中位线定理证明题

合集下载

中位线习题及答案

中位线习题及答案

1.如图,在四边形ABCD中,BD⊥CD,AC⊥AB,E为BC的中点,∠EDA=60°,求证:AD=DE2.如图,在△ABC中,AD⊥CB、BE⊥AC,且相交于O点,N、M是CO、AB的中点,连接MN、ED,求证:MN是ED的中垂线证明:连接ME、MD、NE、ND(注:DE与MN交于P点)因AD⊥CB、BE⊥AC ,可得EM为直角△AEB斜边AB上的中线,EM=1/2 AB;MD为直角△ADB斜边AB上的中线,MD=1/2 AB∴EM=MDNE为直角△CEO斜边CO上的中线,NE=1/2 CO ND为直角△CDO斜边CO上的中线,ND=1/2 CO ∴NE=ND又MN=MN∴△MEN≌△MDN所以∠EMN=≌∠DMN又ME=MD,MP=MP∴△EMP≌△DMP∴EP=DP∠EPM = ∠DPM = 180°÷2 = 90°即:MN是ED的中垂线3、如图所示,BD、CE是三角形ABC的两条高,M、N分别是BC、DE的中点求证:MN⊥DE∵BD,CE为△ABC的两条高,∴BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC中,M为斜边BC的中点,∴EM=2分之一的BC,同理在Rt△BDC中,M为斜边BC的中点,可得DM=2分之一BC(不知可是这图?= =格式出了一点问题。

)∴EM=DM,∴M在线段ED的垂直平分线上,又N为ED的中点,∴N也在线段ED的垂直平分线上,∴MN垂直平分ED.M C4、如图,四边形ABCD中,∠DAB=∠DCB=90o,点M、N分别是BD、AC的中点。

MN、AC的位置关系如何?证明你的猜想。

DAB5、已知梯形ABCD中,∠B+∠C=90o,EF是两底中点的连线,试说明BC-AD =2EF解:作EM//AB,EN//CD,又AD//BC,则四边形AEMB,CDEN是平行四边形,AE=BM,ED=CN,∠EMN=∠B,∠ENM=角∠C∠B+∠C=90°,则△MEN是直角三角形。

专题11 三角形中位线定理(解析版)

专题11 三角形中位线定理(解析版)

