伯德图校正法

伯德图校正法
伯德图校正法

频响指标以及测试方法

频响 频率响应 简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。同失真一样,这也是一个非常重要的参数指标。一个“完美”的 交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大 率,并且对于相应的负载具有同等的驱动能力。显然这在目前技术水平下是完全不可能的,那么 针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大 器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围 内的频率的信号。这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz, 也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。实际上,根据研究表明, 高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影 响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放 大器甚至会达到0.1~数百KHz。 但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们 连这样的要求也不可能达到。于是,就有了“频响”这个指标。(附言:指标本身就代表着“不 完美”,如果一切都“完美”了,指标也就没有存在的理由了。) 放大器有两种失真:线性失真和非线性失真。我们通常把后者叫做“失真”,而把前者用其它方 式表达出来。非线性失真我们已经知道了是一种什么情况了。而线性失真就是指频率和相位方面 的“误差”,即频率失真和相位失真。 频率失真及其产生原因 频率失真是一种“线性失真”,意思是说,发生这种失真时放大器的输出信号波形和输入波形仍 然是“相似形”,它不会使放大器对要处理的信号产生“形变”。一个单纯的频率失真可以看成 放大器对于不同频率的信号放大倍数不同,例如,1个十倍放大器,对1KHz的信号的放大倍数是10 倍,而对于10KHz的交流信号可能放大倍数就变成了9.99倍,于是,我们就可以说这台放大器有频

Matlab中Bode图的绘制技巧(精)

Matlab中Bode图的绘制技巧 我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。 譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。 我们可以用下面的语句: num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den; bode(H 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。 下面,我们来看看如何定制我们自己的伯德图风格: 在命令窗口中输入:bodeoptions

我们可以看到以下内容:ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off' XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off'

频响频响分析方法总结

频响频响分析方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。

典型环节的Bode图

控制系统的开环频率特性 目的:掌握开环Bode 图的绘制 根据Bode 图确定最小相位系统的传递函数 重点:开环Bode 图的绘制、根据Bode 图确定最小相位系统的传递函数 1 开环伯德图手工作图的一般步骤: 1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率 2)求20lgK 的值,并明确积分环节的个数ν 3)通过(1,20lgK )绘制斜率为-20vdB/dec 低频段 4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率 最小相位系统定义: 递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。否则就是非最小相位系统。 对数幅频特性与相频特性之间存在确定的对应关系。对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。 非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。对响应要求快的系统,不宜采用非最小相位元件。 2 典型环节的伯德图 绘制曲线在MA TLAB 中实现,利用下述的程序段: num=[b2 b1 b0]; den=[1 a2 a1 a0]; H=tf(num,den); bode(H) margin(H) hold on 2.1 比例环节 传递函数:()G s K = 频率特性:()G j K ω= 对数幅频特性:()20lg L j K ω= 对数相频特性:()0?ω= 程序段: num=[0 10]; den=[0 1]; H=tf(num,den); bode(H) margin(H) hold on 结论:放大环节的对数幅频特性是一条幅值为20lgK 分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。 K>1时,20lgK>0dB ;K<1时,20lgK<0dB 。 2.2 惯性环节(低通滤波特性) 传递函数:1()1G s s τ= + 频率特性:()()()j G j A e ?ωωω= 对数幅频特性:2 1()20lg 1() L ωτω=+ 对数相频特性:()arctan ?ωτω=- 绘制1()10.1G s s =+的Bode 图 程序段: num=[0 1]; den=[0.1 1];H=tf(num,den); bode(H) margin(H) hold on 结论:惯性环节的对数幅频特性可以用在1ωτ= 处相交于0分贝的两条渐近直线来近似表示:当1ωτ 时,是一条0分贝的直线; 当1ωτ 时,是一条斜率为-20dB/dec 的直线。 惯性环节具有低通特性,对低频输入能精确地复现,而对高频输入要衰减,且产生相位迟后。因此,它只能复现定常或缓慢变化的信号。 2.3 积分环节 传递函数:1 ()G s s τ= 频率特性:()()()j G j A e ?ωωω= 对数幅频特性:1 ()20lg L j ωτω = 对数相频特性:()2 π?ω=- 在同一坐标中绘制1()G s s = 、1()0.1G s s = 和 1()0.01G s s = 的Bode 图 num1=[0 1];den1=[1 1];H1=tf(num1,den1); bode(H1)margin(H1)hold on

