压力容器分析设计方法和标准简介与比较
压力容器设计常用标准介绍201805

压力容器设计 常用标准简介
技术中心 郝世荣
压力容器设计常用标准培训
目录
一、特种设备安全法规 二、特种设备安全技术规范 三、压力容器(GB/T150-2011) 四、压力容器部件标准
一、特种设备安全法规
一、特种设备安全法规
1.第一层次:法律《特种设备安全法》 2.第二层次:
4、压力容器管法兰、垫片、紧固件的设计应参照HG/T 20592-20635-2009((钢制管法兰、
垫片、紧固件》系列标准的规定选用;
5 、压力容器的无损检测方法
包括射线、超声、磁粉、渗透和涡流检测等,应当采用NB/T 47013规定的方法; 基本比例要求: 压力容器对接接头的无损检测比例分为全部(100%)和局部(≥20%) 两种。 碳钢和低合金钢制低温压力容器局部无损检测的比例≥ 50% 。
三、压力容器(GB/T150-2011)
1.GB/T 150适用范围
适用的温度范围:
1)设计温度范围:-269℃∽900℃。 2)钢材不得超过按GB/T150.2所列材料的允许使用温度范围。 3)其他金属材料制容器按相应规范所列材料的的允许使用温度范围。
第1条款说明了本标准涵盖的所有容器设计温度范围为-269℃∽900℃ ,其下限值269℃对应于铝 的极限使用(设计)温度,上限值900℃对应于镍合金的极限使用(设计)温度。
二、特种设备安全技术规范
2. 力学性能:足够高的强度、良好的韧性和塑性、足够的断裂韧性。
碳素钢和低合金钢(钢板、钢管和钢锻件)冲击吸收能量
钢材标准抗拉强度下限值 3个标准试样冲击吸收能量平均值
Rm(MPa)
KV2J)
≤450 ≥450~510 ≥510~570
压力容器的常规设计和分析设计

科 技 圈 向导
21年第 2 期 02 l
压力容器的常规设计和分析设计
高 峰 f 矿 煤 化 工 程有 限公 司 山东 兖
【 摘
兖州
22 O ) 7 1 0
要】 当前 , 分析设计 目前 已成为压 力容 器的重要设计方 法。 文首先 阐述 了压力容器分析设计与常规设计的不同。 本 然后 分析设 计中应
形 而破坏 。一次应力又分总体薄膜应力 、 一次弯 曲应力 和局部 薄膜应 力 例如承受内压圆筒 的器壁 中的环 向应力 即为 总体薄膜应力: 平封 头或 顶盖 中央部分在 内压作用下产生 的应力 即为 一次弯曲应力: 壳体 在 固定支座或接管处 由外载荷和力矩产生的应力为局部薄膜应力 : 二 是二次应力 。 二次应力是 由于容器部件的 自身约束或相邻部件 的约束 而产 生的正应 力或剪应力。它 的基本特点具有 “ 自限性 ” , 即局部屈服 和小量变形 就会使约束缓 和 、 变形协调 . 只要不反复加载 , 二次应力不 会引起容器结构破坏 : 三是峰值应力 峰值应力是 因局部结构不连续 1常规设计与分析设计 . 它具有最高 的应力值 它的基本特 过去压力容器及其部件 的设计基本上属于常规设计 . 我国现在执 或形状 突变 引起 的局部应力集 中。 自限性” 局部性”峰值 应力不会 引起容器 明显 的变形 和“ , 行 的相应的设计规范是《 钢制压力容器) i S — 9 1 常规设计的特 点具有“ ) n 0 ( G 8。 3常 规设 计 和 分 析 设 计 比较 . 点是: 简体及其部件 的应 力不 允许超过弹性范围 内的某一许用 值 如 果达到这一要求 . 为筒体或部件就是 比较可靠 的 这样做 比较简 即认 常规设计是一种简单易行的传统设计方法. 而分析设计则不 同. 它 单. 以现成 的设 计公 式及 曲线为依 据 . 多年来 一直按这样 的方 法进行 需要详尽 的应力分析报告为依据 需要近代 的分析计算 工具和实验技 设 计。 然而 , 这种方法 比较粗糙 . 许多重要因素都 未考虑进去 。以内压 术为手段, 因而提供 了充分的强度数 据对 新工艺 、 新材料 、 新结构 和新 圆筒为例 , 常规设计 时只考虑薄膜应力 , 在 至于 温差应力 、 边缘应力以 工况更具科 学性 和可靠性 分析设计提高 了许用应力. 