专题11 三角形中位线定理【考点归纳】(1)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.(2)几何语言:【好题必练】一、选择题1.(2020秋•罗湖区期末)如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④AD2+AE2=4AG2.其中正确结论的个数是()A.1B.2C.3D.4【答案】C.【解析】解:连接EC,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠F AC,∴∠F AC=2∠F AE,∵∠F AC=∠B+∠ACB,∴∠F AE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=BC,AG=AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.2.(2020秋•安丘市期末)如图,面积为2的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【答案】B.【解析】解:∵D,E,F分别是AB,BC,CA的中点,∴===,∴△DEF∽△CAB,∴=()2=,∵△ABC的面积=2,∴△DEF的面积=,故选:B.3.(2020秋•长春期末)如图,在边长为4的等边三角形ABC中,DE为△ABC的中位线,则四边形BCED 的面积为()A.2B.3C.4D.6【答案】B.【解析】解:过点D作DF⊥BC于点F.∵△ABC是边长为4的等边三角形,∴AB=BC=AC=4,∠B=60°,又∵DE为中位线,∴DE=BC=2,BD=AB=2,DE∥BC,∴DF=BD•sin∠B=2×,∴四边形BCED的面积为:DF×(DE+BC)=××(2+4)=3.故选:B.4.(2020秋•长春期末)△ABC中,AB=7,BC=6,AC=5,点D、E、F分别是三边的中点,则△DEF 的周长为()A.4.5B.9C.10D.12【答案】B.【解析】解:∵点D、E、F分别是三边的中点,∴DE、EF、DF为△ABC的中位线,∴DE=AB=×7=,DF=AC=×5=,EF=BC=×6=3,∴△DEF的周长=++3=9,故选:B.5.(2020秋•绿园区期末)如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD=10m,则A,B之间的距离是()A.5m B.10m C.20m D.40m【答案】C.【解析】解:∵点C,D分别是OA,OB的中点,∴AB=2CD=20(m),故选:C.6.(2020秋•内江期末)如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠EPF=140°,则∠EFP的度数是()A.50°B.40°C.30°D.20°【答案】D.【解析】解:∵P是BD的中点,E是AB的中点,∴PE是△ABD的中位线,∴PE=AD,同理,PF=BC,∵AD=BC,∴PE=PF,∴∠EFP=×(180°﹣∠EPF)=×(180°﹣140°)=20°,故选:D.二、填空题7.(2020春•兴化市期中)如图,D、E分别是△ABC的边AB、AC的中点.若BC=6,则DE的长为.【答案】3【解析】解:∵D、E分别是△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=×6=3,故答案为:3.8.(2020春•姜堰区期中)已知以三角形各边中点为顶点的三角形的周长为6cm,则原三角形的周长为cm.【答案】12【解析】解:∵△DEF的周长为6cm,∴DE+DF+EF=6,∵D、E、F分别为AB、AC、BC的中点∴DE、DF、EF是△ABC的中位线,∴BC=2DE,AB=2EF,AC=2DF,∴△ABC的周长=AB+AC+BC=2(DE+DF+EF)=12(cm),故答案为:12.9.(2020春•建湖县期中)如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度.【答案】2【解析】解:延长DM交AB于E,∵AB∥CD,∴∠C=∠A,在△AME和△CMD中,,∴△AME≌△CMD(ASA)∴AE=CD=3,DM=ME,∴BE=AB﹣AE=4,∵DM=ME,DN=NB,∴MN是△DEB的中位线,∴MN=BE=2,故答案为:2.10.(2020春•常熟市期中)如图,在△ABC中,BC=14,D、E分别是AB、AC的中点,F是DE延长线上一点,连接AF、CF,若DF=12,∠AFC=90°,则AC=.【答案】10【解析】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=7,∴EF=DF﹣DE=5,在Rt△AFC中,AE=EC,∴AC=2EF=10,故答案为:10.11.(2020•凤山县一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点.若BC=2,则EF的长度为.【答案】1【解析】解:∵∠ACB=90°,∠A=30°,∴AB=2BC=4,∵∠ACB=90°,D为AB的中点,∴CD=AB=2,∵E,F分别为AC,AD的中点,∴EF为△ACD的中位线,∴EF=CD=1,故答案为:1.三、解答题12.(2020•房山区二模)如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB交BC于点E,F是BD中点.求证:EF平分∠BED.【答案】证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥AB,∴∠ABD=∠BDE,∴∠BDE=∠CBD,∴EB=ED,∵EB=ED,F是BD中点,∴EF平分∠BED.【解析】根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ABD=∠BDE,证明EB=ED,根据等腰三角形的三线合一证明结论.13.如图,四边形ABCD中,AB=AD,对角线BD平分∠ABC,E,F分别是BD,CD的中点.求证:AD∥EF.【答案】证明:∵E,F分别是BD,CD的中点,∴EF∥BC,∵AB=AD,∴∠ADB=∠ABD,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠DBC,∴AD∥BC,∴AD∥EF.【解析】根据三角形中位线定理得到EF∥BC,根据等腰三角形的性质、平行线的判定定理得到AD∥BC,根据平行公理的推论证明结论.14.如图,在△ABC中,D为BC的中点,E为AC的中点,AB=6,求DE的长.【答案】解:∵D为BC的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=AB=3.【解析】根据三角形中位线定理解答.15.如图,在△Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD,求证:CD=EF.【答案】证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∵∠ACB=90°,∴平行四边形DECF是矩形,∴CD=EF.【解析】根据三角形中位线定理得到DE∥BC,DF∥AC,证明四边形DECF是矩形,根据矩形的性质证明.16.如图,点D,E,F分别为△ABC三边的中点,若△DEF的周长为10,求△ABC的周长【答案】解:∵点D,E,F分别为△ABC三边的中点,∴AB=2EF,AC=2DE,BC=2DF,∵△DEF的周长为10,即EF+DE+DF=10,∴△ABC的周长=AB+AC+BC=2(EF+DE+DF)=20.【解析】根据三角形中位线定理得到AB=2EF,AC=2DE,BC=2DF,根据三角形周长公式计算,得到答案.。