系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

MATLAB中bode图绘制技巧(精)

Matlab中Bode图的绘制技巧学术收藏2010-06-04 21:21:48 阅读54 评论0 字号:大中小订阅我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。我们可以用下面的语句:num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den; bode(H 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions 我们可以看到以下

内容:ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct]TickLabel: [1x1 struct]Grid: 'off' XLim: {[1 10]}XLimMode: {'auto'}YLim: {[1 10]} YLimMode: {'auto'}IOGrouping: 'none'InputLabels: [1x1 struct]OutputLabels: [1x1 struct]InputVisible: {'on'} OutputVisible: {'on'}FreqUnits: 'rad/sec'FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear'MagVisible: 'on' MagLowerLimMode: 'auto'MagLowerLim: 0PhaseUnits: 'deg'PhaseVisible: 'on'PhaseWrapping: 'off' PhaseMatching: 'off'PhaseMatchingFreq: 0 PhaseMatchingValue: 0我们可以通过修改上面的每一 项修改伯德图的风格,比如我们使用下面的语句画我 们的伯德图:P=bodeoptions;P.Grid='on'; P.XLim={[10 40000]};P.XLimMode={'manual'};P.FreqUnits='HZ'; num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den; bode(H,P 这时,我们将会看到以下的伯德图: 上面这张图相对就比较好了,它的横坐标单位 是HZ,范围是[10 40K]HZ,而且打开了网格,便于我 们观察-3DB处的频率值。当然,你也可以改变bodeoptions中的其它参数,做出符合你的风格的伯

BODE图 画图过程

电机定位系统校正(BODE图) MATLAB软件具有强大的计算能力和绘图功能,能够快速、准确地做出频域特性曲线。利用MATLAB绘制系统的Bode图,为控制系统设计和分析提供了极大的方便。 1. 创建M-file文挡,并输入如下程序,运行后生成LTI对象my_sys: J=3.2284e-6; b=3.5077e-6; K=0.0274; R=4; L=2.75e-6; num=[0 0 0 K]; den=[(J*K) (J*R+(L*b)) ((b*R)+K^2) 0]; my_sys=tf(num,den); 打开Matlab7.0软件,并新建一个空文档,将程序复制到文档内,如图1所示: 图1 2.运行程序并保存运行结果。如图2所示: 图2

3.打开Start-Toolboxes—Control System—SISO Design Tool。启动SISO Design,如图3所示 图3 4.将my_sys程序导入到SISO Design Tool中,如图4所示 图4

5.在View菜单中,关闭根轨迹显示,只显示开环的Bode图。如图5所示 图5 6. 加积分环节;加零点(60角频率)将各个参数进行积分:空白处右键—Add Pole/Zero—Integrator。如图6所示: 图6

7.在magnitude曲线加零点,然后Analysis菜单下Response to Step Command 指令。如图7所示: 图7 8.在管理反馈界面中,只显示闭环的r与y的关系—LT1 Viewer For SISO Design Tool界面空白处右键—Systems—Closed Loop :r to u (green),如图8所示: 图8

[频响] 频响分析方法总结

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal 前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。 直接法在定义边界条件时通过选项*boundary的amplitude参数来引用频变幅值,但这里默认的好像是位移,如果我有的是加速度或者速度数据,想用直接法进行分析应该如何设定呢,希望知道的大神能相告。 模态法和子空间法不能使用*boundary选项定义边界条件的运动,而只能通过选项*base motion来定义边界条件的运动。

