高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法总结很全
高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法

(自己总结供参考)

一.切线问题

题型1 求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .

(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )

(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、

(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--)

题型3 求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。

例 求曲线2

x y =与曲线x e y ln 2=的公切线方程。(答案02=--e y x e )

二.单调性问题

题型1 求函数的单调区间。

求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。 例 已知函数x a x x a x f )1(2

1ln )(2

+-+

= (1)求函数)(x f 的单调区间。(利用极值点的大小关系分类)

(2)若[]e x ,2∈,求函数)(x f 的单调区间。(利用极值点与区间的关系分类)

题型2 已知函数在某区间是单调,求参数的范围问题。

方法1:研究导函数讨论。

方法2:转化为0)(0)('

'≤≥x f x f 或在给定区间上恒成立问题,

方法3:利用子区间(即子集思想);首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子集。

注意:“函数)(x f 在()n m ,上是减函数”与“函数)(x f 的单调减区间是()b a ,”的区别是前者是后者的子集。 例 已知函数2

()ln f x x a x =++

x

2

在[)+∞,1上是单调函数,求实数a 的取值范围. (答案[)+∞,0)

题型3 已知函数在某区间的不单调,求参数的范围问题。

方法1:正难则反,研究在某区间的不单调 方法2:研究导函数是零点问题,再检验。 方法3:直接研究不单调,分情况讨论。 例 设函数1)(2

3

+++=x ax x x f ,R a ∈在区间??

?

??1,21内不单调,求实数a 的取值范围。 (答案:()

3,2--∈a ))

三.极值、最值问题。

题型1 求函数极值、最值。

基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。

例 已知函数12

1)1()(2

++-

+-=kx x e k x e x f x

x

,求在()2,1-∈x 的极小值。 (利用极值点的大小关系、及极值点与区间的关系分类)

题型2 已知函数极值,求系数值或范围。

方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。 方法2.转化为函数单调性问题。

例 函数1)1(2

1

)1(3141)(234+----+=

x p p px x p x x f 。0是函数)(x f 的极值点。求实数p 值。

(答案:1)

题型3 已知最值,求系数值或范围。

方法:1.直接求最值;2.转化恒成立,求出范围,再检验。

例 设a ∈R ,函数2

3

3)(x ax x f -=.若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. (答案:??

? ?

?∞-5

6,)

四.不等式恒成立(或存在性)问题。

一些方法

1.若函数()n m x f ,)(值域,a >)(x f 恒成立,,则n a ≥

2.对任意()()n m x n m x ,,,21∈∈,)()(21x g x f ≥恒成立。则≥min 1)(x f max 2)(x g 。

3.对()()n m x n m x ,,,21∈?∈?,)()(21x g x f ≥成立。则≥max 1)(x f min 2)(x g 。

4.对(),,1n m x ∈,恒成立)()(11x g x f ≥。转化0)()(11≥-x g x f 恒成立

4. 对()()n m x n m x ,,,21∈?∈?,)()(21x g x f ≥成立。则≥min 1)(x f min 2)(x g 。

5. 对()()n m x n m x ,,,21∈?∈?,)()(21x g x f ≥成立。则≥max 1)(x f max 2)(x g

6. 对()()n m x n m x ,,,21∈∈,

a x x x f x f ≥--2

121)

()(成立。则构造函数ax x f x t -=)()(。 转化证明)(x t 在()n m ,是

增函数。

题型1 已知不等式恒成立,求系数范围。

方法:(1)分离法:求最值时,可能用罗比达法则;研究单调性时,或多次求导。

(2)讨论法: 有的需构造函数。关键确定讨论标准。分类的方法:在求极值点的过程中,未知数的系

数与0的关系不定而引起的分类;有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);极值点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。分类必须从同一标准出发,做到不重复,不遗漏。

(3)数形结合: (4)变更主元

解题思路 1.代特值缩小范围。2. 化简不等式。3.选方法(用讨论法,或构造新函数)。

方法:分离法。

求最值时,可能用罗比达法则;研究单调性时,或多次求导。 例 函数a x x e x f x

+-=)ln ()(2

。在[]e x ,1∈e x f ≥)(恒成立,求实数a 取值范围。(方法:分离法,多次求导

答案:[)+∞,0)

方法:讨论法。

有的需构造函数。关键确定讨论标准。分类的方法:在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);极值点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。分类必须从同一标准出发,做到不重复,不遗漏。 例 设函数f(x)=2

1x

e x ax ---.若当x ≥0时f(x)≥0,求a 的取值范围. (答案:a 的取值范围为1,2

??-∞ ??