八年级数学中位线定理

八年级数学中位线定理
的三角形的顶角相等.
小结
三角形的中位线有哪些作用? 位置关系:可以证明两条直线平行. 数量关系:可以证明线段的倍分关系.
; https:/// 炒股配资什么意思 ;
之后他再找那丫头说说情,或许能打动她也不一定,如今是不可能了.面对众人の喝骂,卓文鼎态度冷淡.身后の小杨紧紧跟着他,手里拿着摄像机一直跟拍.“这位小哥好大の口气,周家庄好大の威风,”卓文鼎语气微嘲,目光冷然观望全场,“仗着人多欺负人少,仗着嗓门大拳头硬就能逼人妥 协吵赢法律?你们眼里还有没有国法了?”一个粗糙汉子一甩手,“少跟我们扯些有の没の,我们读书少不识字,只认得一个理!你把人叫出来大家当面说清楚!”“好,那我就跟你们说理.”卓文鼎态度凛然,“我想问一问周先生,前天是否不请自来?”周定康不应.卓文鼎不理他,继续 问:“我当事人交了两年房租,如今才住一年你是否就带人前来看房子?她拒绝你们入门是否说过你们可以悔约,一切按照合同来办理?”“你不同意就罢了,第二天是否找人前来砸门谩骂诬蔑我当事人の名声?”“我当事人出来の时候,是否有人袭击过她?”“你是否出面解释道歉或者 表过态?”“我当事人一年前搬到这儿来大门不出二门不迈,今天我去村市逛了一圈,与她相关の传闻污秽不堪几乎没有一条正面评价,却没几个人能说出她の模样!是否从一开始就有人试图散播谣言逼走她?”“成群结队一窝蜂地过来堵她门口这叫讲理?把老弱病残叫过来寻死觅活是 在讲理?”卓文鼎眼里仿佛在冒火,手往院门里一指,“我当事人今年十九岁,她才十九岁!跟你们女儿差不多年纪!一群身强力壮の大叔大妈跑到人家门口叫骂没吓死她已经够大胆了,谁敢跟你们讲理?!”说到这里,他冷笑两下,放弃庄严肃穆の形象松开领口の扣子,解开袖扣撸起 来.“我看你们是想打出一个理吧?好,我卓某人站这儿不动给你们打,皱一下眉头算你们赢.打准点,”他指指自己の脑门,“朝这儿打,一锄头我就完了.顺便让全国人民看看,让那高副省长看看他极力推崇の最具发展潜力の乡镇到底养着一群什么样の刁民!”他站在原地一动不动,气愤填 膺,“动手啊,别怂啊你们.”律师の严谨没有了,此刻の他一身社会哥の气势.第167部分而小杨自始至终跟拍着,手不抖气不促,十分の淡定.卓文鼎の怒斥声震荡人心,连戴着耳机の小女人也听见了一点点.她忧心地取下耳塞,来到面对院门の阳台往外边看.事情闹到这一步,她不后悔.无论 是何玲,何小飞,还是余薇,她们给她添堵那是人品问题.而今天の闹剧是原则性问题,面对一股歪风邪气,人们就该勇于面对并且让世人看个清楚明白.弱,不等于有理,不等于有优势理直气壮地欺负别人.如果她自顾不暇那肯定得憋着,如果她仍醉心学术当然没精力管那么多.如今既空闲,手 中又有资源,就得让某些人明白她の便宜不是那么好占の.“喵.”低头一看,小吉正仰起小脑袋看着她,一双瞳眸圆圆の特别可爱.她弯下身抱起它,“不怕,卓大状很本事の.”是啊,记忆中人人都说他很能干.尽管如此,她还是下了楼来到凉亭里坐着,耐心倾听外边の动静.院门外,围观の群 众反而静默下来,那些叫嚣要打要叩要讲理の人瞪着他,愣是没人敢上前.一来因为他气势逼人,视死如归の人总比外强中干の人有底气.二来,大家顾忌他最后那段话.附近几个村子谁不想发财?尤其看到余、云两家风生水起天天鲍鱼燕窝の,哪个不眼馋羡慕?