医院病房空调通风设计

医院病房空调通风设计
医院病房空调通风设计

1.引言

病房常常居住着抵抗力弱或身心有某些障碍的患者,是医院中患者生活最多的基本场所,必须具有高度居住性能。按美国《医院和护理设施设计与建设导则》将病房分为普通病房(Patient Room),空气途径传染的隔离病房(Airborne Infection Isolation Room),环境受保护病房(Protective Environment Room)以及用于精神病治疗的隔绝病房(Seclusion Room)。我国通常将“空气途径传染的隔离病房”简称为隔离病房,将“环境受保护病房”简称为无菌病房。其实无菌病房这概念并不确切,有的无菌要求并不很高。按军队标准YFB004-1997称为洁净护理单元较为合适,这样可将各种特别监护病房也可包括在内。高洁净度的护理单元才称为无菌病房。西方发达国家的医院标准对病房环境控制要求不涉及洁净度,只提细菌指标。因隔绝病房在暖通空调方面没有太大的特殊性,本文不作论述。

长期以来病房,尤其是普通病房的暖通空调没有得到应有的重视。病房所采用的空调形式应该考虑到室内不产生不舒适的冷风感或大温差,对采暖环境也必须顾及到室内平均的辐射温度。还应注意送风口和回风口的布置,在考虑合适气流组织的同时,应尽力维持清洁的空气环境。一般来说室内热负荷和空气污染负荷比一般居室为小。其采用的空调形式除顾及上述要求外,还要对经济性、节能性、设备的维修性能、空调噪声等影响进行综合考虑后而决定。但节能的前提不决允许以牺牲居住者的护理和安全为代价。

近年来我国医院进行了大规模的改造,普遍采用了通风空调设施。隔离病房与无菌病房的感染率大幅度下降,但是装有空调的普通病房还是出现了为数不少院内感染与交*感染的案例。对于普通病房来说,病房内可居住患者的前提应该是不存在空气途径传染的疾病。引起院内感染的微生物主要有金黄色葡萄球菌、绿脓杆菌、真菌类、B型肝炎病毒、C型肝炎病毒、爱滋病毒、结核杆菌等在清洁空气中几乎不会出现,但附着在带菌患者的寝具和病房环境的可能性很高,不适当的医疗操作与清扫或人员走动,使这些附着在表面的致病菌飞扬到空中形成浮游菌,有的随着气流直接到达患者,有的附着在医护人员的头发和衣服上,转运到其他患者或病房,有的会通过不同的途径进入空调系统,在系统中定植、繁殖、并不断传播到室内,影响的范围更大。近年来黄色葡萄球菌中有一种耐多种抗生素的MRSA菌常引起在院内感染,治疗却十分困难,引人关注。

2.普通病房通风空调设计

近年来由于关注普通病房内的空气品质,美国标准已将换气量提高到6次/h。普通病房的空调可以采用多种形式,其优缺点可参见表1。欧洲新建医院常采用辐射板(辐射吊顶或地板)与定风量系统结合的方式。我国目前绝大多数仍采用的风机盘管机组加独立新风系统的方式。这种系统与病房要求的隔离性(各室回风不串通)、灵活性(随时开关与温度调控)、可调性(病人可自行调节)和安全性(运行安全可*)相适应,另外室内噪声水平较为可取。但是长期运行实践表明普通的风机盘管系统并不理想,毕竟病房与旅馆建筑客房不同,两者的最大区别在于全天居住和室内污染。

2.1风机盘管系统优缺点

病房空调系统,由于风机盘管机组常处于湿工况,在病房中盘管的湿表面很容易滋生细菌,常常成为室内的细菌源、尘埃源和气味源(细菌的代谢物)。为避免因风机盘管机组湿工况诱发的二次污染,国外常使独立新风全部承担室内湿负荷,以保证室内风机盘管机组处于干工况。但我国东南大部分地区的气候条件使得风机盘管机组湿工况难以避免,从使用的经验来看,这种方式难以达到。由二次污染引起交*感染时有发生。国内常在机组进出口配置高中效或亚高效空气过滤器(或比色法效率≥60%),并没有消除产生污染的源,只是将已发生的细菌除掉。这种情况往往会引起风机盘管机组的风量下降或者噪声过大难以实现。现在有了低阻的抗菌过滤器,阻止了细菌进入盘管,这些问题就迎刃而解了。抗菌过滤器的广谱杀菌能力(直接将孢子也杀死)和安全性(无化学污染)必须引起注意。

采用这种系统的另一个缺点在于单*新风稀释以及所产生的微小正压难以从建筑缝隙排出室内污染,尤其是室内不良的气味。因此需要在病房内,或在天棚上设置排风,排风量与新风量相同。设置排风后,室内空气品质大为改善。

2.3普通病房压差分布与气流流向

病房部的空气流向的管理和防止污染扩散措施十分重要,应该注意病房和护士站、走廊、厕所、浴室等各室相互之间的空气流向,尤其要防止臭气和污染物的扩散。这一原则是得到公认的,但是普通病房与公共走廊之间压差及气流流向存有不同见解。

一种方式设定为将病房的送风先渗透到走廊,然后由公用厕所、污物处理室等排风排出的流动方式。另一种方式则在病房的各室同时设置送、排气口,使其空气平衡(即室内保持零压)。并向走廊送风,使走廊保持正压。同样在厕所、污物处理室等设排风。我们认为这两种方式的选用主要取决于病房实际使用状况。如易受感染患者的病房(如儿科病房等)则应采用第一种方式,如病房产生污染(如较强臭气)则应采用第二种方式,否则污染易扩散到走廊等公用空间。

对公用厕所、污染处理室、垃圾保管场所等产生臭气及其他污染物的场所,应确保充足的排风量(换气次数10~15次/小时),而且必须24小时运行。在维持室内负压的同时,要充分考虑送排气口的布置和形状,不使局部空气的滞留。在夜间可以设定小风量运行,有利于运行经济性。

2.4护士站空调

护士站24小时值班,工作繁忙,护士站内作业,需要有清洁的环境。护士站的空调要求与病房系统分开。希望能设置独立运行与控制的空调系统。护士站病房部门的中心,往往设置在病房交通要道上,穿堂风气流大,尤其是开放形式的护士站,护士均反映腿部很冷,有风感。这种场合普通空调难以胜任,需要设置辅助供热设备以防备冷空气穿流。一般情况下常在护士站柜台下部设置辐射供热板,效果较好。

3.空气传染病隔离病房的通风空调

隔离病房主要是控制以为传染媒介的传染性疾病患者,为不使室内的空气扩散到医院内的其他场所,阻止对其他区域的传染,必须维持病房负压。为防止病原菌传播到室外,必须考虑有效的除菌措施。原则上要求设置独立的空调和排气,新修订的美国标准将空气传染隔离病房的换气量提高到12次/h。并且要求能够24小时连续运行。

如果将建筑本身视为向病患和医护人员提供一级的物理保护。则通过压差设计来控制气流流向可提供二级物理保护。为了严格地防止室内空气向外部流出,希望设置前室。负压程度由走廊→前室→隔离病房的依次增大。另外当有必要维持病房侧的洁净度时,考虑把前室分成两段,即形成走廊→前室1→前室2→病房的空气流动形式。对送排气风管,希望在每个房间安装密闭阀,且与配置风机连锁,风机停止时密闭阀关闭。每间隔离病房应装上可视监控器,并确保隔离病房的护理人员可以听到紧急报警。所有风量和警报应可直接连至医院的控制中心或医院管理系统。隔离病房监控器应直接装于隔离病房的外面。

原则上在隔离病房内不能设置风机盘管机组等室内自循环机组。美国1994年颁布的疾病控制中心CDC准则“卫生设施预防结核菌传染准则”,对结核患者的隔离病房以单一疾病为对象时,为提高室内的空气洁净度,可以采用带高效过滤器的高余压风机盘管机组。并希望这种场合下带高效过滤器机组设置在室外而用风管连接到室内(参见表2第4种形式),维修时不必进入室内。此外,为防止在过滤器保养或更换时不受污染,维修人员必须带上合适的呼吸保护器具,而更换的过滤器必须是严密不渗漏。