频率响应介绍_频率响应概念

频率响应介绍_频率响应概念 频率响应是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系称为频率响应。也是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应,也叫频率特性。在额定的频率范围内,输出电压幅度的最大值与最小值之比,以分贝数(dB)来表示其不均匀度。频率响应在电能质量概念中通常是指系统或计量传感器的阻抗随频率的变化。 频率响应确定方法分析法基于物理机理的理论计算方法,只适用于系统结构组成易于确定的情况。在系统的结构组成给定后,运用相应的物理定律,通过推导和计算即可定出系统的频率响应。分析的正确程度取决于对系统结构了解的精确程度。对于复杂系统,分析法的计算工作量很大。 实验法频率响应图册采用仪表直接量测的方法,可用于系统结构难以确定的情况。常用的实验方式是以正弦信号作为试验信号,在所考察的频率范围内选择若干个频率值,分别测量各个频率下输入和稳态输出正弦信号的振幅和相角值。输出与输入的振幅比值随频率的变化特性是幅频特性,输出与输入的相角差值随频率的变化特性是相频特性。 频率响应性能系统的过渡过程与频率响应有着确定的关系,可用数学方法来求出。但是除一阶和二阶系统外,这样做常需要很多时间,而且在很多情况下实际意义不大。常用的方法是根据频率响应的特征量来直接估计系统过渡过程的性能。频率响应的主要特征量有:增益裕量和相角裕量、谐振峰值和谐振频率、带宽和截止频率。 增益裕量和相角裕量它可提供控制系统是否稳定和具有多大稳定裕量的信息。 谐振峰值Mr和谐振频率rMr和r规定为幅频特性|G(j)|的最大值和相应的频率值。对于具有一对共轭复数主导极点(见根轨迹法)的高阶线性定常系统,当Mr值在(1.0~1.4)M0范围内时,可获得比较满意的过渡过程性能。其中M0是=0时频率响应的幅值。r的大小表征过渡过程的快速性:r值越大,系统在单位阶跃作用下输出响应的快速性越好。带宽和截止频率截止频率c规定为幅频特性|G(j)|达到0.7M0并继续下降时的临界频率。

14.频率响应方法

频率响应方法 伯德图 一个系统的频率传递函数或它用Kz(jw)/P(jw)表示的函数可以用Nyquist图(极坐标图)表示,或者用在输入频率的振幅比和相角来表示。一般来说,我们经常在输入频率的对数坐标下画出振幅比和相角,振幅比以分贝来表示,相角用度来表示。以这种形式表示的图,就称为伯德图。准确的伯德图,可以用计算机画出来,用一些画图规则可以很方便快速地画出用直线表示的草图,本文中将讨论这些画图规则。 系统的伯德图可以用来确定包括阶跃输入在内的不同输入对于系统稳态响应的影响。因为频率响应是稳态响应,则系统必须稳定,在使用系统伯德图之前,就必须判断系统的稳定性。 伯德图通常使用频率函数Kz(jw)/P(jw)来判断系统的稳定性。当函数在S的右半平面没有极点或零点时,例如系统是最小相位系统,可以根据出现在函数中的下面四个基本的元素快速地画出系统的伯德图。这四个元素是: 1.频率不变项K; 2.在原点处的零极点; 3.一阶项或实的零点或极点。 4.二阶零极点。 对于乘积Kz(jw)/P(jw),M=M1M2,相角Phi表示成和,如果用分贝作为单位的话,幅值也可以表示成求和的形式, 在伯德图中,随W变化的用分贝表示的幅值M和用度为单位的相角画在半对数纸上。画法如下:幅值和相角伯德图可以通过求该函数中各个基本环节的和的方法获得。这些图比或Nyquist图或极坐标图容易做出。可以很方便地表示系统的性能。 1.增益K大于零,相角等于零,和W无关。 2.积分环节,极点位于原点处,在W=10时,距W=1十倍频程处的幅值为-20n。于是,在草图上可以用一条每十倍频程下降20n分贝的一条斜线来表示幅值曲线。相 角为Phi=—n90度,和频率无关。 3.微分环节,零点在原点处,微分环节的伯德图是积分环节伯德图关于0分贝和0度轴对称的镜像。下面的超前环节和滞后环节的伯德图也是如此。 4.简单的滞后环节,其近似伯德图如图2-4-1C上的直线所示,渐近线和伯德图在转折频率或转角频率处相交,转折频率为归一化图上,令Wt=1时的频率。 越靠近Wt=1,准确值可以通过2-4-1计算,在Wt=1处,误差为-3分贝,相角为-45 度。 5.二阶滞后环节(二阶震荡环节) 其中Wn是无阻尼的自然频率,KSi是阻尼比。二阶振荡环节的伯德图在低频为坐 标轴,高频渐近线是一条在W/Wn=1处穿过0分贝线,且以40dB/dec下降的斜线。 在W/Wn=1处,可以根据2-4-2式计算准确值。阻尼比越小,相角在W/Wn=1处的 凸起就越尖锐,改变越剧烈。 伯德图可以通过对各个基本环节的幅值和相角求和来获得。 在伯德图中,相角裕度Phim为180加上令KZ/P=1等于1的频率处的相角。于是,如图2-4-2中所示的部分伯德图,相角裕度是相角曲线在转折频率Wc和-180度的 距离,转折频率Wc即幅值曲线与0分贝线的交点处的频率。类似的,幅值裕度等 于使得相角为-180度时的频率处的幅值的倒数,即该频率处幅值距0分贝线的距离。 如图2-4-2所示。 伯德图中的根轨迹