?

方法:数形结合。

数形结合解不等式恒成立问题的步骤:(1)不等式等价变形(2)把不等式两端的式子分别看成两个函数(其中一个函数的图像为直线,)。(3)利用导数研究函数的单调性,极值、最值,图像的凹凸性。(4)画出两个函数图像。(5)根据不等式关系和图形的位置关系,列式求解。 例 (2012新课标全国卷理科21题第二问)

已知函数()f x 满足1

21()(1)(0)2

x f x f e

f x x -'=-+;若21

()2f x x ax b ≥++,求(1)a b +的最大值。

解:1211

()(1)(0)()(1)(0)2

x x f x f e f x x f x f e f x --'''=-+?=-+,令1

x =得:(0)1f =1211

()(1)(0)(1)1(1)2

x f x f e x x f f e f e --'''=-+?==?=得:221)(x x e x f x +-=,

(变形)又21()2

f x x ax b ≥++?b x a e x

++≥)1(,

(设函数)设=)(x g x e ,=)(x h b x a ++)1(。

(画函数图像)=)(x g x e 的图像是过(0,1)

的曲线C ,曲线C 随着x 的增大y 值增大且图像下凹。

=)(x h b x a ++)1(的图像是过点(0,b )且斜率为

1+a 的直线L ,如图一。 (列式求解)由b x a e x

++≥)1(,则曲线C 必在直线L 的上方或曲线C 与直线L 相切。

设曲线C 与直线L 的切点为M ),(00y x ,曲线C 在点M ),(00y x 的切线方程为L:)1(000x e x e y x

x -+=,切线

的斜率为0x e ,在y 轴上的截距为)1(00x e x -。又直线L 的斜率为1+a ,在y 轴上的截距为b ,则有)1(0

+=a e

x ,

b x e x ≥-)1(00,

所以≤+b a )1(0x

e ×)1(00x e x -=)1(020

x e

x -,设=)(0x t )1(020x e x -,R x ∈0,=')(0x t )21(020x e x -,当

??? ??∞-∈21,0x ,)(0x t '>0当??

?

??+∞∈,210x ,)(0x t '<0,故)(0x t 有最大值2)21(e t =,所以,(1)a b +的最大值为

2

e 。

方法:变更主元

例:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0

g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432

3()1262

x mx x f x =--,若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. (答案:2)

五.函数零点问题

b x + C:x

e x g =)(

题型1:判断函数零点的个数。

方法:方程法;函数图象法;转化法;存在性定理

例.设31,()(1)ln 3

a R f x x ax a x ∈=-++-.若函数()y f x =有零点,求a 的取值范围. (提示:当1>a 时,0)1(>f ,0)3(

????+∞,31)

题型2:已知函数零点,求系数。

方法:图象法(研究函数图象与x 轴交点的个数);方程法;转化法(由函数转化方程,再转化函数,研究

函数的单调性。) 例.函数3

)1(1ln )(--+-=x a x x x f 在(1,3)有极值,求实数a 的取值范围。(答案??