4.洁净护理单元

4.1特别监护病房(1CU)

现在我国已开始实行先进的护理制度(即PPC法),以充分发挥受过良好训练的医护人员的作用,以及先进的监护系统的功能,以达到最好的护理效果。建立起来的各类新型的护理室,如特别监护室(ICU)、术后监护室(PICU)、心血管病人监护室(CCU)、早产儿护理室(NICU)以及呼吸道病人监护室(RRCU)等都需要采用生物洁净技术。洁净度在300 000级至1000级之间,新风量大,中央空调(不采用自循环空调机组),通常要求保持正压。

对于大多特别监护病房中的患者重在监护,室内洁净度级别一般在300 000级,换气次数为10次/h。但对于接受各种治疗引起白血球减少的恶性肿瘤患者、严重烧伤患者、严重呼吸器官疾病患者要采用无菌病房。这种病人一般对别人无害,但万一被感染其后果不堪设想。采用生物洁净技术是切断传染链、防止被感染的最有效方法。大多在病床上方设置1000级送风末端分布装置。特别监护病房的空调系统应有如下特点:

⑴对于特别监护病房往往以护士站为中心布置。采用独立的空调系统,要求能24小时运行,在维持空气无菌程度的同时,也应该注意室内温度分布和气流分布。

⑵在特别监护病房中,由于重病患者抵抗力很弱,空气环境要求比一般病房的洁净程度高一些,但不要盲目提高洁净度级别,要保持对周围区域的正压,不使污染空气侵入室内。

⑶病床上部的顶棚面上,一般应该在狭窄的区间内布置带HEPA过滤器的送风口、照明灯具、窗帘轨道、门轨道等多种设备。要注意病床面的送风气流均匀性、风速要小于0.2 m/s(国外则要求小于0.15 m/s)。

⑷如要使用正、负压可以切换的特别病房来隔离传染病患者,排气吸风口仅设于病床的附近,在回风口处设置抗菌过滤器,以免回风道被污染。没有这一条,有的标准是不允许采用正、负压切换。该病房最好采用定风量装置切换送风量,排风量也能定量切换。

⑸在ICU中,对于器官移植等易感染的重症患者,有必要时可使用1000级无菌病房。

4.2无菌病房

无菌病房是医院中洁净度级别最高的病房。往往独立布置,与护理室、治疗室、药浴室、护士站及其辅助用房构成一个特别护理区,自成体系。从里向外依次划分洁净区、准洁净区和污染区。近年来建立起来的各类新型的无菌病房已经向集结化、规模化、大型化转化,成为由无菌病房和辅助用房组成的自成体系的功能区域。不妨称为无菌病房部。无菌病房部内应有白血病重症护理病房,后期恢复病房,由于它是一个卫生学与工程学有机结合的多功能综合整体,除了上述集合性医疗优点外,这一综合整体起的医疗环境保障作用大大优于过去的单个病室的控制。平面设计时应采用“入口分流”与“内外廊分流”的措施,严格控制洁净区和污染区的界面。所谓“入口分流”在护理区入口处能有效控制、组织进入洁净护理区的各种人、物流线,各行其道,以阻止污染流线对洁净流线的干扰。而“内外廊分流”是指将贴近洁净病房区设置封闭式的外廊作为探视廊,并配置污染流线(如与楼梯连接还可兼作疏散通道),护理区内廊仅配置洁净和准洁净流线。为防止外界干扰影响到室内侧,一般设置前室。在整个体系上保证了病房内达到一个完全无菌治疗环境。

4.2.1这种病房的特点在于病人治疗时间长,病人活动区域有限而且密闭,不能与他人直接接触,容易产生烦燥。为此对净化空调系统提出了相应的要求,即要充分考虑其合适的居住性,特殊的医疗性,以及高度的可*性和安全性。为此提出了下面一些要求:

(1)为保持洁净病房内无菌状态,洁净度级别要求达到 100级,一般采用全室垂直单向流气流形式为多。采用水平单向流时,病人活动区布置在气流上游,休息时头部应朝送风墙。采用垂直单向流时,应采用上送、两侧下回的气流组织方式。

(2)与其他相比,这类病人要求的室内温度略为偏高一些,过高易引起病人烦燥,取22-26℃较为合适(国外标准要求21-24℃)。从细菌学观点出发,相对湿度取45-60%,主要考虑不利于细菌的繁殖。有利于无菌环境的控制。对于大面积烧伤的患者,要注意其特殊的温湿条件。

(3)护理区净化空调系统对各洁净病房应采用多个独立的系统,能24小时运行。各病房在使用、消毒和维修时各不相关。区内不能采用对流型、串片式散热器,风机盘管机组或其它易污染的单元式空调器。但允许在系统中采用短循环机组,加大送风量。

(4)由于患者体弱,又长期紧闭在室,对室内气流很敏感,特别是晚上。要避免吹风感,尤其是采用水平单向流气流时,气流直接吹经患者的头部。风机应该采用调速装置,至少采用两档风速。病人活动或进行治疗时风速取大值,病人休息时取小值。

(5)维持室内正压是一个重要的隔离手段。为始终确保所需的正压梯度,可考虑采用加压用的一次空气与分区病房空调系统,并设置定风量装置等。级差为一级的洁净室间的静压差值应大于7.5Pa,洁净区与室外应大于15Pa。依次建立起阶梯式的压差。内走廊洁净度级别为1000级。如病房独立送回风,走廊的洁净级别为10 000级。

(6)在洁净区内的浴室、厕所等设置的排风装置,应装有中效过滤器作为阻尼层,并设置与排风机相连锁的密闭风阀。防止室外空气倒灌。

(7)患者在室内治疗时间长,平时无所事事,对噪声很敏感。为提高其居住性,噪声控制是一个重要问题。但考虑到室内是单向流气流,难以将噪声降到国外标准的要求。通过长期调研与实践,认为白天不超过50dB(A),晚上保持45dB(A),病人是可以接受的。

(8)系统要设计备用电源。洁净病房的独立系统宜采用双风机系统。目前常采用一大一小风机并联,并且互为备用的布置方式,以提高其可*性和安全性,运行也灵活。

(9)病房的消毒灭菌要求高,这些消毒药物对金属和橡胶有较强的腐蚀性。在选用无菌室的构造及配件要能经受得起消毒。

(10)病房往往在中心区域,加上再循环风机的发热,即使在冬季也可能需要冷热源,而且在24小时运行中变化较大,应考虑相应的对策。

4.2.2国外标准都强调病房非正常状态下送风量的调节,同时要求正压分布与各室之间定向流动不变。形成无菌病房部以后,各病房运行状态可以不同,但保持整个区域内恒定、有序的梯度压力分布,严格防止室外污染空气侵入无菌病房以及区域内气流有序流动势必也成为重要的控制问题。根据无菌病房部的控制要求,提出以下六种运行模式。

(1)医疗状态(in operation):正常运行状态,医护人员进入,对患者进行正常医疗活动,房间的热湿、尘埃负荷最大,送风量最多,室内环境达到标准所要求的状态,保持正压。此时送风量称为动态风量。

(2)休息状态(at rest):医护人员离开房间,患者休息,但无人干扰,此时热湿、尘埃负荷下降,房间的送风量可以降低,设为静态风量。但正压值维持不变。

(3)备用状态(stand by):前一位患者出院,等待安排下一位患者,室内无人,房间送风量为空态风量,房间仍应保持相同的正压值。

(4)清扫状态(clean up)病房前一位患者出院,在消毒前需要进行彻底清扫,此状态室内有人,在送风的同时需要进行排风,以使室内处于负压,保证室内清扫产生尘埃不渗漏到邻室。消毒时停止送排风并要求整个房间处于密闭状态(包括所有进出该房的风管)。

(5)复原状态(recovery):病房清洁消毒后,此时室内无人。由于存在消毒药物的残余物,要求仍维持回风关闭,先开排风再开送风,是全新风全排风状态。对室内一边进行送风稀释,一边排风抽吸。此时送风量称为自净风量。房间处于负压。直至室内恢复到可使用状态,关闭排风,转入备用状态。

