作,我们成功解决了这些问题,并完成了一个功能完善的嵌入式系统。

此外,我还学到了许多软件开发和硬件调试的技巧,进步了自己的实际动手才能。

在团队协作方面,我们团队成员之间互相配合,共同解决问题,形成了良好的协作机制。

总结起来,本次嵌入式实训让我受益匪浅,学会了许多实际应用的技能和知识,并进步了自身的综合才能。

四、实训成果展示在实训完毕后,我们团队成功完成了一个智能门锁系统,具备用户认证、门锁控制和远程监控等功能。

系统的稳定性和可靠性得到了验证,并且在实际使用中得到了积极的反应。

附图:〔展示系统界面、硬件设备连接示意图等〕五、实训改良意见尽管本次实训获得了良好的成果,但仍有一些方面需要改良。

首先,实训的时间安排可以更合理一些,以便更充分地利用时间进展理论操作。

其次,可以增加一些真实场景的案例分析和解决方案的设计,以提升学生的实际应用才能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息科学与技术系ARM嵌入式系统与应用实验报告专业班级 ____电信0803班__________学号 ____________姓名 ___ ___________实验老师 ___ __________总成绩 _________________________2011—2012学年(1)实验一通用 IO 口试验一、实验目的熟悉ARM 芯片I/O口编程配置方法;掌握ARM芯片I/O口控制LED显示的方法。

二、实验设备硬件:嵌入式实验平台一套、仿真器一个、PC 机一台。

软件:Windows 98/2000/NT/XP 操作系统、仿真器驱动程序、ADS 开发软件一套。

三、实验内容控制嵌入式实验箱上的LED轮流点亮。

四、实验原理S3CRRB0X 芯片上共有71 个多功能I/O 引脚,他们分别为7 组I/O 端口:2 个9 位I/O 端口(端口E 和F)2 个8 位I/O 端口(端口D 和G)1 个16 位I/O 端口(端口C)1 个10 位I/O 端口(端口A )1 个11 位I/O 端口(端口B )每组端口都可以通过软件配置寄存器来满足不同系统合设计的需要。

在运行主程序之前,必须先对每一个用到的引脚的功能进行设置。

如果某些引脚的附庸功能没有使用,那么可以先将该引脚设置为I/O口。

S3C44B0X芯片与端口相关的寄存器(1)端口控制寄存器(PCONA~G):在S3C44B0X 芯片中,大部分引脚是使用多路复用的,所以要确定每个引脚的功能。

PCONn(端口控制寄存器)能够定义引脚功能。

如果 PG0~PG7作为掉电模式下的唤醒信号,那么这些端口必须配置成中断模式。

(2)端口数据寄存器(PDATA~G):如果端口定义为输出口,那么输出数据可以写入 PDATn中相应的位;如果端口定义为输入口,那么输入数据可以从PDATn 相应的位中读入。

(3)端口上拉寄存器(PUPC~G):通过配置端口上拉寄存器,可以使该组端口与上拉电阻连接或断开。

当寄存器中相应位配置为0 时,该引脚接上拉寄存器;当寄存器中相应位配置为1 时,该引脚不接上拉电阻。

(4)外部中断寄存器(EXTINT ):通过不同的信号方式可以使8 个外部中断被请求。

EXTINT 寄存器可以根据外部中断的需求,将中断触发信号配置为低电平触发,高电平触发,下降沿触发,上升沿触发和边沿触发几种方式。

五、实验操作步骤1.启动,使用ARM Execuatable Image 工程模板新建一个工程;2.添加两个组INC 和SRC;3.将INC 文件夹下所有文件添加到组INC 中;4.将SRC 文件夹下所有文件添加到组SRC 中;5.建立源文件,编写实验程序,添加到工程中;6.编译链接选项的设置同前面实验;7.编译链接工程,点击Debug 按钮,启动AXD进行调试;8.连续点击step in按钮,单步运行程序,主板上的三个LED灯循环点亮。

9.理解并掌握本实验原理及程序,完成练习题六、实验参考程序#include ""#include ""#include ""#include ""void Isr_Init(void);void HaltUndef(void);void HaltSwi(void);void HaltPabort(void);void HaltDabort(void);void Main(void){ rSYSCFG=SYSCFG_8KB;#if (PLLON 1)ChangePllValue(PLL_M,PLL_P,PLL_S);#endifIsr_Init(); 中断初始化Port_Init(); 端口初始化Uart_Init(0,115200); 波特率为115200Uart_Select(0); 选择串口0Delay(0);}void HaltUndef(void){Uart_Printf("Undefined instruction exception!!!\n");while(1);}void HaltSwi(void){Uart_Printf("SWI exception!!!\n");while(1);}void HaltPabort(void){Uart_Printf("Pabort exception!!!\n");while(1);}void HaltDabort(void){Uart_Printf("Dabort exception!!!\n");while(1);}七、思考题1、在原程序的基础上改变led灯的闪烁方式。

将其中部分程序改为以下程序,使其变为每次两个灯一起亮Uart_Printf("\n start \n");while(1){ Delay(5000); 掌握ARM的串行口工作原理2. 学习编程实现ARM的UART 通讯3. 掌握CPU利用串口通讯的方法二、实验设备硬件:ARM嵌入式开发板、用于ARM7TDMI的JTAG仿真器、PC、串口线。

软件:PC机操作系统win98、Win2000或WinXP、ARM SDT 或集成开发环境、仿真器驱动程序、超级终端通讯程序。

三、预备知识1. 用ARM 集成开发环境,编写和调试程序的基本过程2. ARM应用程序的框架结构3. 了解串行总线四、实验内容学习串行通讯原理,了解串行通讯控制器,阅读ARM芯片文档,掌握ARM的UART相关寄存器的功能,熟悉ARM系统硬件的UART相关接口。

