毕业论文行列式的求法汇总
线性代数行列式计算总结

线性代数行列式计算总结线性代数中的行列式是一种非常重要的数学工具,它在矩阵理论、线性方程组的解法、线性空间与线性变换以及特征值与特征向量的计算中都起到至关重要的作用。
行列式的计算方法有很多,下面我将总结一下常见的行列式计算方法。
首先,我们先来定义什么是一个行列式。
行列式是一个标量,它是一个n阶方阵所带的一个数值特征。
对于一个n阶方阵A,它的行列式表示为,A,或者det(A),它的计算方法如下所示。
1.二阶行列式的计算方法对于一个二阶方阵A=,a11a12a21a2它的行列式计算方法是:,A,=a11*a22-a12*a212.三阶行列式的计算方法对于一个三阶方阵A=,a11a12a13a21a22a2a31a32a3它的行列式计算方法是:,A,=a11*a22*a33+a12*a23*a31+a13*a21*a32-a13*a22*a31-a12*a21*a33-a11*a23*a323.高阶行列式的计算方法对于一个高阶方阵A,可以通过对其中一行或一列进行展开来计算行列式。
展开的方式有很多种,常用的有代数余子式展开和化简为三角行列式展开两种。
3.1代数余子式展开对于一个n阶方阵A,选择一行或一列展开,计算每个元素的代数余子式,然后按照正负交替的方式相乘相加得到行列式的值。
具体步骤如下:- 选择第i行展开,行列式的值为,A, = ai1*C_1i + ai2*C_2i+ ... + ain*C_ni- 其中,C_ij是元素a_ij的代数余子式,计算方法是去掉第i行和第j列剩余元素构成的(n-1)阶子阵的行列式。
3.2三角行列式展开对于一个n阶方阵A,通过初等变换将方阵化为上三角形或下三角形,然后计算对角线的乘积得到行列式的值。
除了以上两种展开的方法,还可以通过矩阵的特征值和特征向量计算行列式的值。
具体步骤是:-计算矩阵A的特征值λ_1,λ_2,...,λ_n-计算矩阵A的特征向量v_1,v_2,...,v_n-行列式的值等于特征值的乘积:,A,=λ_1*λ_2*...*λ_n行列式的计算方法还有很多,比如拉普拉斯展开、按行或按列展开等。
行列式的计算与技巧 毕业论文

江西师范大学数学与信息科学学院学士学位论文行列式的计算与技巧The calculation of determinantand the skill姓名:* ***学号:090*0*0**2学院:数学与信息科学学院专业:数学与应用数学指导老师:*完成时间:2013-3-11行列式的计算与技巧【摘要】行列式是代数的一个重要的内容,也是讨论线性方程组的一个非常有力的工具,在数学的许多分支上有着极其广泛的应用。
同时,行列式的计算非常的灵活多变,有很强的技巧和规律性。
本文则主要讨论行列式的一些常用的方法,并坚持从实例出发,在以上几种常用方法的基础上,探讨并给出行列式的其他几种计算方法。
如:三角形法、升阶法、数学归纳法、递推法、提取因子法、范德蒙行列式法、拆行法等等,通过以上这些方法基本可以解决一般的n阶行列式的计算问题。
【关键词】行列式递推法范德蒙行列式降阶法The calculation of determinant and the skill【Abstract】Determinant is an important content of algebra, and discussthe system of linear equations is a very powerful tool, many branches of mathematics has the extremely widespread application. At the same time, the determinant calculation is very flexible, strong skills and regularity. This article mainly discuss some commonly used methods of the determinant, and proceed from the instance and on the basis of the above several kinds of commonly used method, and gives several calculation methods of the determinant are discussed. Such as: the triangle method, order method, mathematical induction, recursive method, extraction factor method, vandermonde determinant method, the split line method, and so on, through the above these methods can solve the general basic n-th-order determinant calculation problem.【Key words】:The determinant, Recursive method, Vandermonde determinant,Order reduction method目录1 引言 (1)2行列式的定义 (1)2.1 用定义法计算行列式 (1)3 行列式的相关性质 (3)3.1利用相关性质得到几种特殊解法 (3)3.1.1对角线法则计算行列式 (3)3.1.2 三角形法计算行列式 (3)3.1.2.1箭形(或爪形)行列式 (4)3.1.3加边法(升阶法)计算行列式 (5)3.1.4 分解行列法(又称拆项法)计算行列式 (6)3.1.5降阶法计算行列式 (7)4递推法计算行列式 (9)5 特征值法计算行列式 (10)6 数学归纳法计算行列式 (10)7 提取因子法计算行列式 (11)8 利用范德蒙行列式计算行列式 (12)9 利用拉普拉斯展开定理计算行列式 (14)10 因式分解法计算行列式 (15)11 乘法定理法(行列式乘积法)计算行列式 (16)12 小结 (17)参考文献 (18)1 引言行列式是一个基本的数学工具,是线性代数的重要研究对象,无论是在高精尖端科学领域,还是在日常工业生产、工程施工或经济管理中都有着广泛的应用。