(6)紧急状态(emergency):某个房间出现紧急情况或突发事件,如发现患者传染性病菌或死亡,必须立即进入隔离状态,关闭回风。因室内有人对患者进行紧急处理,要求全新风全排风。此时排风量最大,以室内保持最大负压,严禁室内空气向其它房间渗漏。

为了达到无菌病房以上这六种送风状态下各项环境控制要求,给空调设计提出了新的难题。一种思路是完全依赖自控,认为自控可解决一切,但事实上这种做法往往是事倍而功半,甚至系统调试失败的例子也很多。另一种思路认为先进的空调系统是有效控制的最重要的前提。从系统设置上想办法,尽量简化自控。设置巧妙的空调系统不但能够有效地控制各个工况中室内温度、湿度、气流组织及压力,而且从节能和安全的角度上也能简便有效地实施这六种运行模式的转换。尤其是保证整个区域的压力控制与改变,更能给予保证。所涉及的压力控制常有两种方法,传统方法是根据室内实时的压力参数值通过自控系统去调节各风量,达到整个区域的压力控制。这种压力跟踪法在理论上似乎十分有效,但事实证明控制并不理想。我们借鉴洁净手术部系统控制的成熟经验,采用正压风量(或称差值风量)控制法。通过各室的正压风量的控制来达到整个区域的压力控制。这样将压力参数控制变为正压风量的控制,大大简化控制手段,降低成本,也提高了控制精度,同样在洁净护理单元的运行实践仍证明是行之有效的方法。

某大酒店暖通空调设计方案[优秀工程方案]

某大酒店暖通空调设计方案 工程概况: 原深圳湾大酒店现已更名为XX大酒店,位于深圳市华侨城深南大道旅游文化区域的中心位置,基地现状为不规则多边形,坐北向南,东西长约460米,南北最深约200米,现状为斜坡场地,酒店总用地面积为62717米2.整个建筑地下二层(半地下层、地下一层)塔楼高六层,在首层与二层间设夹一、夹二两个设备转换层,塔楼主体二至六层,主要以客房为主,包括标准客房、行政套房、总统套房、常住客房等;裙房(含夹一、夹二层)主要为酒店公共设施,设有餐饮、宴会、酒吧、会议、健身、婚礼中心等功能房间;利用地势高差设有半地下室停车库、酒店设备用房及部分酒店公共设施;地下一层为人防地下室,平时为酒窖.总建筑面积108867 米2,其中客房面积约40451 米2,客房数量约500间,酒店公共空间面积约37549 米2.改建后的酒店定位为白金五星级酒店,已于2006年底部分投入使用. 图1 酒店总平面图 XX大酒店设计之初,其管理公司——XX酒店管理公司已经介入,对本酒店的空调系统设计提出了很多具体的要求,如酒店室内设计参数、新风量要求、空调主机品牌,空调冷、热水管管制、房间换气次数、室内噪声要求等等 主要设计参数 深圳市夏季室外计算干球温度33.0℃,湿球温度27.9℃;冬季室外计算干球温度6.0℃,最冷月平均相对湿度70%.室内设计参数详见表1. 表1 室内设计参数表

空调冷热源系统设计 冷源系统 本工程集中空调面积62279米2,夏季空调计算冷负荷11403KW,设计选型时考虑酒店的运行规律, 按同时使用系数为0.8配置制冷主机,设计选用水冷离心式冷水机组四台,总装机容量9142KW,其中单台制冷量为2637KW的机组三台,单台制冷量为1231KW的机组一台,机组冷水进、出水温度为12℃~7℃,机组冷却水进、出水温度为32℃~37℃,冷媒为R134a.大、小主机的冷量调节范围均为30%~100%无级调节,当冷量需求低于单台大主机冷量的50%时,由小主机接力,总装机容量下的大小主机搭配可实现5%~100%的调节能力. 热源系统 本工程所有客人活动区的空调系统在冬季都将供热.空调供热面积56732米2,计算供热负荷2524KW.酒店洗衣房有蒸汽使用要求,本工程选用高效蒸汽锅炉,能有效满足洗衣房、厨房、生活热水、空调采暖的要求. 热回收系统 由于锅炉房、洗衣房、配电室等房间夏季散热量大,冷却通风所需风量大,且无法回收利用这部分热量,因此在施工配合过程中,为这些房间增设了带热回收装置的热泵机组.热泵机组进、出风温度为30℃/20~24 ℃,进、出水温度为20℃~55℃,制热效率可达4.0.经热回收后的冷风可作为房间冷却通风,产生的热水供应员工更衣室、员工厨房及洗衣房生活热水需求. 空调水系统设计 空调水系统设计为一次泵变流量四管制系统,根据使用功能及平面位置划分为四大主支路(图2),从分、集水缸接管分别为左翼裙房、左翼客房、主楼及右翼裙房、主楼及右翼客房服务,各主支路回水管均设有静态平衡阀.因左翼客房支路水管距主机房较近,其冷、热水管采用同程布置,增加同程管路以增加其阻力损失,与右翼平衡;其余主、支管路均为异程布置;客房管井立管底部设置压差平衡阀;平衡阀通过控制各支路之间地水力压差来平衡因主干管阻力引起地支路之间水力不平衡.本工程选用地平衡阀在全开地状态下其阻力只有0.3Kpa,从而起到比设置同程管还节能地效果.

最新-通风空调施工组织设计方案

通风空调工程施工组织设计方案 目录 一、施工组织方案 (02) 1、工程概况 (02) 2、施工总体布署计划 (03) 3、施工部署 (04) 4、劳动力计划 (09) 5、主要工程的施工方法 (10) 6、施工机具 (14) 二、施工进度计划 (16) 三、主要技术组织措施 (17) 1、保证质量的技术组织措施 (17) 2、保证进度的技术组织措施 (18) 3、保证安全及文明施工的技术组织措施 (21) 4、环境污染防治的技术组织措施 (24) 四、施工平面布置图 (25) 1、临时施工用水 (25) 2、临时用电 (25) 3、主要施工机械设备一览表 (26) 4、施工人员及其技术资格一览表 (27) 5、拟派项目经理一览表 (28) 五、保修服务计划 (30) 1、售后服务中心简介 (30) 2、售后服务承诺 (30) 3、售后服务时间安排 (30) 4、售后服务收费标准 (30) 5、维修技术人员情况一览表 (30)

一、施工组织方案 1、工程概况及设计标准和依据 ****有限公司机电设备工艺安装工程之通风空调是根据中国轻工业**设计工程有限公司的设计方案、施工图纸、有关资料及说明和通风空调设计施工规范为依据,结合现场实际情况而制定的施工方案。 1.1、工程概况: (1)工程名称:****有限公司机电设备工艺安装工程 (2)工程地点:**省**高新技术开发区**小区 (3)建设单位:**省**有限公司 (4)工程简介: ****有限公司机电设备工艺安装工程为**省**有限公司投资兴建的机电设备工艺安装工程(包括工艺管道及部分设备、动力、照明、给排水、空调通风、消防等工程安装),项目总用地面积约为77610m2,建筑面积约为29535 m2。 (5)通风空调工程项目范围(包括全厂范围内的所有通风空调设备): 1)钢结构天面风机设备及安装由建设单位提供,但线路及控制部分 在本工程内。 2)生产区空调系统的主机及其空气处理机组由建设单位提供,但冷 却塔及其泵组设备和整个系统的设备安装几调试在本工程内。 3)包括主办公室通风和空调安装,但须与二次装修公司配合。1.2施工设计规范和标准