降低了安全系 及 交变应 力引起 的疲劳等 问题均未考虑 所 以在规范 中 . 为了保证容 数 3 多年来 的实际运行表 明: O 采用分析设计的容器安全 可靠. 且具有 器 的安全可靠在设 计中就采用 了较高 的安全 系数 。最早 的安 全系数 经济 胜; 与常规设 计相 比, 可节省材料 2 %~ 0 在一定程 度上有效减 0 3 %. n 5 4 年代末改为 n 4 这样做实 际上是企 图以高 的安全系数来包罗 少制造加工量 、 : .0 =。 降低运输费用 但对 于选 材 、 制造 、 检验和验收规定 了 各 种因素 的影 响. 存在一些 问题 比常规设计更为严格的要求 下面是 常规设计与分析设计的对比 近年来 , 由于锅 炉、 石油 、 化工 等行 业 的发展 , 压力容器设计 参数 ① 比较项 目: 设计准则。 常规设计 : 弹性失效 : 只允许存在弹性变 提高. 使用条件也越来 越苛刻 . 如果 单纯依靠提高 安全系数 的办法来 分析设计 : 弹性失效 ' 塑性失效 ; j 单 允许 出现 局部 的、 可控制 的塑性变 保 证强度 . 导致设计变得不合理 。 会 为了防止这种现象 的发生 . 我们在 形 (. 1 极限载荷( 一次加载 2安定 载荷反复加载) . 。 结构型式 与材料方 面采取相应措施外 . 还必须从设计观 点和设 计方法 ② 比较项 目: 载荷 。 常规设计 : 静载荷 。 分析设计 : 静载荷 、 交变载 上加以改进和发展 目前世 界上一些先进 的国家都在运用应力分析方 荷 。 法 . 国也 于 19 年颁 布 了f 我 95 钢制压 力容器一一 分析设计 标准) B 7 ( 4 J ③ 比较项 目: 分析方法。 常规设计 : 薄膜理论 、 材料力学方法 、 简化 犯 一 9 ) 要求把零部件 中的应力较为准确地设计 出来或用应 力测试 公式加经验 系数 。分析设计 : 5. 弹性或塑性力学分析f 理论方 法、 数值方 法 测定 出来 。其次是引入 了极 限分析与安定性分析 的概念 , 对求得的 法 、 实验方法)板壳理论 。 、 应力 加以分类和加 以限制 ④ 比较项 目: 应力评定。 常规设计 : 应力不分类 、 同一 的许用应力 、 分析设计和常规设计 的主要 区别如下: 用第一强度理论 、 基本安全系数较大 。分析设计 : 力分类 、 应 用应力强 用第 基本安全系数较小。 ①分 析设计 比常规设 计在选材 、 结构 、 设计 、 制造 、 检脸和使 用等 度对各类应力进行评定 、 三强度理论 、 方 面都提 出了较高 的要求和较多的限击峰件。 ⑤ 比较项 目: 材料。 常规要求 。 分析设计 : 质、 优 延性好 、 性能稳定 ②分析设计考虑容器低循环疲劳失效 。 而常规设计并未包 括疲劳 ⑥ 比较项 目: 制造 、 检验。 常规设计 : 常规要求。 分析设计 : 整体 陛、 连续性 、 相贯处光滑过渡 、 全焊透、0 % 10 探伤 。 分 析。 ③分 析设计考虑疲劳分析时要求详细计算温差应力 . 而常规设计 分析设计方法虽然合 理而先进- 却需要进行大量 复杂的分析计 f 旦 除个 别元件外一般无此要求 算. 需要计算机 才能完成, 因而提高 了设计 费用 和时间, 以。 所 只有当设 ④ 分析设计采用最 大剪应 力理论 . 而常规设计 . 最大主应 力 计高参数 、 采用 重要的容器时才 采用这种方法 。但有些容器必须采用分析 理论 。 设计而无其 它选 择 对 一般的常规容器. 长期的实践证 明采用传 统的 ⑤ 分析设计原则上要 求对容器元 件各个部位 的应力进行详 细计 常规设计方法完全可以满足容器 的安全性。 如采用 分析设 计方法. 虽然 算 . 根据各种应力对 元件失效所起不 同的作用予 以分类 . 并 然后对 不 节省部分钢材, 却提高了设计 、 制造 费用, 实际上是不合算的。 