自动控制原理 第五章频率响应分析法习题及答案

第五章习题与解答5-1试求题5-1图(a)、(b)网络的频率特性。 u r R1 u c R2 C R2 R1 u r u c (a) (b) 题5-1图 R-C网络 解(a)依图: ? ? ? ? ?? ? ? ? + = = + = + + = + + = 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 2 2 1 )1 ( 1 1 ) ( ) ( R R C R R T C R R R R K s T s K sC R sC R R R s U s U r cτ τ ω ω τ ω ω ω ω ω 1 1 1 2 1 2 1 2 1 2 1 ) 1( ) ( ) ( ) ( jT j K C R R j R R C R R j R j U j U j G r c a+ + = + + + = = (b)依图: ? ? ? + = = + + = + + + = C R R T C R s T s sC R R sC R s U s U r c ) ( 1 1 1 1 ) ( ) ( 2 1 2 2 2 2 2 2 1 2τ τ ω ω τ ω ω ω ω ω 2 2 2 1 2 1 1 ) ( 1 1 ) ( ) ( ) ( jT j C R R j C R j j U j U j G r c b+ + = + + + = = 5-2某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出) (t c s 和稳态误差) (t e s (1)t t r2 sin ) (= (2)) 45 2 cos( 2 ) 30 sin( ) (? - - ? + =t t t r 题5-2图反馈控制系统结构图

MATLAB中bode图绘制技巧

Matlab中Bode图的绘制技巧 学术收藏 2010-06-04 21:21:48 阅读54 评论0 字号:大中小订阅 我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。 譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s)= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。) 我们可以用下面的语句: num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H) 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。

下面,我们来看看如何定制我们自己的伯德图风格: 在命令窗口中输入:bodeoptions 我们可以看到以下内容: ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off' XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off' PhaseMatching: 'off' PhaseMatchingFreq: 0 PhaseMatchingValue: 0 我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图: P=bodeoptions; P.Grid='on'; P.XLim={[10 40000]}; P.XLimMode={'manual'}; P.FreqUnits='HZ'; num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H,P) 这时,我们将会看到以下的伯德图:

