(完整版)全国卷高考数学圆锥曲线大题集大全

(完整版)全国卷高考数学圆锥曲线大题集大全
(完整版)全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集

1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上

(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.

(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.

(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:

?(R);AG AD λλ=∈u u u r u u u r ?2;GE GF GH +=u u u r u u u r u u u r ?0.GH EF ?=u u u r u u u r

求点G 的横坐标的取值范围.

2. 设椭圆的中心是坐标原点,焦点在x

上的点的最远距离是43. 已知椭圆0(1:22221>>=+b a b y a x C 是A 、B ;双曲线1

:22

222=-b y a x C 的一条渐近线方程为3x -5y=0.

(Ⅰ)求椭圆C 1的方程及双曲线C 2的离心率;

(Ⅱ)在第一象限内取双曲线C 2上一点P ,连结AP 交椭圆C 1于点M ,连结PB 并延长交椭圆C 1于点N ,若MP AM =. 求证:.0=?

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tan α;

(2)若2

5. 已知椭圆222

2b y a x +(a >b >0)的离心率36=e ,过点A (0,-b )和B (a ,0)的直线与原点的距离为23

(1)求椭圆的方程 (2)已知定点E (-1,0),若直线y =kx +2(k≠0)与椭圆交于C D 两点 问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由

6. 在直角坐标平面中,ABC ?的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①=++==GM ∥

(1)求ABC ?的顶点C 的轨迹方程;

(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ?的取值范围 7. 设R y x ∈,,j i ?

?,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若j y i x b j y i x a ??????)2(,)2(-+=++=,且8

||||=+b a ??

(Ⅰ)求动点M(x,y)的轨迹C 的方程;

(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.

8. 已知抛物线C :

)0,0(),(2

>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的

垂直平分线交x 轴于点N (p ,0).

(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;

(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.

9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、

D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于

E ,设λ=EC AE ,当43

3

2≤

≤λ时,求双曲线的离心率e 的取值范围.

10. 已知三角形ABC 的三个顶点均在椭圆

805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).

若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为0

90,AD 垂直BC 于D ,试求点D 的轨迹方程.

11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B

两点,点Q 是点P 关于原点的对称点.

(1) 设点P 分有向线段AB u u u r 所成的比为λ,证明:()QP QA QB λ⊥-u u u r u u u r u u u r

;

(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.

12. 已知动点P (p ,-1),Q (p ,212p +

),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹

为曲线C.

(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.

13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、

)0,1(F 2,动点P 满足22

|

PF ||PF |21=

,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,

(1)求曲线C 的方程;(2)求m 的值。

14. 已知双曲线)0,0(122

22>>=-b a b y a x 的左右两个焦点分别为21F F 、,点P 在双曲线右支

上.

(Ⅰ)若当点P 的坐标为)

516

,5

413(

时,21PF PF ⊥,求双曲线的方程; (Ⅱ)若||3||21PF PF =,求双曲线离心率e 的最值,并写出此时双曲线的渐进线方程.

15. 若F 1、F 2为双曲线12

2=-b y a x 的左右焦点,O 为坐标原点,P 在双曲线的左支上,点

M

在右准线上,且满足;)

0,1φλλF +

==.

(1)求该双曲线的离心率;

(2)若该双曲线过N (2,3),求双曲线的方程;

(3)若过N (2,3)的双曲线的虚轴端点分别为B 1、B 2(B 1在y 轴正半轴上),点A 、B 在双曲线上,且B B B B 1122,⊥=求λ时,直线AB 的方程.