行列式的计算方法 - 多项式 行列式 与计算方法

(先将行列式表成两个低阶同型的行列式的线形 关系式,再用递推关系及某些低阶(2阶,1阶) 行列式的值求出 D 的值)
13
例
计算2n阶行列式
a D2 n 0 a c c
0 b d
b
0
解 按第一行展开,有
a D2 n a 0 c 0 0 a b c d d 0 0 0 b
1
1、定义法:适用于0比较多的行列式. 2、利用性质化三角形行列式 3、 按行(列)展开
4、 其他方法: 析因子法 箭形行列式 行(列)和相等的行列式 递推公式法 加边法(升级法) 拆项法 数学归纳法
2
(一)析因子法
例:计算
1 1 2 D 1 2 x 2 3 2 3
2 3 2 3 1 5 2 1 9 x
n 1
D
n1 n 1 n 3 n 2 n 1 2 n 2 n1
解
1 n( n 1) 1 D 2 1 1
rn rn1 rn1 rn 2 r2 r1 n( n 1) 2
2 3 n 1
3 4 1 2
n1 n n 1 n3 n2 n 2 n1
第1列,得:
a0 c1 Dn1 c2 cn
b1 a1
b2 a2
Dn1
bi ci a1a2 an (a0 ) i 1 ai
5
n
可转为箭形行列式的行列式:
1 a1 1 1 1 a2 1) 1 a1 x 2) x x a2 1 1 , ai 0, i 1,2,3 n. 1 1 an
18
Dn x1 x2 xn1a xn Dn1 Dn1 x1 x2 xn2a xn1 Dn2 ,
行列式的计算方法及其在线性方程组中的应用毕业论文

ANAMtm tJhi・I TV本科生毕业论文题目:姓名:学号:系别:年级:专业:指导教师:指导教师:行列式的计算方法及其在线性方程组中的应用2008020230462008 级数学职称:副教授职称:讲师2012年4月20日安顺学院毕业论文任务书数学与计算机科学系数学与应用数学专业2008年级学生姓名韦诚毕业论文题目:行列式的计算方法及其在线性方程组中的应用任务下达日期:2011年9月5日毕业论文写作日期:20H年9月5日至2012年4月20指导老师签字:学生签字:《高等代数》是数学专业学生的一门必修基础课程。
行列式的计算是高等代数中的重点、难点,特别是n阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。
讣算n阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。
当看到一个貌似非常复朵的n阶行列式时,仔细观察, 会发现其实它们的元素在行或列的排列方式上都有某些规律。
掌握住这些规律, 选择合适的il•算方法,能使我们在极短的时间内达到事半功倍的效果!本文首先介绍n阶行列式的定义、性质,再归纳总结行列式的各种汁算方法、技巧及其在线性方程组中的初步应用。
行列式是线性方程组理论的一个组成部分,是中学数学有关内容的提高和推广。
它不仅是解线性方程组的重要工具,而且在其它一些学科分支中也有广泛的应用。
关键词:n阶行列式计算方法归纳线性方程组ABST RACTAlgebra is a courses of mathematics specialized coinpulsory of the basic mathematic- The determinant's calculation is the most difficulty in higher algebra, especially, the n order determinant's calculation , alway is student's difficulty in the learning process, so ,it is difficult to master for ours • There are a lot of calculations of n order determinant in method , but when we say a problem of the calculation of n order determinant, according to its characteristics, selecting the appropriate method to solving is a very good idea. When you see a seemingly so complex n order determinant, we should observe them carefully,“nd we will find that their elements are arranged in row s or columns have some regularity. Grasping of these laws, finding a appropriate calculation method can help us to achieve a multiplier effect in a very short time! This paper mainly introduces the definition of n order determinant, nature, and calculation methods, the skills of calculation of n order determinant and application in linear equation group. Determinant is an importanf theory in linear equations and it is