频率响应测量的方法

频率响应测量的方法 频率响应测量的方法很多,一般同使用的测试信号有关。 可分为:i. 点测法:完全按定义设计的测量方法,逐个频率输入振幅恒定的正弦信号,逐个点测量相应频率扬声器输出声压级,在频率响应坐标纸上绘出相应的点,把这些不连续的点的平滑连线即为频率响应曲线。测量耗时、测量有限的非连续频率点,过渡点是推测的。 ii. 扫频自动记录法:使用机械传动的方法改变振荡电路中的电容,使信号的频率连续改变,输出电压恒定,这叫扫频信号,记录仪上记录纸的频率刻度与信号源同步,记录扬声器的输出声压级随频率的变化,即为频率响应曲线,这方法叫扫频自动记录法。后来,机械扫频信号改成电压控制频率的压控振荡器,改进了机械传动的麻烦。这是60~80年代丹麦B&K 公司为代表的测量技术。扫频自动测量原理大约已有40年的历史,其测量原理没有变化,改变的只是使用的技术,譬如扫频信号的产生方法,测量传声器测得的数据的采集、处理、运算和输出数据和曲线都可以由计算机完成。其中需要特别一提的是:对扫频信号的理解和生成技术,连续扫频信号过去理解为点频信号随时间变化,但点频信号是一个连续周期信号,从示波器看到的是一个按周期重复的正弦波形,而扫频信号没有一个频率是经历时间周期的,随扫频时间变化的是它的瞬时频率。瞬时频率数学上是相位对时间的微分。可以这样理解:譬如f=100Hz正弦信号的周期是T=0.01秒,其走过的相位φ= 2π弧度(360°),而f=200Hz时,T=0.005秒,其走过的相位仍然是φ= 2π弧度,这样,一个微小时间内的相位变化(等效于相位对时间的微分)同周期成反比,相当于稳态频率。同稳态信号不同的是它引入扫频速率(S:Hz/s)的概念,瞬时频率fi =S t +f0;t为扫频时间;f0为扫频初始频率。t和f0确定扫频频率范围。稳态单频信号的公式是u(t)=Acos(2πft);f为稳态单频信号的频率。而扫频信号的公式是u(t)=ACos(πSt2),B&K公司的2012音频分析仪的TSR(时选响应)技术中使用的测试信号,就是采用该数学模型生成的信号。 iii. 阶步步进的猝发声测量。猝发声是若干个周期的正弦信号脉冲,或称正弦波列。它由连续周期信号加一时间控制电路组成,当测量声压级的时间窗正好在猝发声的稳定部分时,它更接近点频测量。由一个个不同频率的猝发声组成一个阶步步进的猝发声,用对应的跟踪滤波器跟踪每一个猝发声,类似点频测量得到扬声器的频率响应。美国ATI公司的扬声器测量系统LMS使用的正是这种信号源,它最多可以在一个十进制频率范围内设置200个猝发声频率点,即频率阶步的间隔是1/60倍频程。 iv. 多频音(Muiti-tone Burst也叫多频猝发声)它是数字生成的M个纯音信号的叠加的一个短时间间隔的信号,该时间间隔对M个频率来说正好都是整周期的,并且这由低到高M个频率之间没有谐波关系,即2个频率相除(大数除小数)的商不会是整数。例如:14.5,31.9,37.7,49.3,55.1……Hz;可以排列成一个数列,选择适当的频率间隔,组成M个频率的多频音。其M个频率的同步FFT即为基频即幅频响应,由其谐波可以实现其谐波失真测量。该技术使用在AP公司的“系统1”和“系统2”的仪器上。 v. 脉冲数字测量技术上面所有的方法都离不开正弦信号,只是频率的连续变化、频率的阶步变化和有限频率成分的合成信号,脉冲信号和MLS信号需要进行时域(时间波形)和频域(频率响应和频率分析)之间的变换,从中可以得到更多信息,它作用于被测系统后的输出响应,经过变换和运算可以得到被测系统的许多信息,这需要对测试信号有充分了解,涉及信号与系统的基本理论,又要借助数字信号处理技术进行变换运算。单脉冲信号的性质,

(完整版)使用simulinkbode图的绘制

在Matlab中,大多时候,我们都是用M语言,输入系统的传递函数后,用bode函数绘制bode图对系统进行频率分析,这样做,本人觉得效率远不如Simulink建模高。如何在Matlab/Simulink中画bode图,以前也在网上查过些资料,没看到太多有用的参考。今天做 助教课的仿真,又要画电机控制中电流环的bode图,模型已经建好,step response也很容易看出来,可这bode图怎么也出不来,又不愿意用m语言写出传递函数再画。baidu和google 了好一阵,几乎没有一个帖子说的清清楚楚的,经过一番摸索,终于掌握了Simulink里画bode图的方法。.其实,Simulink里画bode图,非常的easy,也很方便。写此文的目的是希 望对那些常用Simulink进行仿真希望画bode图又不愿用M语言的新手有所帮助。 以下均是以Matlab R2008a为例。 首先,在simulink里建好model。如图1,这里需要注意的是,输入和输出要用input port 和output port,这样以后画bode图的时候,系统就会知道是这两个变量之间的关系。 图1 建好model 其次,选择线性分析。Tools->Control Design ->Linear Analysis。如图2。 图2 选择Linear Ansysis 将出现如图3所示的Control and Estimation Tools Manager窗口。