16. 以O 为原点,OF uuu r 所在直线为x 轴,建立如 所示的坐标系。设1OF FG ?=u u u r u u u r

,点F 的

坐标为(,0)t ,[3,)t ∈+∞,点G 的坐标为00(,)

x y 。

(1)求

x 关于t 的函数

0()

x f t =的表达式,判断函数()f t 的单调性,并证明你的判断;

(2)设ΔOFG

的面积6S =

,若以O 为中心,F 为焦点的椭圆经过点G ,求当||OG u u u r 取

最小值时椭圆的方程;

(3)在(2)的条件下,若点P的坐标为

9

(0,)

2,C、D是椭圆上的两点,且(1)

PC PD

λλ

=≠

u u u r u u u r

求实数λ的取值范围。

17. 已知点C 为圆8)1(2

2=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的

半径CP 上,且.2,0AM AP AP MQ ==?

(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程;

(Ⅱ)若直线

12++=k kx y 与(Ⅰ)中所求点Q 的轨迹交于不同两点F ,H ,O 是坐标原点,

且43

3

2≤

?≤OH OF ,求△FOH 的面积的取值范围。 18. 如图所示,O 是线段AB 其中c a <。

(1)若圆A 外的动点P 到B 的距离等于它到圆周的最短距离,建立适当坐标系,求动点P

的轨迹方程,并说明轨迹是何种曲线;

(2)经过点O 的直线l 与直线AB 成60°角,当c =2,a =1时,动点P 的轨迹记为E ,设过点B 的直线m 交曲线E 于M 、N 两点,且点M 在直线AB 的上方,求点M 到直线l 的距离d 的取值范围。

A O B

19. 设O 为坐标原点,曲线

016222=+-++y x y x 上有两点P 、Q 满足关于直线04=++my x 对称,又以PQ 为直径的圆过O 点.

(1)求m 的值; (2)求直线PQ 的方程.

20. 在平面直角坐标系中,若(3,),(3,)a x y b x y =-=+r r

,且4a b +=r r ,

(1)求动点(,)Q x y 的轨迹C 的方程;

(2)已知定点(,0)(0)P t t >,若斜率为1的直线l 过点P 并与轨迹C 交于不同的两点,A B ,

且对于轨迹C 上任意一点M ,都存在[0,2]θπ∈,使得cos sin OM OA OB θθ=?+?u u u u r u u u r u u u r

成立,

试求出满足条件的实数t 的值。

21. 已知双曲线122

2

2=-b y a x (a>0,b>0)的右准线与2l 一条渐近线l 交于两点P 、Q ,F 是

双曲线的右焦点。 (I )求证:PF ⊥l ;

(II )若△PQF 为等边三角形,且直线y=x+b 交双曲线于A ,B 两点,且30

=AB ,求

双曲线的方程;

(III )延长FP 交双曲线左准线1l 和左支分别为点M 、N ,若M 为PN 的中点,求双曲线的离心率e 。

22. 已知又曲线 在左右顶点分别是A ,B ,点P 是其右准线上的一点,若

点A 关于点P 的对称点是M ,点P 关于点B 的对称点是N ,且M 、N 都在此双曲线上。

(I )求此双曲线的方程; (II )求直线MN 的倾斜角。

23. 如图,在直角坐标系中,点A (-1,0),B (1,0),P (x ,y )(y ≠0)。设

AP OP BP →→→、、与x 轴正方向的夹角分别为α、β、γ,若αβγπ++=。 (I )求点P 的轨迹G 的方程;

(II )设过点C (0,-1)的直线l 与轨迹G 交于不同两点M 、N 。问在x 轴上是否存在一点

()

E x 00,,使△MNE 为正三角形。若存在求出x 0值;若不存在说明理由。

24. 设椭圆()22

22x y C :1a b 0a b +=>>过点

)M 2,1

,且焦点为()1

F 20

-

(1)求椭圆C 的方程;

(2)当过点()P 4,1的动直线l 与椭圆C 相交与两不同点A 、B 时,在线段AB 上取点Q ,

满足AP QB AQ PB =u u u r u u u r u u u r u u u r g g ,证明:点Q 总在某定直线上。 25. 平面直角坐标系中,O 为坐标原点,给定两点A (1,0)、B (0,-2),点C 满足

αβα其中,OB OA OC +=、12,=-∈βαβ且R

(1)求点C 的轨迹方程;

(2)设点C 的轨迹与双曲线)0,0(122

22>>=-b a b y a x 交于两点M 、N ,且以MN 为直径的圆过原点,求证:为定值2211b a -.