中央空调系统设计方案设计案例

1.空调负荷估算 a)空调冷负荷估算(1)冷负荷估算面军 A.空调冷负荷法估算冷指标。 2

B:按建筑面积冷指标进行估算 建筑面积冷指标 时,取上限;大于l0000平米,取下限值。 2、按上述指标确定的冷负荷,即是制冷机的容量,不必再加系数。 3、由于地区差异较大,上述指标以北京地区为准。南方地区可按上限采取。 热负荷估算 (l)按建筑面积热指标进行估算 注:总建筑面积、大外围结构热工性能好、窗户面积小,采用较小的指标;反之采用较大的指标。 (2)窗墙比公式法: q=(7a+1.7)W/F(tn-tw)W/m2; 说明:q—建筑物的供热指标,W/m22。

a —外窗面积与外墙面积(包括窗之比); W一外墙总面积(包括窗),m22 F一总建筑面积,m2 tn一室内供暖设计温度,℃ tw一室外供暖设计温度,℃ (3)冷热负荷说明 A.以上估算的冷热负荷指标,是按2000年10月1日以前执行的《民用建筑节能设计标准》进行估算的。 B.新的《民用建筑节能设计标准》,自2000年10月1实施执行,其冷热负荷指标,应参照有关的标准。 2.机组选型 机组选型步骤: A.估算或计算冷负荷 通过3.2.2节的估算法进行估算总冷负荷,或通过有关的负荷计算法进行计算。 B.估算或计算热负荷 通过3.2.2节的估算法进行估算总热负荷,或通过有关的负荷计算法进行计算。 C.初定机组型号 根据总冷负荷,初次选定机组型号及台数 D、确定机组型号 根据总热负荷,校核初定的机组型号及台数。并确定机组型号。 3.机组选型案例 例:建筑情况:北京市某办公楼建筑面积为11000 m22,空调面积为10000 m2

空调通风及采暖工程施工方案

空调通风与采暖工程施工方案

第一章编制依据及工程概况1.编制说明 1.1编制依据 1、施工总承包招标文件。 2、暖通施工图纸”。 1.3工程相关的规范、图集 1、《民用建筑供暖通风与空气调节设计规范》GB50736-2012 2、《供热计量技术规程》JGJ173-2009 3、《建筑设计防火规范》GB50016-2006 4、《民用建筑热工设计规范》GB50176-93 5、《公共建筑节能设计标准》GB50189-2005 6、《山西省公共建筑节能设计标准》DBJ04-241-2006 7、《建筑给水排水及采暖工程施工质量验收规范》GB50242-2002 8、《通风与空调工程施工质量验收规范》GB50243-2002 9、图集07K304《空调机房设计与安装》 10、图集K103-1~2《建筑防排烟系统设计和设备附件选用与安装》 11、图集05R103《热交换站工程设计施工图集》 12、华北标图集91SB系列(2005年) 2.工程概况 2.1工程概述 1、工程名称: 2、工程地点: 3、建筑概况:

第二章施工部署及准备 3.施工队伍部署和任务划分 3.1施工队伍部署 项目部根据需要配置足够的施工队伍,分别配置电气安装作业队伍、给排水安装作业队伍、通风安装作业队伍。 3.2任务划分 根据本工程的实际布置情况和各专业的不同,本着有利于施工管理、有利于施工流程加快施工进度的原则,拟将整个合同段施工划分为三个施工阶段:一是预留预埋施工阶段;二是管道安装(水管、风管)施工阶段;三是设备安装、调试施工阶段。 4.施工安排流程和计划进度 4.1流程安排 根据本工程的设计特点、地理位置、工期计划、材料运输等各方方面原因综合考虑,本着科学高效的原则,作出相应的施工流程安排。 下图为施工流程图:

空调自控系统方案设计(江森自控)

沈阳利源轨道交通设备有限公司暖通空调自控系统项目 HVAC暖通空调自控系统 技术方案设计书

一. 总体设计方案 根据用户对项目要求,并结合沈阳建筑智能化建筑现状,沈阳利源轨道交通装备有限公司暖通空调自控系统项目是屹今为止整个沈阳所有建筑物厂区当中智能化程度要求较高的。沈阳利源轨道交通装备有限公司暖通空调自控系统项目里面分布着大量的暖通空调机电设备。 ?如何将这些暖通空调机电设备有机的结合起来,达到集中监测和控制,提高设备的无故障时间,给投资者带来明显的经济效益; ?如何能够使这些暖通空调机电设备经济的运行,既能够节能,又能满足工作要求,并在运行中尽快的将效益体现出来; ?如何提高综合物业管理综合水平,将现代化的的计算机技术应用到管理上提高效率。 这是目前业主关心的也是我们设计所侧重的。 沈阳利源轨道交通装备有限公司暖通空调楼宇自动化控制系统的监测和控制主要包括下列子系统: 冷站系统 空调机组系统 本暖通空调楼宇自动化控制系统之设计是依据沈阳利源轨道交通设备有限公司暖通空调自控系统项目的设计要求配置的,主体的设计思想是结合招标文件及设计图纸为准。 1.1冷站系统 (1)控制设备内容 根据项目标书要求,暖通自控系统将会对以下冷站系统设备进行监控:监控设备监控内容 冷却水塔(2台)启停控制、运行状态、故障报警、手 自动状态。 冷却水泵(2台)启停控制、运行状态、故障报警、手

自动状态、水流开关状态; 冷却水供回水管路供水温度、回水温度, 冷水机组(2台)启停控制、运行状态、故障报警、手 自动状态; 冷冻水泵(2台)启停控制、运行状态、故障报警、手 自动状态、水流开关状态; 冷冻水供回水管路供水温度、回水温度、回水流量; 分集水器分水器压力、集水器压力、压差旁通 阀调节; 膨胀水箱高、低液位检测; 有关系统的详细点位情况可参照所附的系统监控点表。 (2)控制说明 本自控系统针对冷站主要监控功能如下: 监控内容控制方法 冷负荷需求计算根据冷冻水供、回水温度和回水流量测量值,自动计算建筑空 调实际所需冷负荷量。 机组台数控制根据建筑所需冷负荷自动调整冷水机组运行台数,达到最佳节 能目的。 独立空调区域负荷计算根据Q=C*M*(T1-T2) T1=分回水管温度,T2=分供水总管温度, M=分回水管回水流量 当负荷大于一台机组的15%,则第二台机组运行。 机组联锁控制启动:冷却塔蝶阀开启,冷却水蝶阀开启,开冷却水泵,冷冻 水蝶阀开启,开冷冻水泵,开冷水机组。停止:停冷水机组, 关冷冻泵,关冷冻水蝶阀,关冷却水泵,关冷却水蝶阀,关冷 却塔风机、蝶阀。 冷却水温度控制根据冷却水温度,自动控制冷却塔风机的启停台数,并且自

通风空调课程设计说明书

通风部分 (2) 第一章工程概况及基本资料 (2) 1.1 工程概况 (2) 1.2 基本资料 (2) 第一章设计内容 (2) 2.1 确定通风方式 (2) 2.2 送风量和排风量的计算 (3) 2.3 管道系统布置与水力计算 (3) 2.4 风机选择 (4) 空调部分 (5) 第一章工程概况 (5) 1.1 建筑概况 (5) 1.2 设计参数 (6) 第二章空调负荷计算 (6) 2.1 室内冷负荷计算 (6) 2.1.1 用冷负荷温度计算围护结构传热形成的冷负荷 (6) 2.1.2用冷负荷系数计算窗户因日射得热形成的冷负荷 (6) 2.1.3 内围护结构传热形成的冷负荷 (7) 2.1.4 人体散热形成的冷负荷 (7) 2.1.5 室内照明散热形成的冷负荷 (8) 2.1.6 室内设备散热形成的冷负荷 (8) 第三章空调系统方案确定 (9) 3.1 冷热源机组的确定 (9) 3.1.1 冷热源方案分析 (9) 3.1.2 空调系统划分送风区划分 (9) 第四章空调机组的选择 (10) 4.1 空调房间风量、冷量的确定 (10) 4.2 末端设备选型 (11) 第五章风系统设计计算 (11) 5.1 风系统设计概述 (11) 5.2 通风管道的选择 (11) 5.3 风管水力计算 (11) 第六章水系统设计计算 (12) 6.1 空调水系统形式的确定 (12) 6.1.1 冷冻水系统的选择 (12) 6.1.2 冷却水系统的选择 (14) 6.1.3 水循环水力计算 (14)