图3 Control and Estimation Tools Manager窗口 第三步,激动人心的时刻到了,哈哈。如果你是按照前面的步骤来的,那么这时候,你就应 前面的方框打上该可以直接画出bode图,在窗口的下方,将“Plot linear analysis result in a ” ,即画output port和勾,已打的就不用管了,再在后面的下拉框里选择“bode response plot” 按钮,就OK了。其实除了bode图,还input port之间的bode图,再点击“Linearize Model” 可以画其他很多响应曲线,比如step response、impulse response和Nyquist图等等,只需选择相应的step response plot,inpulse response plot或者Nyquist plot等等。方法都是相同的。 如图4所示。 选择选择“bode response plot”, 图4 画出bode图

matlab绘制bode图技巧

我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。 譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s)= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。) 我们可以用下面的语句: num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H) 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。 下面,我们来看看如何定制我们自己的伯德图风格: 在命令窗口中输入:bodeoptions 我们可以看到以下内容: ans = Title: [1x1 struct] XLabel: [1x1 struct]

YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off' XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off' PhaseMatching: 'off' PhaseMatchingFreq: 0 PhaseMatchingValue: 0 我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图:P=bodeoptions; P.Grid='on'; P.XLim={[10 40000]}; P.XLimMode={'manual'}; P.FreqUnits='HZ'; num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H,P) 这时,我们将会看到以下的伯德图:

波特图的画法

二、 对数频率特性 假设:) ()()(ω?ωωj e j H j H =。对其取对数: [][] [])()()()(ln )(ln )(ln ) (ω?ωω?ωωωω?j G j j H e j H j H j +=+== 其虚部正是系统的相频特性,而实部: [])(ln )(ωωj H G = 称为对数增益,反映了系统幅频特性,单位奈培(Np, Neper )。 一般情况下不用自然对数,而取常用对数,定义: [])(log 20)(ωωj H G = 单位:分贝(Deci-Bel,dB)。 奈培与分贝的转换关系:1 Np = 8.686 dB 在理论分析中,一般使用Np ;在实际应用中,一般使用dB 用分贝表示增益,解决了信号动态范围与精度之间的矛盾。如果在频率坐标中同样使用对数坐标,则同样可以解决频率的范围与精度之间的矛盾。这样一来就形成了波特图。 ? 波特图的横坐标可以用ωlog ,也可以用f log ; ? 在波特图的横坐标上,一般直接标注频率值; ? 波特图的横坐标上只能表示0>ω或者0>f 频率下的系统特性。 图中的二、三象限并非表示频率小于零的部分,而是表示频率小于1(大于零)部分频率特性。 ? 根据系统频率特性的共扼对称性,不难得到频率小于零部分的 特性。 ? 在波特图的纵坐标上,可以标注系统幅频特性值(如图中红字所 示),也可以标注分贝值。 ? 为了方便参数的判读,实际工程中的波特图中的刻度也不是按照等 间隔设置的,而是按照对数间隔设置。例如下图。

有专用的对数坐标图纸可以用于手工绘制波特图。 波特图的纵坐标上同样也只表示了系统幅频特性中大于零的部分。 图中的三、四象限并非表示系统的幅频特性小于零,而是表示系统的幅频特性小于1(大于零)。 三、 线性系统的波特图 1、一般系统的波特图 ??? ? ??-==∑ ∑==∏∏--=n i i m i i j n i i m i i e p j z j H j H 111 10 )(αβωωω ∑∑∑∑====-+=---+== =n i pi m i zi n i i m i i G G H p j z j H j H G 1 1 01 10) ()(log 20log 20log 20log 20)(log 20)(ωωωωωω 所以,不仅系统的相频特性是各个零点或极点的相频特性的叠加,而且系统的幅频特性是各个零点或极点的相频特性的叠加。所以,可以根据各个零点或极点的波特图的叠加得到系统的波特图。 2、一次因式的波特图 1) 单个零点的波特图: )1(1 )1()(i i i i i zi T j T z j z z j j H ωω ωω+= -+-=-= (1)幅频特性 ()[] 2 1log 10log 201log 201 log 20)(log 20)(i i i i zi zi T T T j T j H j G ωωωω++-=++==

相关文档
最新文档