因而美国 同类别 的应力采用不同的应力校核条件加以限制。 而常规设甘一般不 A M S E规范 同时规定 了上述两种设计准则 ’ 我国也颁 布了 G 10 19 B5— 98 计算 某些 局部应力 . 针对具体结构 引人 不 同的结构 系数 . 仅 也不对应 《 钢制压 力容器》 J 4 3 — 5 钢制压力容 器—— 分析设计标准 》 和 B 729 《 , 根 力进行分类 。 据不 同情况进行不同选择 分析设计是一个整体。 计准则的不 同. 设 要 求与之配套 的一 系列规 范和措 施也不同, 包括材料选用 、 制造工艺 、 检 2分 析 设计 中应 力分 类 及 其 应 用 . 分析设 计涉 及了各种可能失效模式 中一些 主要 的失效模式 , 计 验要求 、 程序 、 制造资格 等方面 ; 常规设计 方法 简单易行, 设 计算 设计 而 具 但 根据 所考虑 的失效模 式 比较详 细地 计算 了容器及受 压元件 的各 种应 有丰 富的使用经 验, 有时却无法解释压力容器 出现 的一些事 故 所 设计者应 根据实践 经验, 经济 通过 力 . 根据各种应力本身 的性质及对失效模 式所起的不同作用予 以分 以 常规设 计和分析设 计不能混用 , 并
压力容器设计概述及准则

国家质量监督检验检疫总局特种设备局认证备案,
打印结果中 应有软件程序编号、输入数据和计算结果 等内容。
11
过程设备设计
设计图样
总图
零部件图
总图
包括压力容器名称、类别;设计条件;
必要时应注明压力容器使用年限;
主要受压元件材料牌号及材料要求; 主要特性参数(如容积、换热器换热面积与程数等);
制造要求;热处理要求;防腐蚀要求;无损检测要求;
33
定因素,引入安全系数,
得到与失效判据相对应 的设计准则。
过程设备设计
压力容器设计时
先确定
最有可能的失效形式
选择
合适的失效叛据和设计准则
确定
适用的设计标准
再按照标准要求
进行设计、校核
34
过程设备设计
4.2.2 强度失效设计准则 强度失效的两种主要形式:
屈服 (在常温、静载作用下) 断裂 弹性失效设计准则 塑性失效设计准则 爆破失效设计准则
37
过程设备设计
(2)形状改变比能准则
形状改变比能失效判据:
1 2 [(σ 1 - σ 2 ) 2 (σ 2 - σ 3 ) 2 (σ 3 - σ 1 ) 2 ] s
第四强度理论:
任意应 力状态
1 2
[(σ1 - σ 2 ) 2 (σ 2 - σ 3 ) 2 (σ 3 - σ 1 ) 2 ] [σ]t
23
过程设备设计
脆性断 裂原因
材料脆性和缺陷。 a. 材料选用不当、焊接与热处理不当使材料 脆化;低温、长期在高温下运行、应变
时效等也会使材料脆化;
b. 压力容器用钢一般韧性较好,但若存在
严重的原始缺陷(如原材料的夹渣、
压力容器的常规设计和分析设计

弹性失效. 弹塑性失效 设计准则
弹性析设计
应力 ; 平封头或顶盖 中央部分在 内压作 用下产生的应力 即为一次 弯曲 应力 ; 壳体 在 固定支座或接管处 由外 载荷 和力 矩产生的应力为局部 薄 膜应力 。 2 . 2二次应力
过去压力容器及其部件 的设计基本上属于常规设计 . 我 国现在执 二次应力 是 由于容器 部件的 自 身 约束或相邻部件 的约束而产 生 自限性 ” , 即局部屈服和小量 行 的相应 的设计规范是《 钢制压力容 ̄) ( c m5 o 一 9 8 ) 。 常规设计的特点 的正应力或剪 应力 。它的基本特点具有 “ 变形协调 , 只要不反 复加 载, 二次应力 不会引起 是: 筒体及其部 件的应力不允许超过 弹性 范围内的某一许用值 。如 果 变形就会使约束缓 和 、 达到这一要求 。 即认为筒体或部件就是 比较可靠的。 这样做比较 简单 , 容器结构破坏 2 . 3峰值应力 以现成 的设计 公式及 曲线 为依据 .多年来 一直按这样 的方法进行设 峰值应力是因局部结构不连续 或形 状突变引起的局部应力 集中. 计。 然而 。 这种方法 比较粗糙 , 许多重要 因素都未考虑进去 。 