an indis pensable part of linear equations, determinant is also the middle school mathematics' content raise and proinotion. It is not only the solution of linear equations of the important took but also in some other branch has a wide range of app lications.Key words: n order determinant calculation method induce linear equations引言1屛介行列式的定义 2屛介行列式的性质 3计算屛介行列式的具体方法与技巧利用行列式定义直接计算 利用行列式的性质计算 化为三角形行列式逆推公式法拆开法3.4 降阶法 3.6 利用范德蒙德行列式 3.7 加边法(升阶法) 3.8数学归纳法 10 4行列式在线性方程组中的初步应用 11 4.1克拉默(Gramer )法则 12 4.2克拉默(Gramer )法则的应用1211421用克拉默(Gramer)法则解线性方程组13 422克拉默法则及其推论在几何上的应用14 结论16 参考文献17 致谢1817解方程是代数中一个基本问题,特别是在中学中所学的代数中,解方程占有重要的地位•因此这个问题是读者所熟悉的.比如说,如果我们知道了一段导线的电阻r它的两端的电位差y,那么通过这段导线的电流强度八就可以有关系式ir = V求出来•这就是所谓解一元一次方程的问题•在中学所学代数中,我们解过一元、二元、三元以至四元一次方程组.线性方程组的理论在数学中是基本的也是®要的内容.对于二元线性方程组当4心22-如佝*0时,次方程组有惟一解,即”•…“ _ “山一如勺Aj — * ---------------- —^*11^22 -如切如“处-0皿21我们称5如-mSl为二级行列式,用符号表示为于是上述解可以用二级行列式叙述为:当二级行列式时,该方程组有惟一解,即对于三元线性方程组有相仿的结论•设有三元线性方程组«21(»2 2«11 %“21 ©2勺心22你如一竹S I =«21如5內+如兀2+"/3=久+"22X2 +^23^3 =®, «3 內 +432大2 +"33X3 =%利'彳弋 工弋 1^22^^33 + ^12^23^^31 + ^13^21^^321^23^32 ^12^^21^^33 ^^13^^22^31 丿7^5行列式,用符号表示为:"H "22"33 +“12°23"刃 +«)3«21^32 "^^11^23^32 "如①心彳 _'WWsi =我们有:当三级行列式«11 «12 "|3«21 «22 «23“31 ^32 “33时,上述三元线性方程组有惟一解,解为4厶X 严+,尤2=〒,a a其中S «12 勺3«H 勺"|3£ =■■■«23,J,="21 勺 “23,〃3 =5 U" b 、妇"32 “33«31 % "33如]“32 S在本论文中我们将把这个结果推广到畀元线性方程组4内+4胪2+…+你忑=勺 “2 內+"22兀2+…+ “2届=2弘内+0小:2+…+ 4汁為="/<的情形•为此,我们首先要给出〃阶行列式的定义并讨论它的性质,这就是 本论文的主要内容.«11 ®2 ®3"21 ^22 "23 "31 “32 “33cl =1 n阶行列式的定义“21 “22.... -^211"川...... 弘"等于所有取自不同行不同列的个元素的乘积仙几(1)的代数和,这里jj2…h是12…,”的一个排列,每一项(5)都按下列规则带有符号:当j|j2…人是偶排列时,(1)带正号,当是奇排列时,(1)带有负号•这一定义可以写成二2(_严"5畑..%恥…人这里X表示对所有阶排列求和・丿"2・・・人定义表明,为了计算《阶行列式,首先作所有有可能山位于不同行不同列元素构成的乘积。
行列式的计算方法和应用[文献综述]
![行列式的计算方法和应用[文献综述]](https://img.taocdn.com/s3/m/4ad77af9f121dd36a22d823f.png)
毕业论文文献综述信息与计算科学行列式的计算方法和应用一. 前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关主题争论焦点)行列式的概念最初是伴随着方程组的求解而发展起来的。
行列式的应用早已超出了代数的范围,成为解析几何、数学分析、微分方程、概率统计等数学分支的基本工具,因此对许多人来说,掌握行列式的计算是重要的。
而对行列式进行计算不是唯一目的,我们还需要利用行列式去解决一些实际问题,使复杂问题简单化。
在了解行列式的概念、性质的基础上,讨论行列式的求解方法,其中包括化三角法,利用范德蒙行列式求解以及利用拉普拉斯定理的解法。
通过对行列式的求解方法的研究,探讨行列式在求解线性方程组中的应用。
二. 主题部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述)我们知道,行列式的计算灵活多变,需要有较强的技巧。
当然,任何一个n 阶行列式都可以由它的定义去计算其值。
但由定义可知,n 阶行列式的展开式有!n 项,计算量很大,一般情况下不用此法,但如果行列式中有许多零元素,可考虑此法。
值的注意的是:在应用定义法求非零元素乘积项时,不一定从第1行开始,哪行非零元素最少就从哪行开始。
以下给出了行列式的概念及性质和行列式的计算方法包括:化三角法,利用范德蒙行列式求解行列式以及利用拉普拉斯定理的解法等等,涵盖了行列式解法的许多方面。
从这些解法中我们看到了计算行列式的巧妙之处。
2.1行列式的概念及性质2.1.1行列式的概念[9]n 级行列式nnn n nna a a a a a a a a (212222111211)等于所有取自不同行不同列的个元素的乘积n nj j j a a a ...2121的代数和,这里n j j j ...21是1,2,...,n 的一个排列,每一项都按下列规则带有符号:当n j j j ...21是偶排列时,带有正号;当n j j j ...21是奇排列时,带有负号。