26. 设)0,1(F ,M 、P 分别为x 轴、y 轴上的点,且PM

?

0=PF ,动点N 满足:

2-=.

(1)求动点N 的轨迹E 的方程;

(2)过定点)0)(0,(>-c c C 任意作一条直线l 与曲线E 交与不同的两点A 、B ,问在x 轴上是否存在一定点Q ,使得直线AQ 、BQ 的倾斜角互补?若存在,求出Q 点的坐标;若不存在,请说明理由.

27. 如图,直角梯形ABCD 中,∠?=90DAB ,AD ∥BC ,AB=2,AD=23,BC=21

椭圆F 以A 、B 为焦点,且经过点D ,

(Ⅰ)建立适当的直角坐标系,求椭圆F 的方程;

(Ⅱ)是否存在直线l 与M 、F 交于椭圆N 两点,且线段C MN 的中点为点,若存在,求直线l 的方程;若不存在,说明理由.

28. 如图所示,B (– c ,0),C (c ,0),AH ⊥BC ,垂足为H ,且3=. (1)若?= 0,求以B 、C 为焦点并且经过点A 的椭圆的离心率;

(2)D 分有向线段的比为λ,A 、D 同在以B 、C 为焦点的椭圆上,

C B

D

A

当 ―5≤λ≤27

-

时,求椭圆的离心率e 的取值范围.

29. 在直角坐标平面中,ABC ?的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件:

①0=++GC GB GA ==GM ∥

(1)求ABC ?的顶点C 的轨迹方程;

(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求?的取值范围

答案:

1.解:(Ⅰ) 以A 点为坐标原点,l1为x 轴,建立如图所示的坐标系,则D(1,0),B(4,0),设M (x ,y ), 则N (x ,0). ∵|BN|=2|DM|, ∴|4-x|=2(x -1)2+y2 , 整理得3x2+4y2=12, ∴动点M 的轨迹 方程为x24+ y2

3

=1 .

(Ⅱ)∵(R),AG AD λλ=∈u u u r u u u r

∴A 、D 、G 三点共线,即点G 在x 轴上;又∵2,GE GF GH +=u u u r u u u r u u u r

∴H 点为线段EF 的中点;

又∵

0,GH EF ?=u u u r u u u r ∴点G 是线段EF 的垂直平分线GH 与x 轴的交点。 设l :y=k(x -1)(k≠0),代入3x2+4y2=12得

(3+4k2)x2-8k2x+4k2-12=0,由于l 过点D(1,0)是椭圆的焦点, ∴l 与椭圆必有两个交点,

设E(x1,y1),F(x2,y2),EF 的中点H 的坐标为(x0,y0), ∴x1+x2= 8k2

3+4k2 ,x1x2= 4k2-123+4k2

, x0=

x1+x22 = 4k23+4k2 ,y0=k(x0-1)= -3k 3+4k2

, ∴线段EF 的垂直平分线为 y - y0 =- 1

k (x -x0),令y=0得,

点G 的横坐标xG = ky0+x0 = -3k23+4k2 + 4k23+4k2 = k2

3+4k2

= 14 -34(3+4k2)

∵k≠0,∴k2>0,∴3+4k2>3,0<1(3+4k2) <13 ,∴-14 <-3

4(3+4k2)

<0,

∴xG= 14 -3

4(3+4k2)

(0,1

4

∴点G 的横坐标的取值范围为(0,1

4

).