? ??-∞-181,)

六.不等式证明问题

方法1:构造函数,研究单调性,最值,得出不等关系,有的涉及不等式放缩。 方法2:讨论法。

方法2.研究两个函数的最值。如证)()(x g x f ≥,需证)(x f 的最小值大于)(x g 的最大值即可。

方法:讨论法 例:已知函数ln ()1a x b

f x x x =

++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。证明:当0x >,且1x ≠时,ln ()1

x

f x x >

-。

方法:构造函数

例:已知函数

2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,(1)若()g x 图象上一点

(2,(2))p g 处的切线方程为:22ln 220x y -+-=,设112212(,),(,),()A x y B x y x x <是函数()y g x =的图

象上两点,21

21

()y y g x x x -'=-,证明:102x x x <<

方法:构造函数,不等式放缩

例.已知函数)(ln )(2

R m mx x x f ∈+=

(I);若m=0,A(a,f(a))、B(b ,f(b))是函数f(x)图象上不同的两点.且a>b>0, )(x f '为f(x)的导函数,求证:

)()()()2(

b f b a b f a f b a f '<--<+' (II)求证 :*)(1

...31211)1ln(122...725232N n n

n n ∈++++<+<++

+++

方法:求同项。

方法:数学归纳法。

七.导数在实际中的应用

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

高三导数压轴题题型归纳

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1 0+m =0?m =1, 定义域为{x |x >-1},f ′(x )=e x -1 x +m = e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1 x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1 x +22>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-1 2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1 t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1 t +2+t = 1+t 2 t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)121 1()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f =

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高考导数压轴题型归类总结材料

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>. 一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x .

所以当33= x 时,)(x g 有最小值9 3 2)33(- =g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 1 1222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论: ①a 若> 3 2 ,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表: )(所以x f .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数 .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数 ②a 若<3 2 ,则a 2->2-a ,当x 变化时,)()('x f x f ,的变化情况如下表: 所以)(x f .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极大值在函数

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

高考数学导数与三角函数压轴题综合归纳总结教师版0001

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题, 内容主要包 括函数零点个数的确定、 根据函数零点个数求参数范围、 隐零点问题及零点存在 性赋值理论 .其形式逐渐多样化、综合化 . 、零点存在定理 例1【. 2019全国Ⅰ理 20】函数 f(x) sinx ln(1 x),f (x)为f (x)的导数.证明: 1) f (x)在区间 ( 1, 2 )存在唯一极大值点; 2) f (x) 有且仅有 2 个零点. 可得 g'(x)在 1, 有唯一零点 ,设为 2 则当x 1, 时,g x 0;当 x ,2 时,g'(x) 0. 所以 g(x) 在 1, 单调递增,在 , 单调递减 ,故g(x) 在 2 值点 ,即 f x 在 1, 存在唯一极大值点 . 2 (2) f x 的定义域为 ( 1, ). (i )由( 1)知, f x 在 1,0 单调递增 ,而 f 0 0,所以当 x ( 1,0)时, f'(x) 0,故 f x 在 ( 1,0)单调递减 ,又 f (0)=0 ,从而 x 0是 f x 在( 1,0] 的唯 一零点 . 【解析】( 1)设 g x f x ,则 g x 当x 1, 时, g'(x)单调递减,而 g 2 1 1 sinx 2 1 x 2 cosx ,g x 1x 0 0,g 0, 2 1, 存在唯一极大 2

, 时, f '(x) 0.故 f (x) 在(0, )单调递增,在 , 单调递 22 3 变式训练 1】【2020·天津南开中学月考】已知函数 f (x) axsin x 2(a R), 且 在, 0, 2 上的最大值为 (1)求函数 f(x)的解析式; (2)判断函数 f(x)在( 0,π)内的零点个数,并加以证明 【解析】 (1)由已知得 f(x) a(sin x xcosx) 对于任意的 x ∈(0, ), 3 有 sinx xcosx 0,当 a=0 时,f(x)=- ,不合题意; 2 当 a<0时,x ∈(0,2 ),f ′(x)从<0而, f(x)在(0, 2 )单调递减, 3 又函数 f(x) ax sin x 2 (a ∈ R 在) [0, 2 ]上图象是连续不断的, 故函数在 [0, 2] 上的最大值为 f(0) ,不合题意; 当 a>0时,x ∈(0, 2),f ′(x)从>0而, f(x)在(0, 2 )单调递增, 3 又函数 f(x) ax sin x (a ∈R 在) [0, ]上图象是连续不断的, 33 故函数在[0, 2 ]上上的最大值为 f( 2)=2a- 23= 23,解得 a=1, 3 综上所述 ,得 f(x) xsinx 3(a R),; (2)函数 f(x) 在(0, π内)有且仅有两个零点。证明如下: 从而 f x 在 0, 没有零点 . 2 ( iii ) 当 x , 时 , f x 0 , 所 以 f x 在 单调递减.而 2 2 f 0, f 0 ,所以 f x 在, 有唯一零点 . 2 2 ( iv )当 x ( , ) 时,ln x 1 1,所以 f (x) <0,从而 f x 在( , ) 没有零点 . 减.又 f (0)=0 , f 1 ln 1 22 0 ,所以当x 0,2 时,f(x) 0. 综上, f x 有且仅有 2个零点. ii )当 x 0,2 时,由(1)知,f'(x)在(0, )单调递增 ,在 单调递减 ,而 f ' (0)=0 2 0 ,所以存在 ,2 ,使得 f'( ) 0,且当x (0, ) 时, f'(x) 0 ;当 x