通风部分 第一章工程概况及基本资料 1.1 工程概况 本工程为营业及办公建筑。地下一层,建筑面积770m2。地下一层为车库及各类机房。要求进行地下室的通风排烟设计。 1.2 基本资料 本工程位于市中心,动力与能源完备,照明用电充足,自来水和天然气由城市管网供应。土建专业提供地下室平面图一张。 第一章设计内容 2.1 确定通风方式 地下一层的有害气体主要是由地下停车场产生,而地下停车场内汽车排放的有害物主要是一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOX)等有害物。怠速状态下,CO、HC、NOX三种有害物散发量的比例大约为7:1.5:0.2。由此可见,CO是主要的。根据TT36-79《工业企业设计卫生标准》,只要提供充足的新鲜的空气,将空气中的CO浓度稀释到《标准》规定的范围以下,HC、NOX均能满足《标准》的要求。 由《高层民用建筑设计防火规范》[GB50045—1995(2001版)]及《人民防空工程设计防火规范》[GB50098—1998(2001版)]中对地下车库设消防排烟的规定知:本建筑属于高度超过32m的二类建筑,应在面积超过100m 2,且常有人停留或可燃物较多的无窗或固定窗房间是指机械排风排烟设施。 在考虑地下汽车库的气流分布时,防止场内局部产生滞流是最重要的问题。因CO较空气轻,再加上发动机发热,该气流易滞流在汽车库上部,因此在顶棚处排风有利,排风口的布置应均匀,并尽量靠近车体。新风如能从汽车库下部送,对降低CO浓度是十分有利的,但结构上很难做到,因此,送风口可集中布置在上部,采用中间送,两侧回。在保证满足设计要求的前提下,尽量使系统安装简

暖通空调设计方案经验总结_#精选.

做暖通方案 设计方案对暖通空调工程设计的成败优劣关系重大。近年来,随着科学技术的迅速发展以及对节能和环保要求的不断提高,暖通空调领域中新的设计方案大量涌现,针对同一个设计项目,往往可以有几种、十几种甚至几十种不同的设计方案可以选择,设计人员不得不进行大量的方案比较和优选的工作,设计方案技术经济性比较正在成为影响暖通空调设计质量和效率的一项重要工作。暖通空调设计方案的评价因素很多,一些因素很难定量表述,许多因素又不具可比性,每种设计方案往往都有各自的优缺点,面对众多的设计方案,由于考虑问题的角度不同,各方的看法往往各不相同,甚至大相径庭。目前在设计方案比较中存在的一些混乱状况使设计人员无所适从。如何对暖通空调设计方案进行科学的比较和优选,是暖通空调设计人员在实际设计工作中经常遇到的一个重要技术难题。笔者根据从事设计、审图和方案评审工作的一些体会,对暖通空调设计方案比较中应注意的一些问题进行粗浅的分析。 1 可行性和可靠性问题 能够满足使用要求,这是方案可行性应考虑的主要问题。设计方案应符合国家和当地政府有关法规和规范的要求,包括有关环境保护的要求;设计方案应能满足有关方面的要求(如供电、供气、供水、供热等),并应特别顾及这些条件的长期、变化情况。例如采用水源热泵设计方案时应考虑当地地质情况、地下水资源的现状和变化趋势、冬季热负荷和夏季冷负荷不平衡所产生的热(冷)蓄积效应等问题。对于温湿度等参数要求较高或比较特殊的工艺性暖通空调设计项目,应对设计方案进行全年工况分析,以确保其在全年各种室外气象条件下的适应性。对于一些无法采用标准设备的特殊情况,对非标准设备应提出详细的参数要求,并且所提出的参数要求应合理可行。能否有足够的机房面积也是评判设计方案可行性必须考虑的问题,尤其是对于一些改造工程和建筑面积比较紧张的情况。对于一些要求全年保证室内空气参数的重要工程以及空调系统故障停机将产生严重损失的场所,如航天发射场,应考虑系统中设备的工作可靠性和备份问题,进行系统工作可靠性分析。在这种情况下,室外气象参数和安全系数的确定也应特殊考虑。 2 经济性比较问题 经济性比较是目前暖通空调方案比较中考虑最多的一个问题。在经济性比较时首先应注意比较基准必须一致。应采用相同的设计要求、使用情况、设备档次、能源价格、舒适状况、美观情况等基准条件进行比较,这样才能保证方案比较结果的科学性和合理性。如果对采用名牌设备和采用低档设备的方案进行经济性比较,显然是不合理的;如果不考虑舒适性的区别,对有新风供应和没有新风供应的方案进行经济性比较,显然不可能做出正确的选择;如果不考虑美观性和舒适性进行经济性比较,对集中式空调方案显然是不公平的。

某会展中心通风空调系统设计方案

XX会展中心通风空调系统设计方案 工程概况 XX会展中心是由XX市政府和XX集团共同兴建的会议展览建筑,建筑基底东西长约100m,南北长约150m,总建筑面积26103.56m2。主展馆居中,为单层钢结构建筑,最高点m,南北两侧局部三层,分别为为礼堂、各种会议、办公及设备用房。消防分类为多层建筑。冷热源机房设于建筑物外。 主要设计参数 室内设计参数 空调水系统设计 本工程夏季冷负荷3951.5kW,单位建筑面积冷负荷指标151.4W/m2;冬季设计热负荷3260KW,单位建筑面积热负荷指标125W/m2。 夏季设计供回水温度7/12℃,冬季设计供回水温度60/50℃,冷热源来自室外机房。 根据建筑物实际可能的使用情况,将水环路划分为展厅、礼堂、会议室三部分,从室外主机房分、集水器分别引入,每个环路均采用异程系统,采取水力平衡措施。 空调风系统设计 展厅 采用全空气定风量一次回风系统。其中高大空间部分采用分层空调方式,侧送下回,靠外墙局部为送风气流死角,增设地板散流器下送风口。空调机房设于展厅东西入口上方的夹层内。侧送风口采用可调型圆形喷口,分上下两排布置,其中上排距地高度7m,下排距地6.5m,通过调整角度满足展厅不同季节、不同射程的气流组织需要。新风由竖风道自屋顶退层内引入,避免破坏建筑物外立面。该部分气流组织示意图见图2。图3 为空调机房平面布

置,图4为风口立面布置图。由妥思公司提供的风口选型结果见表2。 展厅内局部层高6m 的空间采用吊顶空调机组加集中新风的空调方式,气流组织采用上送上回。 礼堂 采用全空气定风量一次回风系统。其中观众席采用全回风机组加全新风机组的空调方式,回风机组设于观众席下方的夹层内,新风机组设于主席台后上方的夹层内。气流组织采用上送侧下回,送风管道在屋顶钢结构内敷设,送风口采用旋流风口, 回风在观众席台阶下

(完整word版)新风系统设计说明

空调通风系统设计说明 第一部分:新风系统 一、设计依据: 1、甲方提供的相关资料及现场情况; 2、暖通空调设计标准,设计手册。 二、工程概况: 本工程为办公用会议室,建筑面积为220平方米,层高为3.20米,人数约105人。 三、新风量确定: 按照采暖通风和设计规范并参照实用供热空调设计手册,将需要新风量计算如下: 1、按每平米地板面积新风量指标计算:20X220=4400m3/h; 2、按每人最小新风量计算(考虑有一些吸烟状况): 105X40=4200m3/h; 3、按保证室内环境换气次数计(考虑有一些吸烟状况): 220X3.2X6=4224m3/h; 四、设备选型及说明 以本工程实际情况及上述计算结果为依据,综合考虑确定总新风量为4000m3/h—4500m3/h满足要求,根据现场尺寸,选用一台或两台新风换气机。这样既可以保证向室内提供经过过滤的新鲜空气,同时将等量的室内烟雾等污浊空气排到室外,双向换气还可以减少室内冷热量损失,起到明显的节能效果。

第二部分:空调系统 一、设计参数 (一)、室外计算参数 1、冬季空调计算温度:-12℃ 空调计算相对湿度:45% 2、夏季空调计算干球温度:33.2℃ 空调计算相对湿度:60% (二)、室内计算参数 夏季:温度:25±2℃相对湿度:55% 冬季:温度:18±2℃相对湿度:45% 二、负荷的确定 1、本工程空调负荷包括建筑负荷、人体负荷、照明负荷、新 风负荷及其他符合: 其中:建筑负荷为50w/m2,人体负荷为65w/m2,灯光负荷为40w/m2,新风和其他负荷为150w/m2; 2、根据以上单位面积负荷计算出总空调负荷为: 230X305=70150w。 三、空调设备选型 1、根据现场情况,可以安装11台风机盘管; 2、根据上述空调负荷计算结果,每台风机盘管负担6.3KW, 因此选用11台型号为FP-12(008型)的风机盘管,单台参数 为:冷量约6.2KW/台,风量约1350m3/h。