以内压 圆 自限性” 和“ 局部性 ” , 峰值 筒为例 . 在常规设 计时只考虑薄膜应力 , 至 于温差应 力 、 边缘应力 以及 它具有最高的应力值 。它 的基本 特点具 有“ 交 变应 力引起 的疲劳等问题 均未考虑 。所 以在规 范中 . 为了保证容器 应力不会 引起容器 明显 的变形 的安全 可靠在设计 中就采用 了较高的安全系数 最早 的安全 系数 n = 3 . 常规设计和分析设计 比较 5 . 4 0 年代末改 为 n = 4 。 这样做实 际上是企 图以高 的安全系数来包罗各 常规设计是一种简单易行 的传统设计方法, 而分析设计则不 同。 它 种 因素 的影 响 , 存在一些 问题 。 需要详尽 的应力分析报告为依据. 需要 近代 的分析计 算工具和实验技 近 年来 。 由于锅 炉、 石油 、 化工 等行业 的发 展 , 压力容器设 计参数 术 为手段, 因而提供 了充 分 的强度数 据, 对 新工艺 、 新 材料 、 新 结构 和 提高. 使用条件也越来越 苛刻 . 如果 单纯依靠提 高安全系数 的办法来 新 工况更具科学性 和可靠性 。 分析设计 提高 了许用应力 , 降低 了安 全 保证强度 . 会 导致设计变得不合理 。 为 了防止这种现象的发生 , 我们在 系数。3 O 多年来 的实际运行表 明: 采用分 析设计 的容器安全 可靠, 且 结构型式 与材料方面采取相应措施外 . 还必须从设计观 点和设计方法 具 有经济 性; 与常规设 计相 比, 可 节省材 料 2 0 %~ 3 0 %, 在 一定程 度上 上加 以改进和发展 。 目 前世界上一些先进 的国家都在运用应力分析方 有 效减少制 造加工量 、 降低运 输费用 。但 对于选 材 、 制造 、 检 验和验 法. 我 国也于 1 9 9 5 年 颁布 了f 钢 制压力容 器一一分 析设计标 准) 0 B 4 7 收规定 了 比常规设计 更为严格 的要 求 常规设计与分析设计 的对 比. 犯一 9 5 ) . 要求把零部件 中的应力较 为准确地设计 出来或用应力 测试 法 见表 1 测定出来 。其次是引入 了极限分析与安定性分析的概念 . 对求 得的应 表1 常规设计与分析设计 力加以分类和加 以限制 比较项 目 常规设计 分析设计 分析设计和常规设计的主要区别如下: ( 1 ) 分析设计 比常规设计在选 材、 结构、 设计 、 制造 、 检脸和使用等 方 面都提出了较高的要求和较多的限击 峰件 ( 2 ) 分析设计考 虑容器低循环 疲劳失效 , 而常规设计并 未包括疲
欧盟压力容器标准EN13445分析设计标准概述定稿

为了克服弹塑性增量有限元法的困难,提出了许 多求极限载荷的简化分析方法:
(1) R. Seshadri提出的广义的局部应力应变节点重 新分布法[GLOSS] 与真实的极限载荷差别 较大
(2) D. Mackenzie和J. T. Boyle首先提出的弹性补 偿法 求得极限载荷的值比用弹塑性分析求 得的值小11%~20%,其准确性受网格密度和 单元阶的影响非常大
分析设计最初引入时,在承压设备设计中主 要的分析方法是薄壳不连续分析,它是基于薄壳 理采用有限元法进行承压设备响应分析计算后, 由于有限元分析是基于弹性理论而不是薄壳理论 得到应力数值解,除壳体特别薄以外,应力沿壁 厚呈非线性分布。
以Hechmer和Hollinger等为代表的美国压力 容器研究委员会(PVRC)开展了三维应力 数值解评估技术研究,但难以取得突破性 进展。究其原因,是迄今为止仍未解决以 下几个问题:
1.2.1 极限分析
1.2.2 塑性分析
1.2.1 极限分析
极限分析是假设材料为理想弹塑性(或理想 刚塑性)、结构处于小变形状态时,研究塑性极 限状态下的结构特性。
极限分析的上、下限定理可以用来确定结构的 极限载荷,通常是根据下限定理来求结构的下限 极限载荷。只有比较简单的问题如轴对称结构的 简单容器、环板才能求得其极限载荷。对一些复 杂的结构还无法求出极限载荷的解析解。数值解 多数是根据有限元法和数学规划法相结合而建立 的。