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

(完整版)导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题 极值点偏移问题常见的处理方法有⑴构造一元差函数()()()x x f x f F --=02x 或者 ()()()x x f x x f x F --+=00。其中0x 为函数()x f y =的极值点。⑵利用对数平均不等式。 2 ln ln ab b a b a b a +< --< 。⑶变换主元等方法。 任务一、完成下面问题,总结极值点偏移问题的解决方法。 1.设函数2 2 ()ln ()f x a x x ax a R =-+-∈ (1)试讨论函数()f x 的单调性; (2)()f x m =有两解12,x x (12x x <),求证:122x x a +>. 解析:(1)由2 2 ()ln f x a x x ax =-+-可知 2222(2)()()2a x ax a x a x a f x x a x x x --+-'=-+-== 因为函数()f x 的定义域为(0,)+∞,所以 ① 若0a >时,当(0,)x a ∈时,()0f x '<,函数()f x 单调递减, 当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增; ② 若0a =时,当()20f x x '=>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③ 若0a <时,当(0,)2 a x ∈-时,()0f x '<,函数()f x 单调递减, 当(,)2 a x ∈- +∞时,()0f x '>,函数()f x 单调递增; (2)要证122x x a +>,只需证12 2 x x a +>, (x)g =22 2(x)2,g (x)20(x)(x)a a f x a g f x x '''=-+-=+>∴=则为增函数。 只需证:12 x x ( )()02 f f a +''>=,即证()2121221212221+0+0a x x a x x a x x x x a -+->?-+->++(*) 又2222 111222ln ,ln ,a x x ax m a x x ax m -+-=-+-=两式相减整理得:

导数压轴题7大题型归类总结

导数压轴题7大题型归类总结,逆袭140+ 一、导数单调性、极值、最值的直接应用 设a> 0,函数g(x)= (a A2 + 14)e A x + 4?若E 1、E 2 € [0 , 4],使得|f( E 1) - g( E 2)| v 1 成立, 求a 的取值范围.

二、交点与根的分布 三、不等式证明 (一)做差证明不等式 LL期嗨敕门划=1扣 M】求的单调逼减区创! <2)^7 I >-1 r求证1 I ----- + x+ 1 W;的宦义域为(一4 +—=—-1 = ■―? x + 1 T t 4-1 I ■丈0 山厂w" 阳=」耳+ 1?二的中说逆减区簡为①,车呵一 ⑵国小由⑴得_虫(一1, ?时” /r Ct)>O f *庄曰① #8)时./'(XXO ?II /+(0) = 0 z.t>- 1 时.f骑)Wf(Qh ?〔耳口仇in(.T + h t T, I I x >X<^> = lnU + 1)+ ------ 1 t则K C<)* ----- -------- =------- -| r+1 立*1 {x+1)- G + I广/. — !< c<0时.X W Y O T ?A0时., JJ x F?h = <) 」?T A—l时、* S) (0)t UP \a(j[ + I M---------- 1MQ X + 1 ;.+1) ) ------- ,:心一1时t I------------- < ln{x + n^j. (二)变形构造函数证明不等式