坊间早有传说省领导有意提携 本地乡镇,如果被他们搅黄了不但要面对政府の压力,乡亲父老の怒火绝对比他们今天做の更厉害,一时间不知如何是好.气氛の突然凝结,老妇不敢哭了,不安地左右张望期盼有人给她一点提示.周定康紧闭双目,垂落身侧の手握紧拳头,微抖,鼻尖处渗出汗珠来.就在气氛紧张化不开时,忽然 人群外传来一阵掌声,一把清悦女声传了进来,“好,说得好,难怪大家说卓大状是真正の人民公仆,果然是有着金刚铸の脖子.”而且总能捏住别人の七寸.众人纷纷回头,耶?不知何时路边停着两辆气势不凡の车子.大家身后也不知何时摆着多部摄像工具,长枪短炮の背后各站着一名表情严 肃の年轻人,他们正在认真录拍刚才发生の种种.嚯,好大の阵仗!吃瓜群众迅速闪开一边避过摄像机,看热闹可以,别把自己给拍进去丢人现眼.无论周家占不占理,一群大人欺负一名十九岁の女孩哪怕说破天也是没理.自从声名鹊起,陆羽极少在人前露面,人们只从流言中猜测她の性情却没 人知道她の情况.如果她真是十九岁...躲远点儿吧,这脸丢不起.卓文鼎闻声已知来者是谁,对他来说,这个才是真正の麻烦.调整一下呼吸,平复语气,哈哈两声,刚才の疾言厉色顿时化成和风细雨.“原来是常小姐,久仰大名.怎么,你也来凑热闹?”常在欣,热点追踪の名记,姣美饱满の脸庞 透着一丝不苟の严厉.时尚干练の无袖浅灰小套装让她添了一丝女人味,梳着蓬松发髻,姿态优雅,举止得体大方.“凑巧而已,”她不卑不亢过来与卓文鼎握了一下手,声音脆亮,“从省城高速经过顺路过来看看传说中极具发展潜力の乡镇,查了一下才发现这里藏着不少问题.”“比如,前年 一辆载着桔子の货车倾翻遭当地居民哄抢.去年一辆运送猪仔の货车也是这种情况,当地居民和前来阻止の警方对抗甚至大打出手伤了不少人还没追责.最后一桩更过分,就今年年初の事,一对年轻人开车经过乡镇由于路滑发生车灾,待急救人员到达时伤患全部财物被盗一直到现 在还没有线索,我正好向大家问问情况...”她话说到这儿,围观の除了云岭村村民,其他人一哄而散速度离开了村子.包括周家那些人见势不妙马上离开弃老妇于不顾,留下她瑟瑟发抖和周定康作伴.与忐忑不安の周家人相反,卓文鼎这回是真の松了口气,原来是自己人.周定康此刻是骑虎难 下,悔不该听人唆摆自讨苦吃.有人跟他说只要姓陆の走了马上有人出钱买下这栋宅子,按照市场价一分不少,太诱人了.之前那么多人给过姓陆の难堪,她都一声不吭地吞了,没想到这次态度强硬,而且后台还不少.怎么办?事情闹大了若是惊动那些大力支持本地发展の高层领导,很有可能连 累各村乡亲永无翻身之日.到时候别说他遭殃,一家老小恐怕永无宁日.正在六神无主,周定康忽然灵机一动向婶婆使了一下眼色.在老妇不解の眼神之下,他身子晃了晃,卟通地倒下了.老妇一声惊叫:“定康,你怎么了?!天哪...”哭喊声终于打破现场尴尬の静默.卓文鼎:“...”常在 欣:“...”其余围观群众:“...”看来套路不怕旧,只要有用.常在欣漠然地向旁边手指招招,记者队伍里走出一个人来,“方医生,麻烦你看看他怎么了,要不要叫救护车.”“好.”他很乐意打刁民の脸.卓文鼎惊讶地看着她,记者出访还带着医生?让人意外の是,从不显山露水の陆易忽 然也走出来,说:“我也看看.”抢先一步来到周定康身边捏住他の手腕把脉.诶?卓文鼎又吃了一惊,“你不是厨师吗?”“我手术刀耍得比菜刀好.”陆易开着玩笑说,“哪天让你们见识见识.”昨晚在他摊子吃过烤肉の师徒俩对视一眼,顿时各种滋味涌上喉咙,呕~.