行列式的计算技巧与方法总结(同名4612)

行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式0004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a K ΛM O M M M K K K 2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a K ΛM O M M M K K K 2211321333231222111000000=. 例2 计算行列式nn nnb a a a a a b a a a a ++=+KM O M M M K K 21211211n 111D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 000n n na a ab b b b b +==KK M M M O M K.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n nn n ---=ΛM O M M ΛΛ212121. 解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===ΛM O M MΛΛ212121n Dmx x x m x x x m x n n n n i i --⎪⎭⎫ ⎝⎛-=∑=ΛM O M M ΛΛ2221111mm x x m x n n i i --⎪⎭⎫ ⎝⎛-=∑=ΛM OM M ΛΛ0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m n i i n 11. 2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn ΛM M O M M M ΛΛΛ. 解:从最后一行开始每行减去上一行,有1111111111*********D n ---------=ΛM M O M M M ΛΛΛn n 1111120022200021321----=ΛM M O M M M ΛΛΛn n 0111100011000011132122ΛM M O M M M ΛΛΛ+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211ΛΛM M O M M MΛMΛn n a a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n ΛΛM M O M M M ΛΛΛ ()()()()()n n n a a a n a a a n ΛΛ21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解.2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a x x x x n n nKKM M O M M M O K K -----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211K .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++=Λ,其中i A 是子式i M 对应的代数余子式.即nn nn nnnn nnB A BC A •=0, nn nn nnnnnn B A B C A •=0. 例7 解行列式γβββββγββββγλΛMO M M M M ΛΛΛb bbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=ΛM O M M M M ΛΛΛ00000D n b aa a a()()βγβγββββγλ---+-=ΛM O M M M M ΛΛΛ00000021n b a a aa n ()()βγβγβγλ--•-+-=ΛMO M M Λ000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110ΛΛM M O M M M ΛΛΛ. 解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D ΛΛM M OM M M ΛΛΛ=. 再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------ΛΛM M O M M M ΛΛΛ. 从第二列开始,每列乘以()1-加到第一列,得:10010000010000011111)1n D ------=ΛΛM M O M M M ΛΛΛ( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos ΛΛM M O M M M ΛΛΛ=n D . 解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1ΛΛM M O M M M ΛΛΛ=+k D .将1+k D 按最后一行展开,得()βββββcos 20000cos 21001cos 21001cos cos 21D 111k ΛM O M M M ΛΛΛ•-=++++k k()10cos 21001cos 21001cos 11ΛM O M M M ΛΛΛβββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n ΛΛM M M O M M M M ΛΛΛ=.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9;当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221ΛΛM M O M M M ΛΛΛ.