编程实现ARM和计算机实现串行通讯。

ARM监视串行口,将接收到的字符再发送给串口(计算机与开发板是通过超级终端通讯的),即按PC键盘通过超级终端发送数据,开发板将接收到的数据再返送给PC,在超级终端上显示。

五、实验原理串行通讯是微计算机之间种常见的近距离通讯手段,因使用方便、编程简单而广泛使用,几乎所有的微控制器、PC都提供串行通讯接口。

1. 异步串行I/0异步串行方式是将传输数据的每个字符位接位(例如先低位、后高位)地传送。

数据的各不同位可以分时使用同传输通道,因此串行I/0 可以减少信号连线,最少用对线即可进行。

接收方对于同根线上连串的数字信号,首先要分割成位,再按位组成字符。

为了恢复发送的信息,双方必须协调工作。

在微型计算机中大量使用异步串行I/0方式,双方使用各自的时钟信号,而且允许时钟频率有定误差,因此实现较容易。

但是由于每个字符都要独立确定起始和结束(即每个字符都要重新同步),字符和字符间还可能有长度不定的空闲时间,因此效率较低。

图串行通信字符格式图给出异步串行通信中个字符的传送格式。

开始前,线路处于空闲状态,送出连续1”。

传送开始时首先发个0”作为起始位,然后出现在通信线上的是字符的二进制编码数据。

每个字符的数据位长可以约定为 5 位、6 位、7位或8位,一般采用ASCII编码。

后面是奇偶校验位,根据约定,用奇偶校验位将所传字符中为1”的位数凑成奇数个或偶数个。

也可以约定不要奇偶校验,这样就取消奇偶校验位。

最后是表示停止位的1”信号,这个停止位可以约定持续 1 位、位或 2 位的时间宽度。

至此个字符传送完毕,线路又进入空闲,持续为1”。

经过段随机的时间后,下个字符开始传送才又发出起始位每个数据位的宽度等于传送波特率的倒数。

微机异步串行通信中,常用的波特率为2400,4800,9600,19200bps 等。

接收方按约定的格式接收数据,并进行检查,可以查出以下三种错误:1)奇偶错:在约定奇偶检查的情况下,接收到的字符奇偶状态和约定不符。

2)帧格式错:个字符从起始位到停止位的总位数不对。

3)溢出错:若先接收的字符尚未被微机读取,后面的字符又传送过来,则产生溢出错。

每种错误都会给出相应的出错信息,提示用户处理。

2. ARM自带的串行口寄存器S3C4510B的UART单元提供两个独立的异步串行I/O口(AsynchronousSerial I/O,SIO),每个通讯口均可工作在中断模式或DMA模式,也即UART能产生内部中断请求或DMA请求在CPU和串行I/O口之间传送数据。

S3C4510B的UART单元特性包括:1)波特率可编程2)支持红外发送与接收3) 1~2个停止位4) 5、6、7或8个数据位5)奇偶校验每一个异步串行通讯口都具有独立的波特率发生器、发送器、接收器和控制单元波特率发生器可由片内系统时钟MCLK驱动,或由外部时钟UCLK(Pin64)驱动;发送器和接收器都有独立的数据缓冲寄存器和数据移位器。

待发送的数据首先传送到发送缓冲寄存器,然后拷贝到发送移位器并通过发送数数据引脚 UATXDn发送出去。

接收数据首先从接收数据引脚UARXDn移入移位器,当接收到一个字节时就拷贝到接收缓冲寄存器。

SIO的控制单元通过软件控制工作模式的选择、状态和中断产生。

当使用UART的发送中断功能时,应在初始化UART之前先写一个字节数据到UART的发送缓冲寄存器,这样,当发送缓冲寄存器空时就可以产生UART的发送中断。

图串行口功能模块表为UART特殊功能寄存器描述UART行控制寄存器(UART Line Control Registers,ULCON0、ULCON1):下面简要介绍UART操作。

关于数据发送、数据接收、中断产生、波特率产生、回环模式和自动流控制的详细介绍,请参考数据手册及其他相关资料。

发送数据帧是可编程的。

1个数据帧包含1个起始位、5-8个数据位、1个可选的奇偶校验位和1~2个停止位。

停止位通过行控制寄存器ULCONn配置。

与发送帧类似,接收帧也是可编程的。

接收帧由1个起始位、5-8个数据位、1个可选的奇偶校验位和1~2个行控制寄存器ULCONn中的停止位组成。

接收器还可以检测过速错误、奇偶校验错误、帧错误和传输中断。

每一个错误均可以设置一个错误标志。

à过速错误指已接收到的数据在读取之前被新接收的数据覆盖。

à奇偶校验错误指接收器检测到的校验和与设置的不相符。

à帧错误指没有接收到有效的停止位。

à传输中断指接收数据RxDn保持逻辑0超过1帧的传输时间。

在FIFO模式下,如果RxFIFO非空,而在3个字的传输内没有接收到数据,那么产生超时。

与UART有关的寄存器主要有以下几个:(1)UART行控制寄存器ULCONn。

该寄存器的位6决定是否使用红外模式,位5~位3决定校验方式,位2决定停止位长度,位1和位0决定每帧的数据位数。

(2)UART控制寄存器UCONn。

该寄存器决定UART的各种模式。

UART FIFO控制寄存器UFCONn和UART MODEM控制寄存器,分别用来决定UART FIFO和MODEM的模式。

相关文档
最新文档