常在欣并不在意谁是 医生,她笑吟吟地来到那群地方小记者面前,“大家好,都是同行吧?正好,我有些问题想...”“对不起,我们新来の什么都不知道.”受雇而来の小报记者们忙后退,作为同行岂能不认识她?破坏乡镇声誉の话是宁死不说の.谁不想为了家乡好?常在欣秀眉蹙起,“那眼前这事你们总该清楚 因由吧?”“完全不清楚,我们一头雾水正等周先生给个解释.”众人义正言辞,异口同声.常在欣顿时一脸遗憾,看着小记们作堆躲一边去了.“他没什么事,只是中暑了,歇一歇就好.”陆易抢在方医生开口前说.对方不服欲驳,却看见陆易“息事宁人”の口型,只好看向卓文鼎与常在欣,征 求他俩の意见.“不妨碍卓律师工作,你们忙吧,”常在欣一挥手,“我找这位陆小姐谈谈.”说罢去敲门.而陆易马上和朱叔扶起周定康,白姨她们扶起老妇相继进入休闲居暂时歇息.那群小记者怕被常在欣の团队问出破绽,忙也屁颠屁颠跟了去.既然常在欣是友非敌,卓文鼎很放心地和小杨 也去了休闲居.对他来说,每一桩官非能够达成和解是最好の.第168部分“...爸,我知道,已经寄了.”田间,余岚戴着一顶草帽在菜地里接电筒,“是,大伯和表姐家都寄了,其他人暂时没有,因为店里の蔬菜供应不上顾不了其他亲戚,只能等下一批,下一批种得多一些.”每到收获季节,继父 梅冬生便会打电筒给她发来一张名单要新鲜の有机蔬菜.说实话,余岚不太想寄.在那些亲戚眼里,她母女仨一直是外人,哪怕母亲给梅家生了一个弟弟.继父以前对她们挺好の,听她们叫爸时还热泪盈眶,随着家境日益好转他の态度就变了.小弟告诉她们,大伯表姐他们整天说姐妹俩の坏话, 还要小弟别和她们太亲近.明明是一群喂不熟の白眼狼,母亲却说不能跟他们撕破脸皮仍要维持表象.挂了电筒,余岚继续问一名忙碌中の菜农,“丙叔,前几天说の那件事怎样了?大马村愿不愿意?”丙叔抬起一张黝黑の脸,笑呵呵道:“愿意,愿意.咱们赚了钱他们早就眼红了,哦,那些老 叔还想说服自己女儿女婿回家种,不知你肯不肯.”“肯,当然肯.”余岚乐了,“我求之不得啊!不过一定要按照我们の要求耕种,不然质量出问题我是不收の.”“那是那是.不过,小岚,大马村到底离咱们这儿太远,怕是不好管理.”老汉替她操心道,“还不如说服下棠村、南西村...”但一 想到这两个村子和余家母女斗得正激烈,顿时说不下去了.“说服他们不容易,先等等吧.”余岚笑了笑,“等以后赚钱了自然有人跟上,大马村の乡亲过得比较困难,先解决那边の问题再说.”大马村の村民姓马,那里没有优美环境或者地理优势,纯粹一个贫穷又出入不便の村子.年青人们几 乎都出去打工了,剩下一群留守老人、婆娘和孩子.别小看他们,那可全部是农耕好手.而且民风纯朴,三观正,对有文化の年轻人相当敬佩信从.说实在话,与梅林、下棠相比,她更愿意助大马村一把.可是老娘说当初没有梅林村民の帮忙,她手上の资产早被前婆家给抢走了,她们也没有今天. 做人要感恩,不能因一时の理念不合便轻言放弃.况且,如今放弃の话她们家亏损很大.由于梅爸の疏忽,让云家在企业里渗透很深,动辄伤骨削肉损失惨重.余岚在菜田里察看蔬菜瓜果の长势,途中又接了一个电筒.“...很多记者进了云岭村?谁叫来の?”她皱紧眉头,“怎么回事?我不是 叮嘱周叔去劝劝定康叔别太过分吗?”妹子回学校了,何玲也消停了,好不容易大家过着平静の日子,谁知那云岭村の前任居民不知抽什么风跑回来乱搞一通.好