实验室空调与通风设计方案

实验室空调与通风设计方案 概况:某大学校区农生组团建筑面积约137 200 m2,建筑高度58.5m,地上14层,地下1层,是由国家实验室主楼、动科院、生工与食品学院、环资学院、农学院各实验楼组成的一个连体建筑群(实验室建筑面积占总建筑面积一半)。 一、工程设计特点 (1)农生组团为一个建筑群,空调系统按学院划分:①主楼(国家实验室)为集中冷热源、半集中式空调系统。办公室和普通实验室采用风机盘管加新风系统,洁净实验室采用全空气系统。②其他学院为自带冷热源的半集中式空调系统,新风集中处理;办公室采用集中新风加分体空调;普通实验室采用集中新风加变制冷剂流量空调系统。洁净实验室采用单元式直接蒸发空调机组(新风集中处理)。 (2)洁净实验室净化空调有多种形式:①全新风净化空调系统设三级过滤,采用顶送风下排风,排风出口设净化处理装置。②循环风空调箱通过送风管,再经过ULPA过滤器或HEPA过滤器将空气送入洁净室,气流向下送入洁净间,再经竖直回风夹道进入吊顶回风。空气多次进入循环风空调箱过滤,使用不同类型的中高效过滤器,提供了节约成本和使用能源的选择。 (3)根据甲方提供的实验室洁净度、实验内容、污染性以及房间正负压特性设计排风系统,并按类别排放废气。每个实验室的排风系统为独立系统,排风柜补风采用室外风,减少了空调负荷。 (4)严格执行国家环境保护法,对有可能对环境造成污染的排风在排放前进行过滤处理,按排出气体的成分采取吸附、过滤、净化处理,使排出气体有害成分低于国家环保卫生要求。 (5)采用DDC数字控制系统,提高楼宇智能化。 设计参数与空调冷热负荷(一级标题) 表1 主要房间的室内空调供暖设计参数及通风换气参数见表1。 表1主要房间的室内空调供暖设计参数及通风换气参数 特殊实验室的(恒温恒湿,无菌,冻干,超净台)温湿度按校方要求,换气次数为10~25 h- (无菌操作间按万级,超净台按百级)。对温、湿度无工艺要求时室温为20~26℃,相对湿度小于70%。 空调负荷:主楼冷负荷6 616 kW,热负荷2 043 kW;动物学院实验楼冷负荷3 200 kW,热负荷1 550 kW;农学院实验楼冷负荷4 060 kW,热负荷2 230 kW;环资学院实验楼冷负荷2 940 kW,热负荷l 600 kW。 蒸汽用量:负担主楼空调换热用量约3.5t/h,用于所有空调机组加湿用量约2.9t/h,合计约6.4 t/h。 二、空调系统设计 (1)主楼(国家实验室)空调系统按办公区域与实验室区域划分,一层报告厅采用双风机全空气系统,其他房间均采用风盘加新风空调系统,每层按区域设两个新风系统;十二层使用功能相同且空气无污染的六间光室的新风机组为带热回收的机组。对有洁净度要求的实验室另设有带三级过滤的吊装或立式洁净空调机组。其他三个学院实验楼考虑与主楼冷热源机组距离较远,且运行时间各不相同,空调系统包括新风处理机均采用变制冷剂流量变频多联机和直接蒸发系统,新风机组每层分区设两台;同样对有洁净度要求的实验室另设有带三级过滤的吊装或立式直接蒸发式沽净空调机组;小开间办公室采用分体式空调机组。所有实验室的冷藏室、冷冻室均设置了拼装式冷库。所有新风机组、变制冷剂流量变频机组、拼装冷库室外机均安装在屋顶。 (2)洁净实验室空调采用带有两级过滤的净化空调机组,粗效过滤器用易清洗更换的合成纤维过滤器,中效过滤器集中设置在空调机

空调系统设计方案

XXXX有限公司 空调系统设计方案 一、工程概况 XXXXX有限公司是一座现代化的生产制造工厂,根据工艺的要求,对厂房的温度、湿度、新风量都有严格的要求。为了满足室内空气质量及节能要求,我们为贵公司提供Siemens公司可编程逻辑控制PLC S7-200系统。该控制系统是将3台冷水机组、8个水泵系统、4个冷却塔系统,23台恒温恒湿空调机组集成在一个RS485 OPC协议网络上并与上位机HMI-Microsoft Visual Studio 2008 控制平台进行网络组态操作。 方案HMI监控范围及系统目标包括以下几部分: ·空调冷水机组 ·冷却水系统 ·冷冻水系统 ·组合式恒温恒湿空调机组 ·组合式新风机组 根据甲方的要求和相关图纸,以最高性价比为原则通过优化的设备控制方案和智能管理方式,从而给贵公司提供精确温湿度控制、高效节能可进行系统管理的生产环境。 二、系统设计规范与依据 -建筑智能化系统工程设计管理暂行规定(建设部1997-290) -建筑电气设计规范(JCJ/T16-92) -智能建筑设计标准(DBJ-08-47-95) -采暖通风与空气调节设计规范(GBJ19-87) -建筑设计防火规范(GB50045-95) -电气装置工程施工及验收规范(GBJ232-82) -招标文件要求的相关条例及规范 -业主提供的招标文件和设计图纸

三、系统方案描述 我们通过对甲方提出需求的了解,结合楼宇控制系统的设计规范,对集控冷水 机组,水系统,冷却塔空调设备的自动化系统提出以下方案。 自控系统组成: 机组系统控制 监控系统控制 1.机组系统控制 冷水机组系统采用3台1000RT离心式冷水机组。自控系统采用PLC控制器直接采集冷热源系统中的机组的各种参数。同时程序控制机组的启停,完成各种联动控制,备用设备的转换。 本方案的冷热源系统用Siemens系列控制器配合点扩展模块来解决。 PLC是现场管理和控制系统的组成部份,是一个高性能的控制器。PLC在不依靠较高层处理机的情形下,可以独立工作和联网以完成复杂的控制、监视和能源管理功能,而不需依赖更高层的处理器。PLC可以连接楼层级网络(FLN)设备并提供中央监控功能。 PLC可带扩展模块的和不带扩展模块的。本方案采用可带扩展模块的PLC,这对业主以后的维护和系统扩展时极为有利的。 特点 ●可与其它层级的处理机互相搭配,以符合应用的需求 ●通过扩展模拟量/数字量模块设备,可增加监控点数 ●结合软件与硬设备配合控制应用 ●以先进的PID 算法,精准的将HVAC 控制在最小的变动范围内 ●具有管理多种报警、历史及趋势记录的收集、操作控制和监控功能 ●可选配手动/停止/自动(HOA) 切换开关 本方案可实现空调冷热源的如下监控内容: 机组台数控制 根据供水管的流量及集水器、分水器的温差,计算负荷,然后通过冷水机组提供的通讯接口对风冷热泵机组的进行联网监控。通过网关的模式可实现数据的双向传输,并监控机组的运行状态、系统负荷、房间温湿度、系统启停指令信号等。