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-110010000001100001010001D 133221ΛΛM M O M M M ΛΛΛ .1101000001100010000110001000001100011000113322113322nnn nn n a a a a a a a a a a a a a a a -------+-------=--ΛΛM MO M M M ΛΛΛΛΛM M O M M M ΛΛΛ上面第一个行列式的值为1,所以nnn n a a a a a a a ------=-11001000010011D 13321ΛΛM M O M MΛΛ 111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a ΛΛΛ2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn n n n nnn x x x x x x x x x x x x D ΛΛMM MM ΛΛΛ21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nn nn nn n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x x x f ΛΛΛM M O M MΛΛΛ21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++=Λ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121Λ.由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121Λ.故有()()∏≤<≤-+++=ni j j in n x xx x x D 121Λ.3.3 特征值法3.3.1 概念及计算方法设n λλλΛ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλΛ21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλΛ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλΛ21=,则A 可逆()n i i n ΛΛ2,1000A 21=≠⇔≠⇔≠⇔λλλλ.即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n nn a a a a a a a a a a M OKK K 333223221131211,nnn n n a a a a a a a a a a ΛO M M M 321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a K ΛM O M M M K K K 2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a K ΛM O M M M K K K 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a OM Λ2211210,nnnc a c a c a a b b b M N Λ2211012,nnn b b b a a c a c a c ΛNM 2101122,121122a b b b c a c a c a nn nΛMO这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321OM Λ,其中.,2,1,0n i a i Λ=≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i Λ=列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321OM Λ nni ia a a a a 00011113221OM Λ∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n aa a a a 21321Λ. 4.3 “么”字型行列式4.3.1 概念形如n nn b b b a a c a c a c ΛNN 2101122,nn n a b c a b c a b c a OO2221110,n n nc a c a c a a b b b N N Λ2211012,0111222a c b a c b a c b a n n n OM O ,1021122c a c a b a b c a b nn n NN M ,n nna c a c a cb b b a O OΛ2211210,0121122a b b b c a c a c a nn nΛO O,nnn b a b c b a b a c a c 12211201NN 这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+M NN M NN .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑MN MN()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a ΛΛM M M M MΛΛ00000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a ΛΛM M M M MΛΛ000000000D 12211-=. 