三角形中位线定理及推论

三角形中位线定理及推论

三角形中位线定理及推论一、三角形中位线定理三角形中位线定理是指在任意三角形中,连接一个顶点与对边中点的线段称为中位线,三条中位线交于一点,且该点与三个顶点的距离相等。

具体表述为:三角形三条中位线的交点与三个顶点的距离相等。

以三角形ABC为例,连接顶点A与边BC的中点D,顶点B与边AC 的中点E,顶点C与边AB的中点F,根据中位线定理可知,中位线AD、BE和CF三条线段交于一点G,并且AG=BG=CG。

中位线定理的证明可以通过向量法或平面几何法进行,这里我们选择平面几何法证明。

证明思路如下:1. 连接顶点A与边BC的中点D,假设点G是中位线AD与中位线BE 的交点;2. 连接顶点B与边AC的中点E;3. 通过顶点C以平行于边AB的直线与中位线AD交于点H;4. 由平行线的性质可知,AH=CH;5. 进一步,由三角形的对应边成比例可得:AH/AD=CH/CF;6. 由于AH=CH,所以AD=CF;7. 同样地,由中位线定理可得:BE=CF;8. 综上所述,AD=BE=CF,即证明了中位线定理。

二、三角形中位线推论基于中位线定理,我们可以得出一些有关三角形的推论。

1. 三角形中位线长度关系推论根据中位线定理,三角形三条中位线的交点与三个顶点的距离相等,即AG=BG=CG。

由此可得,中位线上的点距离顶点的距离是相等的。

进一步推论,三角形中位线的长度满足以下关系:AG=2GD,BG=2GE,CG=2GF。

2. 三角形中位线与三角形面积推论由三角形中位线定理可知,三条中位线交于一点G。

以G为顶点,三边中点分别为D、E、F,连接DG、EG和FG。

我们可以发现,连接G与三角形顶点的线段将三角形分成了六个小三角形,而这些小三角形的面积相等。

因此,我们可以推论得到:三角形中位线所分割的三个小三角形的面积相等。

3. 三角形中位线与三角形高度推论在三角形中,如果我们将中位线作为底边,那么与之对应的高度就是顶点到底边中点的距离。

中考数学复习指导:中位线定理在几何证明中的应用

中考数学复习指导:中位线定理在几何证明中的应用

中位线定理在几何证明中的应用中位线定理在几何证明中的应用三角形 (梯形) 中位线定理在初中平面几何中是一个很重要的定理,运用定理结论中的位置关系和数量关系,往往能证明许多有关问题.现举例谈谈它在几何证明中的应用. 一、证明线段相等或倍分关系例1 求证:直角梯形的两个直角顶点到对腰中点的距离相等.已知:如图1,梯形.ABCD 中,AB ∥DC ,B C ⊥AB ,E 为AD 中点.求证:EC=EB .分析 要证EC=EB ,由E 为AD 中点想到梯形的中位线,可取BC 的中点G ,连结EG ,则EG 为梯形中位线,根据中位线定理可得EG ∥AB ∥CD ,再根据BC ⊥AB ,可得E G ⊥BC ,进而证明△BEG ≌△CEG ,可得对应边EC=EB .例2 已知:如图2,在△ABC 中,∠B =2∠C ,A D ⊥BC ,M 是BC 的中点.求证求证:DM =12AB .分析 要证DM =12AB ,可设法证明DM 与等于12AB 的线段相等,为此取AC 的中点N ,连MN ,则MN 为△ABC 的中位线,根据中位线定理得MN ∥AB ,MN =12AB .要证DM=MN ,可连结DN ,由已知条件可知DN 是Rt △ADC 斜边AC 上的中线, ∴ DN=NC ,∠NDM =∠C .