暖通空调系统设计大全

目录 第一章设计参考规范及标准 (5) 一、通用设计规范: (5) 二、专用设计规范: (5) 三、专用设计标准图集: (5) 第二章设计参数 (6) 一、商业和公共建筑物的空调设计参数ASHRAE (6) 二、舒适空调之室内设计参数日本............................................................. 错误!未定义书签。 三、新风量 (7) 1、每人的新风标准ASHRAE (7) 2、最小新风量和推荐新风量UK (8) 3、各类建筑物的换气次数 UK (8) 4、各场所每小时换气次数 (9) 5、每人的新风标准UK (10) 6、考虑节能的基本新风量(1/s人)(日本) ............................................. 错误!未定义书签。 7、办公室环境卫生标准日本................................................................. 错误!未定义书签。 8、民用建筑最小新风量 (10) 第三章空调负荷计算 (14) 一、不同窗面积下,冷负荷之分布% (14) 二、负荷指标(估算)(仅供参考) (14) 三、空调冷负荷法估算冷指标。空调冷负荷法估算冷指标(W/M2空调面积)见下表 (15) 四、按建筑面积冷指标进行估算建筑面积冷指标 (16) 五、建筑物冷负荷概算指标香港 (17) 六、各类建筑物锅炉负荷估算W/M3℃ (18) 七、热损失概算W/M3℃ (19) 八、冷库冷负荷概算指标 (19) 第四章风管系统设计 (20) 一、通风管道流量阻力表 (20) 1、缩伸软管摩擦阻力表 (20) 2、镀锌板风管摩擦阻力表 (20) 二、室内送回风口尺寸表 (23) 1、风口风量冷量对应表 (23) 2、不同送风方式的风量指标和室内平均流速ASHRAE (24) 三、室内风管风速选择表 (24) 1、低速风管系统的推荐和最大流速m/s (24) 2、低速风管系统的最大允许速m/s (24) 3、通风系统之流速m/s (25) 四、室内风口风速选择表 (25) 1、送风口风速 (25) 2、以噪音标准控制的允许送风流速m/s (25) 3、推荐的送风口流速m/s (26)

空调设计方案

设计说明 一、建筑概况 1、建筑地点:河南省洛阳市 2、建筑用途:4S店一层前半部为汽车展厅,一层后半部以及相应的二 层为办公区 3、建筑功能:包括休息、购车、办公等 二、气象参数 冬季空气调节室外计算温度:-5.1℃;冬季空气调节室外计算相对湿度:59%;夏季空气调节室外计算干球温度:35.4℃;夏季空气调节室外计算失球温度:26.9℃;夏季空气调节室外计算日平均温度:30.5℃;夏季室外平均风速:1.6m/s;冬季日照百分率:49%;最大冻土深度:20cm;夏季最多风向:WNW;极端最高气温:41.7℃;极端最低气温:—15.0℃。 三、室内气象参数 四、土建资料 4S店主体结构全部使用工字钢或者槽钢支撑,建筑外边部分用金

属薄板包裹或者制作玻璃幕墙。 五、负荷计算 按照《民用建筑供暖通风与空气调节设计规范》计算并查得洛阳市民用建筑的平均冷指标为120w/㎡,热指标为70w/㎡,由于本工程 33家4S店全部采用钢结构建筑,并且外墙不做保温保护,所以设计 冷热指标增加10%-20%. 六、空调方案和水系统方案确定 空调系统按照空气处理设备的设置可分为集中式系统、半集中式系统、分散式系统。本工程采用分散式系统,即将整体组装的空调器直接放在空调房间内或放在空调房间附近,每个机组只供一个或几个小房间的或者一个大房间内放几个机组的系统。这样利于各个区域的控制,在房间不使用的情况下关闭空调开关,节约能耗。 空调方案按照处理空调负荷的输送介质可以分为全空气系统、全水系统、空气-水系统、制冷剂系统。全空气系统是房间内的负荷全部由空气承担的空调系统,全水系统是房间内的负荷全部由水承担的空调系统,空气-水系统是房间内的负荷由水和空气共同承担的空调系统,制冷剂系统是将制冷剂直接放在房间内消除房间内的余热余湿。本工程采用全水系统,由于水的比热比空气大的多,所以在相同条件下只需要较小的水量,从而使管道所占的空间减小许多。但是对于普通建筑来说仅靠水来消除余热余湿,并不能解决房间的通风换气问题。因而通常不单独采用这种方式。本工程由于建筑的特殊性,4S店汽车展厅以及办公室

空调系统设计说明书_范文

设计总说明 本设计为上海市某办公楼空调通风系统设计。该办公楼属大型办公建筑,总建筑面积约为55000㎡。地下两层,地上二十八层,建筑总高度为99.6m。地下两层为车库及设备用房,地上二十八层均为办公用房。该建筑的主要功能间有办公室、会议室、接待室等。全楼冷负荷为3080千瓦,全楼采用风冷热泵机组进行集中供给空调方式。 本建筑位于上海市。上海市地处我国东部沿海地区,东经121°43′,北纬31°16′。属于亚热带季风气候区,四季分明,夏热冬冷,春秋短暂,但由于地处沿海,雨季较为分散,以夏季雨量最大。夏季空调室外日平均温度30.4℃,办公室室内温度26℃,湿度65%,室内风速v ≤0.3 m/s;冬季办公室室内温度20℃,湿度40%,室内风速v≤0.2 m/s。 设计的依据主要有同济大学浙江学院毕业设计(论文)任务书《上海市某办公楼空调通风系统设计》、采暖通风与空调设计规范GBJ19—87、HV AC暖通空调节设计指南、高层民用建筑设计防火规范GB50045—95(2005版)、GB 50189-2005 公共建筑节能设计标准、简明通风设计手册等。 考虑该大厦为办公楼,空调的运行时间主要在上班时间,所以计算负荷时本设计取的时间为6—18时。此设计中的建筑主要房间为办公室,大多面积较小,且各房间互不连通,应使所选空调系统能够实现对各个房间的独立控制,综合考虑各方面因素,确定选用风机盘管加新风系统。在房间内布置吸顶式风机盘管,嵌入暗装的形式。将该集中系统设为风机盘管加独立新风系统,新风机组从室外引入新风处理到室内空气焓值,不承担室内负荷。风机盘管承担室内全部冷负荷及部分的新风湿负荷。风机盘管加独立新风系统由百叶风口下送和侧送。水系统采用闭式双管异程式,冷水泵四台,三用一备。 在冷负荷计算的基础上完成主机和风机盘管的选型,并通过风量、水量的计算确定风管路和水管路的规格,并校核最不利环路的阻力和压头用以确定风机和水泵。 通风设计方面,地下室为车库及设备用房,设计成机械送排风为主,自然进排风为辅的方式,其换气每小时不小于6次;卫生间排风设计为排风扇机械排风到外阳台,排风量按每小时不小于10次的换气量计算;考虑到办公室吸烟问题,也采用排风扇机械排风到外阳台,排风量为送风量的80%。电梯前室及楼梯间设计加压送风。 该设计按照建筑结构及其要求制定空调方案,力求能够满足使用的要求,即能够满足办公舒适性。此外还要从空调设计的科学合理性和经济性,以及建筑整体的美观度考虑。中央空调在现代建筑中越来越多的应用,技术也越来越成熟先进。能够有效的管理,一次性投资,后期使用方便,并且不占用建筑的有效空间。本文就是对中央空调的设计到选型,到校核计算的一个说明。从使用性到科学性再到经济性上做到好的结合。方案选择是整体考虑以及设计的总体思想,计算部分是整个设计的基础,绘图部分是与设计施工相联系的实际的走管和安装。三个部分相依相承,都与整个工程密不可分。各个部分都要保证科学合理,正确无误,经济适用。 本设计是真实性课题的典例。其中,有理论的分析计算,有中央空调方案的选择论证,有实际的绘图安装。是一个完整的工程设计实例。设计计算主要有冷负荷的计算,送风量的计算,管路的计算等。冷负荷的计算确定了各个房间的空气状况和调节条件,以及整个工程的负荷量。是确定室内空调调节方案的主要数据。也是选择冷水机组最主要的参考数据。送风量和管路的计算是面向实际设备和管路的数据资料。都是整个设计的基础。 在上面主要阶段完成以后还要对一些具体细节的问题加以论证思考并列出解决方案。比如管