2.解:∵

23=

e ,∴a c 23

=

由2

22c b a +=得 b a 2=

∴设椭圆的方程为1422

2

2=+b y b x (0>b )

即2

2244y b x -=(b y b ≤≤-)

设),(y x M 是椭圆上任意一点,则

124)1(3)3(||22222+++-=-+=b y y x PM (b y b ≤≤-)

若1≥b 即b b ≤-≤-1,则当1-=y 时,

124||2

2max +=b PM 由已知有161242

=+b ,得1=b ;

若10<

96||22max +-=b b PM 由已知有16962

=+-b b ,得7=b (舍去). 综上所述,1=b ,2=a .

所以,椭圆的方程为1

422

=+y x .

3.解:(I )由已知???

??===?

????????-==

=

435

:53425

2222c b a b a c a b c a 解之得

∴椭圆的方程为192522=+y x ,双曲线的方程19252

2=-y x .

又34925=+=

'C ∴双曲线的离心率

5342=

e

(Ⅱ)由(Ⅰ)A (-5,0),B (5,0) 设M

y x =则由),(00得M 为AP 的中点

∴P 点坐标为)2,52(00y x + 将M 、p 坐标代入c1、c2方程得???????=-+=+1925)52(19252

002

20y x y x

消去y0得

255202

=-+x x 解之得

)(525

00舍或-==

x x

由此可得P (10,)33

当P 为(10,)33 时 PB :

)5(51033--=

x y 即)5(533-=x y

代入)(525

025152:192522

2舍或得=

=+-=+x x x y x

M

N N x x x =∴=

∴2

5 MN ⊥x 轴 即0=?

4.解:(1)由题意可知,

,,1222222

c c a b c c a c c a =-=+==-则所以椭圆方程为 分412

2

2Λ=++c y c c x 设),(),,(2211y x B y x A ,将其代入椭圆方程相减,将

2

12

1

21211x x y y k x x y y OM ++==--与代入 可化得

c c c c tg c k OM

2|11111

1|

,11+=+-

++=∴+-=α

(2)若2

)3

6,22(

111,21,3222∈+=

+==<<∴<+<

c c

c c

a c e c c c 则

5.解:(1)直线AB 方程为:bx-ay-ab =0

依题意???????=+=2336

22b a ab a c , 解得 ???==1

3b a ,

∴ 椭圆方程为 1

322

=+y x

(2)假若存在这样的k 值,由

???=-++=033222y x kx y ,

得)31(2k +09122=++kx x ∴

0)31(36)12(2

2>+-=?k k ① 设1(x C ,)1y 2(x D ,)2y ,则??????

?

+=+-=+?2212213193112k x x k k x x , ②

4)(2)2)(2(21212

2121+++=++=?x x k x x k kx kx y y 要使以CD 为直径的圆过点E (-1,0),当且仅当CE ⊥DE 时,则1112211

-=++?x y x y ,

即0)1)(1(2121=+++x x y y

05))(1(2)1(21212

=+++++x x k x x k ③ 将②式代入③整理解得

67=

k 经验证,67

=

k ,使①成立

综上可知,存在67

=

k ,使得以CD 为直径的圆过点E

6.解:(1)设).

,( , ),( , ),(00M M y x M y x G y x C

=Θ , M ∴点在线段AB 的中垂线上

由已知

(1,0) , (1,0) ,0

M A B x -∴=;又GM Θ∥,0

y y M =∴

又=++

1322

=+∴y x ()0≠y ,∴顶点C 的轨迹方程为1

322

=+y x ()0≠y .

(2)设直线l 方程为:)3(-=x k y ,),(11y x E ,),(22y x F

由?????=+-=13)3(2

2y x x k y 消去y 得:()039632222=-+-+k x k x k ① 362221+=+∴k k x x , 33

92

221+-=k k x x

PF PE ?=??=?ο0cos 2

212313 1x

k x k -+?-+=

由方程①知 ()

(

)(

)

393462

2

2

2-+-=?k k k

>02k ∴<83

0≠k Θ,0∴<2k <83,

??? ??∈+∴827,332k ???