解:按第一列展开,得()122111221100010000-+-+-+=n n n nn n b b a b b a b b a a D ΛM O M M ΛΛΛΛM O M M Λ()n n n b b b a a a ΛΛ211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab b a ab b a abb a ab b a +++++10000000000100000100000ΛΛM M O M M M M M ΛΛΛ 这样的行列式,叫做“三对角型”行列式.4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab b a ab b a abb a ab b a n +++++=10000000000000100000100000D ΛΛM M O M M M M M ΛΛΛ. 解:按第一列展开,得()ba ab b a b a ab b a abb a ab D b a n n +++++-+=-10000010000100000D 1ΛΛM M O M M M ΛΛΛ ()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322Λ.故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121ΛΛn n n n b ab b a a ++++=--11Λ.4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n n n a a a a a a a a a a a a ΛM O M M M ΛΛΛ这样的行列式,成为n 级的范德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nn a a a a a a a a a a a a a a ΛM O M M M ΛΛΛ. 4.6.3 例题解析例18 求行列式n nn nn n n n nnn x x x x x x x x x x x x D ΛΛMM MM ΛΛΛ21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nn nn nn n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x x x f ΛΛΛM M O M MΛΛΛ21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++=Λ, 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121Λ.由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121Λ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121Λ.5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D ΛΛM M O M M M ΛΛΛ=n . 分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n Λ. ∴()()111111---++++==+=n n n n D D D ΛΛ()121+=+-=n n .5.2 逐行相加减和套用范德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由范德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用范德蒙德行列式例21 求行列式n nn nn n n n nnn x x x x x x x x x x x x D ΛΛMM MM ΛΛΛ21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nn nn nn n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x x x f ΛΛΛM M O M MΛΛΛ21111211222221222221211111--------=.将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++=Λ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121Λ.由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121Λ.故有()()∏≤<≤-+++=ni j j in n x xx x x D 121Λ.。
浅析行列式的计算技巧 毕业论文

浅析行列式的计算技巧摘要:本文通过引用例题来对一些特殊行列式的求解技巧进行归纳分析,主要演示了化三角形法,降阶法,递推法,数学归纳法,辅助行列式法,拉普拉斯定理的应用,范德蒙得行列式的应用以及方阵特征值和行列式的关系的应用等方法。
引言:在平常的学习及其考试中经常能遇见有关特殊行列式计算的题目,如果不能掌握正确的方法和思维方式,此类型的题将会是考生的一个障碍,本人希望通过对若干经典考题的解析,使得学生对行列式求解类型的题目有章可循。
下面是对一些特殊行列式求解技巧的浅析,前两种方法是相对基本的方法,应用的范围较广,后面几种方法针对性较强,要对行列式的特征进行准确的判断。
方法一 化三角形法化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。
这是计算行列式的基本方法重要方法之一。
因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。
原则上,每个行列式都可利用行列式的性质化为三角形行列式。
但对于阶数高的行列式,在一般情况下,计算往往较繁。
因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。