Ehl&£ /I U li 故)白 )替换构造不等式证明不等式 >=/U ) “川理k C 1;/< <6 N 实出氓I:的崗散丿I + 20> I 沟申求齡./i (2JfiF(x) = /(.r)r-g(x> nt,护订} > 0 3r hH(f > [}). I J J //(:>- 2/0-^ . ft Injr". tl 中 i 堆fiU |他①5)的必人饥为hie' * = m 叫z ?削灯育公共恵?且在谆戍坯的也皱丹匸, %、b 、曲求占的E 大fh /(X) K (r K ). v = /Ol 存佥共C <^ r ()i 牡的岗绥翎同 ;In u J - 3

导数压轴题双变量问题题型归纳总结

导数应用之双变量问题 (一)构造齐次式,换元 【例】已知函数()2 ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =. (1)求实数,a b 的值; (2)设()()()()2 1212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x 的两个零点,求证:0F ' <. 【解析】(1)1,1a b ==-; (2)()2 ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x '=+- , 因为12,x x 分别是函数()F x 的两个零点,所以()()11 221ln 1ln m x x m x x +=???+=?? , 两式相减,得1212ln ln 1x x m x x -+=-, 1212ln ln 1x x F m x x -' =+=- 0F '< ,只需证 12 12ln ln x x x x -< -. 思路一:因为120x x << ,只需证 1122ln ln ln 0 x x x x -> ?>. 令()0,1t ,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()2 22 12110t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证1 2ln 0t t t -+>. 由上述分析可知0F ' <. 【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形 为齐次式,设12111222 ,ln ,,x x x x t t t x x t e x x -= ==-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x << ,只需证12ln ln 0x x -, 设( ))22ln ln 0Q x x x x x =-<<,则 () 21 10 Q x x x '= ==<, 所以函数()Q x 在()20,x 上单调递减,()() 20Q x Q x >=,即证2ln ln x x -. 由上述分析可知0F ' <. 【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.

导数压轴题题型归纳

VIP免费欢迎下载 导数压轴题题型归纳 1.高考命题回顾 例1已知函数f(x)= e x- ln(x+ m).( 2013全国新课标n卷) (1)设x = 0是f(x)的极值点,求 m,并讨论f(x)的单调性; ⑵当m<2时,证明f(x)>0. 例 2 已知函数 f(x)= x2+ ax+ b,g(x)= e x(cx + d),若曲线 y= f(x)和曲线 y= g(x)都过点 P(0,2), 且在点P处有相同的切线 y= 4x+2 (2013全国新课标I卷) (I)求 a, b, c, d 的值 (n)若 x>-2 时, f(x)

VIP免费欢迎下载 2.在解题中常用的有关结论探 (1)曲线y4(x)在X%处的切线的斜率等于f (x0),且切线方程为y=f'(x o)(x-x o)+f (x o)。 ⑵若可导函数y£(x)在X =x0处取得极值,则f'(X o)=0。反之,不成立。 ⑶ 对于可导函数f(X),不等式f -(x) ¥牡y勺解集决定函数f(x)的递增(减)区间。 ⑷函数f(x)在区间I上递增(减)的充要条件是:?爵 f (x)逮(切恒成立(fix)不恒为0). (5)函数f (X)(非常量函数)在区间I上不单调等价于f(x)在区间I上有极值,则可等价转化为方程f'(x)m在区间I上 有实根且为非二重根。(若 f (x)为二次函数且I=R,则有△ > 0 )。 (6) f(x)在区间I上无极值等价于f(x)在区间在上是单调函数,进而得到f-(x)翅或f'(X)<在I上恒成立 (7)若 , f (X)次恒成立,则 f (x)min 次;若0$ , f (X) <0 恒成立,则f(X)max <0 (8)若玄目,使得f(X0):,则f(X)max ;若3 X0 弓,使得 f (X D)却,则f(x)min 哎. (9)设f (x)与g(x)的定义域的交集为D,若灯X亡D f(x)》g(x)恒成立, 则有〔f(X)- g(x)]min >0

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

相关文档
最新文档