??∈?∴988,8. 7.解:解:令)

2,0(),2,0(),,(21F F y x M -

则M F b M F a 21,==??

即|

|||||||21M F M F b a +=+??

8||||21=+M F M F

又∵

C

F F 2421== ∴12,4,22

===b a c

所求轨迹方程为112162

2=+x y

(Ⅱ)解:由条件(2)可知OAB 不共线,故直线AB 的斜率存在 设AB 方程为

)

,(),,(,32211y x B y x A kx y +=

则02118)43(112163

222

2

=-++??????=++=kx x k x y kx y

∵OAPB 为矩形,∴OA ⊥OB 0=?

2121=+y y x x 得

45

±

=k

所求直线方程为

345

=x y …

8.解:(I )由题意,抛物线顶点为(-n ,0),又∵焦点为原点∴m >0 准线方程

n m x --

=4且有m=4n.

∵准线与直线l 交点在x 轴上,交点为

)0,2(m -

又l 与x 轴交于(-2,0),∴m=4,n=1

∴抛物线方程为y2=4(x+1) (II )由)

0(0)1(4)1(4)

1(40

222222

≠=-+-+?

????+==+-k k x k x k x y k y kx 得

0)1(162

>-=?k ∴-1<k <1且k≠0 ∴AB 的中垂线方程为0],)

1(2[122

2=---=-y k k x k k y 令

2222

)1(22k k k p =

-+= ∴p ∈(2,+∞)

(III )∵抛物线焦点F (0,0),准线x=-2 ∴x=-2是Q 的左准线 设Q 的中心为O′(x ,0),则短轴端点为(±x ,y ) 若F 为左焦点,则c=x >0,b=|y| ∴a2=b2+c2=x2+y2

依左准线方程有22

-=+-c c a 222-=++-∴x x y x 即y2=2x (x >0)

若F 为右焦点,则x <0,故c=-x ,b=|y|

∴a2=b2+c2=x2+y2 依左准线方程有22-=--c c a

即2

)(2

2-=---+-∴x x y x 化简得2x2+2x+y2=0

即1

2)21

(422=++y x (x <0,y≠0)

9.解:建立如原题图所示的坐标系,则AB 的方程为,

12030=+y

x 由于点P 在AB 上,可设P

点的坐标为

).

3220,(x

x -

则长方形面积).300)](3220(80[)100(≤≤--?-=x x x S

化简得).

300(6000320

322≤≤++-=x x x S 易知,当).(6017,350,52max m S y x ≈==时

(21)解:设A (-c,0),A1(c,0),则),

,2(),,2(h c

C h c

D -(其中c 为双曲线的半焦距,h 为C 、

D 到x 轴的距离)λλλλλλ

λ+=+-=++-=∴=1,)1(2)2(12,h y c c c x EC AE E E Θ即E 点坐标为)1,)1(2)2((++-λλλλh c

设双曲线的方程为122

2

2=-b y a x ,将

e c a =

代入方程,得122

2

2

2=-b y c x e ①

将)1,)1(2)2((),,2(++-λλλλh c E h c C 代入①式,整理得.1)1()12(4,1422

222222=+-+-=-b h e b h e λλλλ

消去.23121,12,2222

222+-=+-=-=+e e e e e b h λλλ所以得

由于.

107107,4323132,433222≤≤?≤≤≤+-≤≤≤e e e 故所以λ

10.解:1)设B (1x ,1y ),C(2x ,2y ),BC 中点为(

0,y x ),F(2,0)

则有1

1620,116202

2

222121=+=+y x y x

两式作差有

16))((20))((21212121=+-+-+y y y y x x x x

04500=+k y x (1)

F(2,0)为三角形重心,所以由232

1=+x x ,得30=x 由034

21=++y y 得20-=y ,

代入(1)得

56

=

k

直线BC 的方程为02856=--y x

2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2)