暖通空调设计方案技术比较分析

暖通空调设计方案技术比较分析 发表时间:2017-10-19T15:15:36.257Z 来源:《基层建设》2017年第22期作者:苏莹莹 [导读] 摘要:暖通空调设计方案的比较和优选是一个涉及面广、影响因素多的复杂技术工作。一个优秀的暖通空调工程设计方案,应对设计方案涉及的各种因素进行全面的考虑,使其综合效益最高。 成都基准方中建筑设计有限公司重庆分公司重庆 401120 摘要暖通空调设计方案的比较和优选是一个涉及面广、影响因素多的复杂技术工作。一个优秀的暖通空调工程设计方案,应对设计方案涉及的各种因素进行全面的考虑,使其综合效益最高。综合考虑的因素越多,通常其方案设计的水平越高,同时其设计工作量和难度就越大。本文将对暖通空调的设计方案进行了分析,以供参考。 关键词:暖通空调设计;设计方案;比较分析 1暖通空调系统设计基本原则 1.1充分考虑实际需求 在对方案进行设计以前,要全面了解建筑的实际情况,查明建筑具体位置及管线敷设地点,确定建筑已使用的时间、人员总量及是否进行排气处理等,弄清建筑总高度和层数等基本信息,进而为后续设计工作的顺利进行提供可靠依据。 1.2设计原则 首先,方案必须具有可行性,要严格按照现行法规完成设计,设计方案不仅要满足供电供水等基本需求,还要确保其有效性与可靠性;其次,设计方案还需充分考虑工程的经济性,在其他条件一定的基础上,应选取最为合理的方案,不能出现仅考虑经济性而忽视了基准条件的情况;再次,方案应使系统具有更好的可调节能力,可适应多种气候条件;第四,方案要兼顾系统自身安全性,根据设计规范切实做好防火等工作,预测系统运行所造成的实际影响,同时对那些高危环境要采取有效的防护措施;最后,评定方案的标准要尽可能的多样,每一种方案都存在一定优势与局限性,需要结合实际情况制定最佳的设计方案。 2方案技术比较分析 2.1增强暖通空调设计方案的可行性 在设计暖通空调施工方案时,一定要确保设计方案的可行性,使得设计出的暖通空调系统能够满足建筑物本身和用户的使用要求。在满足当地环境政策的前提下,暖通空调的设计要涵盖用户关于供电、供水、供热等多方面的需求,并在不同的时间段注意这些供求关系的变化,保证暖通空调系统常年稳定可靠的运行。至于一些对温度、湿度等空气参数要求较高的工艺性暖通空调系统的设计,则要确保暖通空调在各种大气条件下维持稳定的运行状态,能够适应各种突发的自然现象。而对于一些非标准的空调设备,则应在进行工况分析之后提出较为准确的参数要求,并确保设备的参数符合标准。 2.2 设计方案的经济性 在暖通空调的设计方案中,如何提高空调系统的性价比是设计者面临的一个重要问题。一般情况下,一个好的设计方案中应当包括设备质量、能源价格、运行状况、外观安装以及用户体验等多个方面的要求,在满足这些要求的基础上,合理的控制设计施工成本,才能确保设计方案的经济性和科学合理性。 比如,某建筑地上12层,地下2层。1-3层层高4.2m,其余各层层高为3.9m。冷冻水分区系统三种方案比较: 方案一:设集中空调水系统,冷冻站设在地下一层 方案二:将水系统竖向分区。低区为地下1层至6层;高区为7层至12层;冷冻站设在地下1层,在5层布置水水热交换器,提供给高层系统冷源,采用一、二次泵来减少系统的承受压力。 方案三:与方案一样竖向分区,不设热交换器而是将低区与高区分别设冷冻站,均设在地下1层。 水泵出水口最高压力比较: 水泵停止运行:水泵出水口压力为系统静水压; 水泵瞬时启动:水泵出水口压力为水泵全压+系统静水压 水泵正常运行:水泵出水口压力为水泵静压+系统静水压 2.3 设计方案的调节性和可操作性 在对暖通空调的装机容量进行设计时,需要结合当地的气象数据,按照记录数据的极端情况进行设计,只有这样才能在发生最坏的情况下系统能够具有一定的调节性。可以在设计方案中采用变频空调系统,从而在保证方案调节性的基础上能够降低日常运行的耗费。同时,用户在使用时还会对暖通空调的使用方便性尤为关心,通过使用自控程度高的暖通空调系统,不但可以减少管理人员的数量还能降低管理人员的劳动强度,降低人工费用。 2.4 暖通空调设计方案中的安全性 在暖通空调的设计的安全方案性方面需要从防火、易燃易爆、人员安全等方面进行考虑,尤其是那些内部存有易燃易爆等物品的,在对暖通空调设计方案中需要对安全性着重考虑。在设备安全性方面需要考虑暖通空调系统。如果发生故障会对建筑内的物品和设备造成如何的影响,例如室内存有重要文件等的。在人员环境安全方面需要考虑有害气体泄漏将会通过通风系统扩散至整个室内。从而使人员受到伤害。 2.5 暖通空调设计方案中对于环境方面的考虑 很多地方政府已经发文禁止冬季采暖使用煤炭作为主要能源,这就造成在设计暖通空调系统时需要更多的考虑环境方面的影响。同时在选用制冷剂时需要考虑各种氟利昂的替代品,少用或者是不用氟利昂制品,尤其是不能选用国家明令禁止使用的制冷剂作为冷媒。在考虑环保时更要兼顾经济性。 比如,选择一个合适的通风系统前应先研究该区内废气排放源,人员流动和空气流动速度。全面排气通风也称稀释通风,它不同于局部排气通风,因为后者是直接从污染源捕集散发的粉尘并将之从空气中除去;而前者则允许污染物散发到工作区空气中,然后将其浓度稀释至可接受的程度。排气通风系统都需要置换空气。置换空气可通过开着的门、窗、天窗、邻近空间、墙和窗上的缝隙、门下的缝隙及屋顶通风孔在大气压力的作用下自然补充。地下车库和机房靠机械通风,地面房间通过经过滤和冷热处理的新风及机械排风实现通风换气。

通风空调工程施工方案

通风空调工程施工方案 1、通风系统管道支吊架安装 (1)、风管支、吊架位置应准确,方向一致,吊杆要求垂直,不得有扭曲现象,悬吊的风管与部件应设置防止摆动的固定点。 (2)、玻璃钢风管长度超过20m时,应加固定支架不得少于一个,玻璃钢风管长度超过20m时应按设计要求加伸缩节。 (3)、主风管吊架距支管之间的距离应不小于200mm。 (4)、空调风管吊装管道与支吊架间应加隔热木拖。 (5)、支吊架槽钢头及角钢的朝向,同一区域内应该只有两个朝向(横向和纵向)。且风管支吊架间距应统一,均匀,弯头两端均应加设支吊架。 (6)、吊杆距横担的端头30mm;吊杆距风管外边(保温风管指保温层外边)30mm。 (7)、安装期间,吊杆外留125px;安装、保温、打压等工作进行完,通过报验后,对吊杆进行切割,吊杆在螺帽外留2-3扣。(8)、吊杆刷漆应均匀,颜色一致。风管安装完后,补刷一遍防锈漆。 (9)、风管弯头处、三通处、阀门处、必须加吊架、管道长度超过15m,防晃支架不得少于一个。 2、风管制作安装 (1)、施工流程

(2)、材料要求 ①、板材:板材不得有波浪形缺陷、弯曲变形、凹凸不平的现象。 ②、型钢:无弯曲、变形现象。 (3)、主要机具 ①、机具:联合冲剪机、剪板机、螺旋卷管、折方机、按扣式咬口折边机、电动剪刀等。 ②、工具:工作台、台虎钳、电动剪、气焊、气割工具、管钳、手锤、手锯、活动板手、电锤等。 ③、其它:钢卷尺、水准仪、水平尺、线附、石笔、小线等。(4)、风管制作工艺 ①、画出加工草图:依据施工图纸绘制; ②、无法兰连接矩形风管制作:对于风管大边长在120~1250mm之间的矩形铁皮风管,选材应按照设计要求。 ③、焊接风管的制作:选择板材为2.0mm厚的冷轧钢板; (5)、风管安装流程 ①、风管安装前,先对安装好的支、吊、托架进一步检查其位置是否正确,是否牢固可靠。 ②、根据施工方案确定的吊装方法(整体吊装或一节一节吊装),按照先干管后支管的安装顺序进行吊装。

相关文档
最新文档