(7) 三倍弹性变形准则
Schroeder将弹性响应的变形取为切线交点变 形,并定义塑性载荷为载荷—变形曲线上测定 变形等于3倍弹性变形时的载荷。
(8) 塑性功准则
该准则是由Gerdeen于1979年提出的。 他建议参数选择原则是:载荷参数与相对 应的变形参数的乘积表示功,例如:力和 位移、弯矩和转角。这时,载荷—变形曲 线下的面积就表示载荷对容器所做的功, 总的功由弹性功和塑性功组成。塑性功可
压力容器设计方法对比与应力分类

压力容器设计方法对比与应力分类压力容器是用于贮存或运输气体、液体或蒸汽的设备。
压力容器在化工、石油、航空航天等领域中广泛应用,因此其设计和制造至关重要。
在设计压力容器时,工程师需要考虑材料选择、设计方法和应力分类等许多因素。
本文将对不同的压力容器设计方法进行对比,并介绍常见的应力分类。
一、压力容器设计方法对比1. 牛顿法牛顿法是最简单、最常见的设计方法之一,用于计算压力容器的壁厚。
它基于材料的抗拉强度和设计压力来确定壁厚。
牛顿法适用于一些简单的压力容器设计,但对于复杂的容器来说,往往需要更加精确的方法。
2. ASME标准ASME(美国机械工程师学会)发布的压力容器设计规范是工程师设计压力容器时参考的标准之一。
ASME标准涵盖了压力容器的设计、制造、检验和安全要求,可以确保压力容器的安全性和可靠性。
ASME标准考虑了诸多因素,如材料强度、焊接、腐蚀等,适用于各种不同类型的压力容器。
3. 有限元分析有限元分析是一种先进的设计方法,通过建立复杂的数学模型来模拟压力容器在不同工况下的受力情况。
有限元分析可以更精确地计算应力分布,帮助工程师发现潜在的问题,并进行优化设计。
有限元分析需要借助计算机软件,并且对工程师的要求更高,但可以提供更加精确的设计方案。
4. 材料弹性理论材料弹性理论是一种基于材料力学性质进行压力容器设计的方法。
通过对材料的本构关系和应力应变关系进行分析,可以得到压力容器在不同载荷下的应力和变形情况。
材料弹性理论考虑了材料的非线性特性和弹塑性行为,适用于各种复杂工况下的压力容器设计。
二、应力分类在压力容器的设计和制造过程中,应力是一个非常重要的参数。
应力分类是将应力分为不同类型,并根据不同类型的应力进行分析和设计。
常见的应力分类主要有以下几种:1.轴向应力轴向应力是指垂直于截面的应力,是压力容器中常见的一种应力类型。
轴向应力的大小取决于容器的载荷和几何形状,对容器的稳定性和强度有重要影响。
压力容器设计方法分析对比

压力容器设计方法分析对比压力容器在化工、石化、工程机械等领域得到广泛的应用,而正确的设计是压力容器安全运行的基础。
本文将介绍三种常用的压力容器设计方法,并分析其各自的优缺点,以便应用者根据实际需求选用合适的设计方法。
1. ASME VIII-1 标准ASME VIII-1 标准是美国机械工程师学会发布的压力容器设计规范,适用于低压容器 (设计压力不大于 10MPa)。
该标准要求设计考虑容器的载荷、材料性能、焊接、校核、检验等各方面问题,并对各个部位的厚度、连接件的要求以及强度校核进行详细规定。
ASME VIII-1 标准以其全面、详细的设计要求而得到了广泛应用。
优点:•ASME VIII-1 标准设计要求全面、严谨,设计过程具有一定保障。
•认可度高,符合国际标准,可以接受国际认可。
缺点:•该标准要求详细、繁琐,需要对标准内容熟悉,且容器设计需要由认可的专业人员进行。
•需要经过审查与认证,过程较为繁琐。
2. CODAP 标准CODAP (Construction Operation Design of Pressure Vessels) 标准是欧洲标准委员会发布的压力容器设计规范,适用于设计压力不超过3000MPa 的容器。
通过规定基本要求、公差、厚度、防腐、焊接、检验、强度校核等方面的规范,保证了压力容器的安全性和可靠性。