例题:计算下列行列式的值:12312341345121221n n n n D n n n -=--[分析]显然若直接化为三角形行列式,计算很繁,所以我们要充分利用行列式的性质。
注意到从第1列开始;每一列与它一列中有n-1个数是差1的,根据行列式的性质,先从第n-1列开始乘以-1加到第n 列,第n-2列乘以-1加到第n-1列,一直到第一列乘以-1加到第2列。
然后把第1行乘以-1加到各行去,再将其化为三角形行列式,计算就简单多了。
解:11(2,,)(2,,)11111111111211111000311112011111000100000010000020011(1)200020000101(1)()2i in n i n r r i n r r n n n D n n n n n n nn n n n n n nn n n nn nn n n n ===+--=-----++----+=⋅-----+=⋅⋅-()(1)(2)12(1)12(1)(1)12n n n n n n n -----⋅-+=⋅⋅-[问题推广]例1中,显然是1,2,…,n-1,n 这n 个数在循环,那么如果是a 0,a 1,…,a n-2,a n-1这n 个无规律的数在循环,行列式该怎么计算呢?把这种行列式称为“循环行列式”。
行列式求解

行列式求解方法总结(一)计算行列式最基本的方法是——按定义展开,即按照某行(列)展开这个方法对于特殊行列式很有用处,例如——上(下)三角行列式,对角行列式等。
另外三阶及以下的行列式可以直接展开。
但是直接是用定义工作量很大,而且对于一些有规律的字母型行列式该方法容易忽略他们的规律。
所以,在使用定义展开的时候:1,利用行列式性质得到某行(列)仅有一个非零元素再进行展开。
提示:把第3行加到第一行,再把第一列乘以-1加到第三列2,利用性质,将行列式化成上(下)三角行列式。
提示:对于三阶以上的数字行列式, 一般都是利用性质将其化为上三角行列式求其值. 化为上三角行列式的步骤是规范化的.首先利用第1 行第1 列的非零元将第1 列其他元素全化为零, 然后利用第2 行第2 列的非零元将第2 列以下元素全化为零, 如此等等, 直到化为上三角行列式. 如果化的过程中出现全零行, 则行列式的值等于零.这里第1 行第1 列的元素为2 , 如果利用它将第1 列其余元素全化为零, 中间就会出现很多分数, 继续算下去就比较麻烦. 所以这里先把第1 行乘- 1 加到第3 行, 再把第1 行与第3 行对换,就使第1 行第1 列元素为1 , 这样再将第1 列其余元素化为零就比较简便。
(二)如果行列式每一行(列)元素之和都相等,则展开的第一步是将各列(行)加到第1列(行),然后提出公因子,再用(一)中方法进行计算。
(三)如果n阶行列式中每个元素均为两数(一般都有字母)之和,则可以利用线性性质,将其化成2n 个行列式之和,在很多些情况下,这2n 个行列式很多都等于零,那些不等于零的行列式也是很容易展开的。
解法:= ax y 2 + ax y 2 + ax 2 y + ax 2 y + x 2 y 2 = 2 ax y 2 + 2 ax 2 y + x 2 y 2.(四) 再如上例题,该类型的行列式出现了很多的相同元素a ,所以义可用“加边法”或者将第一行(列)乘以-1(其他题中此处不一定是“-1”)加到其他各行(列),创造出“爪”(三叉)型行列式,之后再将其化成上(下)三角行列式即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 行列式的概念及性质 1.1 行列式的概念 n级行列式
nnnnnnaaaaaaaaa212222111211
等于所有取自不同行不同列的个元素的乘积nnjjjaaa2121的代数和,这里的njjj21是1,2,…,n的一个排列,每一项都按下列规则带有符号:当njjj21是偶排列时,带有正号;当njjj21是奇排列时,带有负号。这一定义可写成
, 这里njjj21表示对所有n级排列的求和。 1.2 行列式的性质[1] 性质1 行列互换,行列式值不变,即
nnnnnnaaaaaaaaa2122221
11211
nnnnnnaaaaaaaaa212221212111
性质2 行列式中某一行(列)元素有公因子k,则k可以提到行列式记号之外,即
nnnniniinaaakakakaaaa2121
11211
nnnniniinaaaaaaaaak212111211
这就是说,一行的公因子可以提出去,或者说以一数乘以行列式的一行就相当于用这个
nnnnjjjjjjrjjjnnnnnnaaaaaaaaaaaa21212121
)(
2122221
11211)1(数乘以此行列式。 事实上,
nnnniniinaaakakakaaaa212111211=11iiAka+22iiAka+ininAka
=21(iiAak+22iiAa+)ininAa
nnnniniinaaaaaaaaak212111211 ,
令k=0,如果行列式中任一行为零,那么行列式值为零。 性质3 如果行列式中某列(或行)中各元素均为两项之和,即 ),,2,1(nicbaijijij,则这个行列式等于另两个行列式之和。
即
nnnjnnjnjnnnjnnjnjnnnjnjnnjjnjjacaacaacaabaabaabaacbaacbaacba12221111112221111112222111111
这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而 这两个行列式除这一行以外全与原来行列式的对应的行一样。 性质4 如果行列式中有两行(列)相同,则行列式等于零。所谓的两行相同就是 说两行的对应元素都相等。 性质5 如果行列式中两行(列)成比例,则行列式等于零。 性质6 如果行列式中的某一行(列)的各元素同乘数k后加到另一行(列)的对 应元素上去,则行列式不变。 性质7 对换行列式中两行(列)的位置,行列式反号。 技巧6:分块行列式的值等于其主对角线上两个子块行列式的值的乘积 111111111111111111110000mmnmmm