设直线BC 方程为

8054,2

2=++=y x b kx y 代入,得 080510)54(222=-+++b bkx x k

2

215410k kb

x x +-=+,

222154805k b x x +-=

22

2212

2154804,548k k b y y k k y y +-=+=+ 代入(2)式得 0541632922=+--k b b ,解得)(4舍=b 或94

-

=b 直线过定点(0,)

94

-,设D (x,y )

1494

-=-?+

x y x y

016329922=--+y x y 所以所求点D 的轨迹方程是

)4()920

()916(222≠=-

+y y x 。

11.解:(1) 依题意,可设直线AB 的方程为 ,m kx y +=代入抛物线方程

y x 42

=得 .0442=--m kx x ①

设,A B 两点的坐标分别是 ),(11y x 、122),,(x y x 则、2x

是方程①的两根.

所以 .421m x x -=

由点(0,)P m 分有向线段AB 所成的比为λ,得

.

,012

121x x

x x -==++λλλ即

又点Q 与点P 关于原点对称,故点Q 的坐标是(0,)m -,从而)2,0(m =.

]

)1([2)(21m y y m QB QA QP λλλ-+-=-?2

2

121212

2212144)(2])1(44[2x m x x x x m m x x x x x x m +?+=++?+=.

0444)(22

21=+-?

+=x m

m x x m 所以 ).(λ-⊥

(2) 由 ???==+-,4,01222

y x y x 得点,A B 的坐标分别是(6,9)、(-4,4),

由 2

4x y = 得

,21

,412x y x y ='=

所以抛物线

y x 42=在点A 处切线的斜率为36='=x y , 设圆C 的圆心为(,)a b , 方程是

,)()(2

22r b y a x =-+- 则22229

1,63(6)(9)(4)(4).

b a a b a b -?=-?-??-+-=++-?解得 2

323125,,.222a b r =-=∴= 则圆C 的方程是 ,2125

)223()23(22=-++y x (或

.0722332

2=+-++y x y x ) 12.解:(1)直线l 的方程是:)(2212p x p p y -=--,即1

2+=x p

y ,经过定点(0,1); 又M (p ,42p ),设x= p ,y=42p ,消去p ,得到的轨迹方程为:

42

x y =

. 由???????

+==1242x p

y x y 有

0422

=--px x ,其中△=4p2+16,所以l 经过一个定点而且与曲线C 一定有两个公共点.

(2)由0422

=--px x ,设A (4)

4(,42

22++++p p p p ),

4

1

4)4(22

2++++=

p p p k P A =

242++

p p ,

又函数42x y =的导函数为2x

y =

,故A 处的切线的斜率也是242++p p ,从而AP 是曲

线C 的切线.对于另一个解同样可证.

(3)当A (4)4(,

4222

++++p p p p )时,tan α=242++p p ,

tan β=22412

2422p

p p p

p p ?+++-

++

=

422

++p p , tan αtan β=1,

又易知α与β都是锐角,所以βα+=90°;

当A (4)4(,

4222

+-+-p p p p )时,tan α=24

2+-p p ,

tan β=22412

2422p

p p p p p ?+-+-

+-

=

422

++-p p , tan αtan β=-1, 又易知α是钝角,β都是锐角,所以βα-=90°.总之βα+或βα-是定值. 13.解:(1)设P 点坐标为)y ,x (,则

2

2

y )1x (y )1x (2

22

2=

+-++,化简得

8y )3x (2

2=++, 所以曲线C 的方程为

8y )3x (2

2=++; (2)曲线C 是以)0,3(-为圆心,22为半径的圆 ,曲线'C 也应该是一个半径为22的圆,点)0,3(-关于直线x y =的对称点的坐标为)3,0(-,所以曲线'C 的方程为

8)3y (x 22=++,

该圆的圆心)3,0(-到直线3m x y -+=的距离d 为

2

|m |)1(1|

3m )3(0|d 2

2=

-+-+--=

122=∴m ,或722

=m ,

所以,2±=m ,或14±=m 。

14.解:(Ⅰ)(法一)由题意知,1

PF )516,5413(--

-=c , 2PF )516

,5413(--=c ,

Θ

21PF PF ⊥,,

021=?∴PF PF )5413(-

-∴c 0)516

()5413(2=-+-c (1分)