优点:•CODAP 标准对压力容器的设计和制造过程提供了全面的规范,以保证容器在长时间的使用中保持良好的使用性能。
•该标准可以适用不同条件下的容器,使得设计者可以根据实际条件来选择不同的设计方案。
•CODAP 标准的认同度很高,在国际上具有广泛的通用性和识别度。
缺点:•该标准的设计过程繁琐,需要一定的设计经验和专业技能。
•CODAP 标准可能不适合一些非欧洲的国家,需要根据不同的国家标准进行认证。
3. CNS 三合标准CNS 三合标准是由中华民国国家标准局颁布的压力容器设计标准,适用于设计压力不超过 50MPa 的容器。
压力容器分析设计标准

压力容器分析设计标准
压力容器是工业生产中常见的设备,用于储存或加工压缩气体、液体或蒸汽。
由于其特殊的工作环境和功能,压力容器的设计、制造和使用需要严格遵守一系列的标准和规定,以确保其安全可靠地运行。
首先,压力容器的设计必须符合国家相关标准和规范,如《压力容器设计规范》GB150、《钢制压力容器》GB151等。
这些标准规定了压力容器的设计参数、结构要求、材料选用、焊接工艺、安全阀选型等方面的内容,确保了压力容器在设计阶段就具备了安全可靠的基础。
其次,压力容器的制造需要严格按照《压力容器制造规范》GB151中的要求进行。
制造过程中需要严格控制材料的质量、焊接工艺的可靠性、表面处理的完整性等,以确保制造出的压力容器符合设计要求,并且能够在实际工作中承受所需的压力和温度。
除了设计和制造阶段的标准要求,压力容器的安装、使用和维护也需要遵守相
应的标准和规范。
例如,在安装过程中需要保证容器的支撑结构稳固可靠,管道连接紧密无泄漏,安全阀和压力表的选型和安装符合要求。
在使用过程中需要定期进行压力测试和安全阀的调整,确保容器在正常工作范围内运行。
在维护过程中需要按照规定的周期进行检查和维护,及时发现并处理潜在的安全隐患。
总的来说,压力容器的分析设计标准涵盖了从设计、制造到使用和维护的全过程,这些标准的遵守是保证压力容器安全运行的基础。
只有严格按照标准要求进行设计、制造和使用,才能确保压力容器在工业生产中发挥应有的作用,避免因为安全隐患而导致事故发生。
因此,对于从事压力容器相关工作的人员来说,熟悉并遵守相关标准和规范是至关重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A a s - to ae n s es ae ois n l i Me db sdo t s c t r ) y s h r g e
法。 目前 通 用 的 有 限元 分 析 软 件 有 ANS 、 YS
NAS R T AN、ADI 、AB US和 MAR NA AQ C
件。 另一 种更 科 学 更严 密 的 设计 规 范分 析 设
析设 计 允许 结 构 内 出现 可 控 制 的局 部 塑 性
变形 , 允许对峰值应力部位进行有 限寿命设
计。 分析 设计 不 但 有 效 防止 了相关 的失效模
式产 生 , 而且 还 充 分地 发 挥 了材 料 的 承载潜 计方法, 要求对压力容器进行应力分析和疲 力 。 劳分 析 , 由于 这 种定 量 分 析 结果 使 结构 趋于 应 力 分 析 的方 法 手 段 一般 有 三 种 : 解 更合 理 , 因此 , 该 规范 设 计 的容 器 , 以达 析 方 法 , 值 方 法 和 实 验 应 力 分析 。 析方 用 可 数 解 到较高的应力而并不削弱安全裕度。 法 采 用 弹性 力 学 方 法 , 过 平 衡 方 程 、 通 几何 近年来, 随着石油化工 、 化工、 医药等领 方程 、 物理方程、 形协 调方程及 边界条件 变 域装 置 大型 化 的趋 势 , 设备 安 全性 和 轻量 求 得 问题 的解 答 。 对 但上 述 方 程 都是偏 微 分 方 化等 要求 日益提 高 , 得 分析 设 计 方 法在 压 使 力 容器 设计 中的应用 越 来越普 遍 。
又可把整体分解为筒体、 头、 兰、 封 法 开孔 、
2 压 力容 器分 析设 计方 法
.