mnmmmnnn
nnmnnn
aaaabbaa
ccbbaabb
ccbb
技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和
11(1,2,,)(1,2,,)nnikikkjkjkkDaAinaAjn
技巧1:行列式与它的转置行列式的值相等,即D=DT 111211121121222122221212nnnn
nnnnnnnn
aaaaaaaaaaaa
aaaaaa
2 行列式的计算方法 行列式的计算灵活多变,需要有较强的技巧。当然,任何一个n阶行列式都可以由它的定义去计算其值。但由定义可知,n阶行列式的展开式有n!项,计算量很大,一般情况下不用此法,但如果行列式中有许多零元素,可考虑此法。值的注意的是:在应用定义法求非零元素乘积项时,不一定从第1行开始,哪行非零元素最少就从哪行开始。接下来要介绍计算行列式的两种最基本方法――化三角形法和按行(列)展开法。 :对于4阶以上的行列式,若行列式中有很多元素为零,则根据定义进行计算较为方便,否则较为复杂(常见于计算机程序和数学软件)
定义:1212121112121222()1212(1)nnnnnpppppnppppnnnnaaaaaaaaaaaa 运用数学软件Matlab按定义计算4阶行列式: >> syms a b c d e f g h i j k l m n o p >> A=[a,b,c,d;e,f,g,h;i,j,k,l;m,n,o,p] A = [ a, b, c, d] [ e, f, g, h] [ i, j, k, l] [ m, n, o, p] >> det(A) ans = a*f*k*p-a*f*l*o-i*a*g*p+i*a*h*o+a*n*g*l-a*n*h*k-e*b*k*p+e*b*l*o+i*e*c*p-i*e*d*o-e*n*c*l+e*n*d*k+i*b*g*p-i*b*h*o-i*f*c*p+i*f*d*o+i*n*c*h-i*n*d*g-m*b*g*l+m*b*h*k+m*f*c*l-m*f*d*k-i*m*c*h+i*m*d*g
2.1 化三角形法[6] 化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。 原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。 例1 大学2004年攻读硕士研究生入学考试试题第一大题第2小题(大学2004年攻读硕士研究生入学考试试题第三大题第1小题)的解答中需要计算如下行列式的值, 12312341345121221nnnnDnnn
分析:显然若直接化为三角形行列式,计算很繁,所以我们要充分利用行列式的性质。注意到从第1列开始,每一列与它一列中有n-1个数是差1的,根据行列式的性质,先从第n-1列开始乘以-1加到第n列,第n-2列乘以-1加到第n-1列,一直到第一列乘以-1加到第2列。然后把第1行乘以-1加到各行去,再将其化为三角形行列式,计算就简单多了。 解: 11(2,,)(2,,)1111111111121111100031111200011111000100000010000020011(1)200020000001001(1)()2iinninrrinrrnnnDnnnnnnnnnnnnnnnnnnnnnnnn(1)(2)12(1)12(1)(1)12nnnnnnn 。 2.2 按行(列)展开法(降阶法)[3][12] 设nijDa为n阶行列式,根据行列式的按行(列)展开定理有 11221,2,,niiiiininDaAaAaAin
或 11221,2,,njjjjnjnjDaAaAaAjn
其中ijA为nD中的元素ija的代数余子式 按行(列)展开法可以将一个n阶行列式化为n个1n阶行列式计算。若继续使 用按行(列)展开法,可以将n阶行列式降阶直至化为许多个2阶行列式计算,这是计算行列式的又一基本方法。但一般情况下,按行(列)展开并不能减少计算量,仅当行列式中某一行(列)含有较多零元素时,它才能发挥真正的作用。因此,应用按行(列)展开法时,应利用行列式的性质将某一行(列)化为有较多的零元素,再按该行(列)展开。 例2 计算20阶行列式
20123181920212171819321161718
201918321D
分析:这个行列式中没有一个零元素,若直接应用按行(列)展开法逐次降阶直至 化许许多多个2阶行列式计算,需进行(20!)20-1次加减法和乘法运算,这是人根本无法完成的,更何况是n阶。但若利用行列式的性质将其化为有很多零元素,则很快就可算出结果。 注意到此行列式的相邻两列(行)的对应元素仅差1,因此,可按下述方法计算, 解:
112020118(1,(2,,20)19)1111111231819202111112121718193111113211617181911111201918321201111111111130222240022221(1)22120000022100000iiiiiccrrD
182 。
以上就是计算行列式最基本的两种方法,接下来介绍的一些方法,不管是哪种,都 要与行列式的性质和基本方法结合起来。 下面是一些常用的方法:
2.3 递推法[15] 应用行列式的性质,把一个较高阶行列式表示为具有相同结构的较低阶行列式(比如,n-1阶或n-1阶与n-2阶等)的线性关系式,这种关系式称为递推关系式。根据递推关系式及某个低阶初始行列式(比如二阶或一阶行列式)的值,便可递推求得所给n阶行列式的值,这种计算行列式的方法称为递推法。 注意:用此方法一定要看行列式是否具有较低阶的相同结构如果没有的话,即很难 找出递推关系式,从而不能使用此方法。 例3 2003年大学研究生入学考试试题第二大题第10小题要证如下行列式等 式 00010001000001nD
11,nnnD
证明 :其中(虽然这是一道证明题,但我们可以直接求