解得 5,252

=∴=c c . 由双曲线定义得: ,2||||21a PF PF =-

2222)5

16

()54135()516()54135(2-+---+-

-=∴a 6)341()341(22=--+=,4

,3==∴b a ∴所求双曲线的方程为: 11692

2=-y x

(法二) 因21PF PF ⊥,由斜率之积为1-,可得解. (Ⅱ)设2211||,||r PF r PF ==, (

)设

P

)

,(οοy x , 由焦半径公式得

a ex ex a r ex a ex a r -=-=+=+=οοοο||,||21,c a x a ex ex a r r 2

212),(3,3=

∴-=+∴=οοοΘ,,

2,2a c

a a x ≥∴≥οΘc a ≥∴2, e ∴的最大值为2,无最小值. 此时3

1,222

2=-=-==e a a c a b a c ,

此时双曲线的渐进线方程为x y 3±=

(法二)设θ=∠21PF F ,],0(πθ∈.

(1)当πθ=时, 22121423,2r c r r c r r =∴==+,

且Θ, 22122r r r a =-= 此时

224222

2

===

r r a c e .

(2)当),(πθ0∈,由余弦定理得:

2

cos 6102cos 6102222θ

θ-=-?==

r r a c e ,

)1,1(cos -∈θΘ,)2,1(∈∴e ,综上,e 的最大值为2,但e 无最小值. (以下法一)

15.解:(1)由PM O F =1知四边形PF OM 1

为平行四边形,∵

+

()0φλ∴OP 平分∠OM F 1,∴平行四边形PFOM

c

=

∴==,C C 2,022==--e e e .

(2)∵2=e ∴a c 2=∴双曲线的方程为),,(,其过点32132222

N a y a x =-∴所求双曲

线的方程为1932

2=-y x

(3)依题意得),3,0(),3,0(21-B B ∴A B B A B ∴=,22λ、B 2、B 共线,不妨设直线AB 为:

y=kx-3,A(x ),,(),,2211y x B y 则有????????

?

=--=193322y x kx y ,得

0186)3(22=-+-kx x k ,因为1932

2=-y x 的渐进线为x y 3±=,当3±=k 时,AB 与双曲线只有一个交点,不合题

意,当,3±≠k ∴

221221318,36k x x k k x x --=?--=

+,9,318

2122

1=?--=+y y k y y

)

3(),3(2,211,11-=-=y x B B y x A B ,∴5±=k ∴所求的直线AB 的方程为

35,35--=-=x y x y .

16.解:(1)由题意知

00(,),(,0)FG x t y OF t =-=u u u r u u u r ,则001()1,OF FG t x t x t t ?=-==+

u u u r u u u r 函数()f t 在[3,)+∞是单调递增函数。(证明略)(4分)

(2

)由

001||||2S OF y y ==?=u u u r , 点

G

221131

(,||()39t OG t t t +±=++

u u u r , 因

1()f t t t =+

在[3,)+∞上是增函数,当3t =时,||OG u u u r

取最小值,此

10(3,0),(,33F G ±,

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

历年圆锥曲线高考题附答案

数学圆锥曲线高考题选讲 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2 =1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 2 3+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) A.2 B. 22 3 C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11, 2A ?? ??? ,则求该椭圆的标准方程为 。 11. (20XX 年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上, 离心率为 2 2 。过l 的直线 交于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。

【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-----4类;分门别类按套路求解; 1.高考最重要考:直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————; 2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:---------------------------------------------------; ——————————————————————————————————————; 3.圆锥曲线题固定步骤前9步:-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————; 4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾

股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2) 中点弦长问题:(2法)首选方法:“点差法” 椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

相关文档
最新文档