压 力容 器 规 则设 计 是 以弹性 失 效准 则 , 采用 的是第 一 强 度理 沦 , 计 计算 公 式主 要 设 是材 料 力学 和 板 壳理 论 为 基础 。 些 公式均 这 以显 式 表达 , 出 了压 力 、 用 应 力 、 给 许 容器 主 要尺 寸 之 间的 关 系 这 些 并 不是 建立 在对 但
两 种 设计 规 范 :传 统 的设 计 方 法 , 为按 规 称 则设 计 , 的基 本 思想 是 并 不需 要 对压 力 容 它
器 的各个 部 合 经 典力 学 理 论 和 经 验 公式 对 压 力 容 器 部 件 的设计 做 一 些规 定 , : 材 、 全 系数 、 如 选 安 特 征尺 寸、 造 工 艺等 都 必 须满 足 一定 的条 制
数 值 方 法 最 常 用 的 是 差 分 法 和 有 限 元 法 , 限 元 法 是 对 问题 的一 种 物 理 近 似 有
法 , 从 能量 原 理 出发 , 结 构 进 行 离 散 化 它 对
处理。 即把 连 续 的 弹 性 体 设 想 为 由许 多 , 然 而 又 是 有 限 个 单 元 组 成 。 限 元 法 的 迅 速 有 发展, 许多优越性 是差分法 不具备 的, 其 所 以 目前 有 限 元 法 是 解 决 工 程 问题 的 常 用 方
容器 及 其 部件 进 行 详 细 的应 力 分 析 基 础之
上。
接管、 支座等 部件 。
压 力 容 器 设 计 方 法 有 两 种 , 别 对 应 分
分 析设 计 以塑性 失效 准 则 , 采用 的是 第 三 ( )强 度 理沦 , 四 设计 计 算 手段 是 弹塑 性 力学 理 论和 应 力 分析 , 全 系 数 比规 则设 计 安 小 , 料 和 制 造 检 验 比规 则 设 计 要 求 高 。 材 分
展和 更新 不 同存在 较 大 的差异 。 3 1 力容 器分 析设 计标 准 E I4 5 .压 N 34
E 1 4 5在 设 计 部 分 的 正 文 总 体 引 N 3 4
入 了应 力 分 类 及 其 评 定 的 理 念 , 采 用 以 但 公 式 直 接 表 示 的 方 法 , DB ( s nB 即 FDei y g F r l 法 , 包 括 了简 化 的和 详 细 的两 种 omua ) 并 疲 劳 寿 命 评 定 方 法 。 外 , 资 料 性 附录 B 此 在 和 C 中列 入 了直 接 法 ( s nB nls Dei yA a i g y s—
2 0
余 热锅 炉
2 l. 01 4
压 力容器分析设 计方法和标准简介 与比较
杭州锅炉集团股份有限公司 许志贵
摘 要 压力容器分析设计方法是除常规设计方法外的另一选择, 计算机软硬件的
发展使得分析设计有 了完全实现的可能, 相应的标准规范也在逐步完善和发展 , 本文对 分析设计标准 E 34 , S I 一 , 3 N 14 5 A MEV I 2 ̄ J 4 2的内容与进展进行介绍和 比较。 I B7 关键 词 压力容器 分析设计 标 准
1 .前言 压 力容器 是化 工、 油 化工、 金、 石 冶 轻 工 、 织 、 械 以及 航 空航 天 工 业 中广 泛 使 纺 机 用 的承 压设 备 。 管各 类 压 力容 器 设 备功 能 尽 各 异、 构 复杂 程 度不 一 , 从 整体 上 看 , 结 但 一 般 以薄壁 的旋转 壳为 主 要构 型 , 同时 结构 上
程, 只有在轴对称等特殊情 况下才 能求解 ,
如 果 结 构 复杂 或 者 载荷 复杂 , 解便 会 非常 求
余 热 锅 炉 2 1 . 0 4 1
困难 。
2 1
目前 压 力 容 器 分 析 设 计 标 准 比较 常 用 的 是 E 14 5 N 3 4 ,AS I 2和 J 7 2 MEVI . I B43 , 各标 准 之 间 存在 一 定 的渊 源 , 时又 由于 发 同