又 M N ∥AB ,得∠NMC =∠B =2∠C , ∴ ∠MND =∠NMC -∠NDM =2∠C -∠C =∠C . ∴ ∠MND =∠C =∠NDM ,得DM=MN=12AB . 二、证明线段和或差关系例3 已知:如图3,正方形ABCD 中,E 为CD 上的一点,F 为BC 的中点,且F A 平分∠BAE .求证:AE=AB+EC .证明 取AE 的中点G ,连FG ,则FG 为梯形ABCE 的中位线.∴ GF =12(AB+EC ),GF ∥AB .∴ ∠F AB =∠GF A .又∠F AB =∠GAF , ∴ ∠GF A =∠GAF , 又∵ G 为AE 中点,∴ AE =2AG =2 GF =AB+EC .例4 已知:如图4,△ABC 中,AE=BF ,AC ∥EG ∥FH .求证:EG=AC -FH .证明 取AB ,BC 的中点M ,N ,连MN ,则MN 为△ABC 的中位线.∴ MN =12AC .又AE=BF ,∴ EM=FM .∵ AE=BF ,AC ∥EG ∥FH . ∴ GC=BH又CN=BN ,∴ GN=HN .∴ MN 为梯形EFHG 的中位线.∴ MN =12(EG+FH ).∴12 (EG+FH )=12AC .∴ EG =AC -FH 。

三角形中位线定理专练

三角形中位线定理专练

三角形中位线定理专练1.如图,在△ ABC中,D是AB上一点,且AD=AC,AE⊥ CD,垂足是E,F 是CB的中点.求证:BD=2EF.2.如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△ EFG是等腰三角形.3.在△ ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由.4.如图,BE,CF是△ ABC的角平分线,AN⊥ BE于N,AM⊥ CF于M,求证:MN∥ BC.5.如图,BM、CN分别平分△ABC的外角∠ ABD、∠ ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)6.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠ DHF=∠ DEF.7.如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD 的中点,且AC=BD.求证:OM=ON.8.如图,M是△ ABC的边BC的中点,AN平分∠ BAC,BN⊥ AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ ABC的周长.三角形中位线定理专练参考答案与试题解析一.解答题(共8小题)1.(2014?山东模拟)如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.【考点】三角形中位线定理.菁优网版权所有【专题】常规题型.【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD 的中点,再求证EF为△BCD的中位线.【解答】证明:在△ACD中,因为AD=AC 且AE⊥CD,所以根据等腰三角形中底边的垂线与底边的交点即中点,可以证明:E为CD的中点,又因为F是CB的中点,所以,EF∥BD,且EF为△BCD的中位线,因此EF=BD,即BD=2EF.【点评】此题主要是中位线定理在三角形中的应用,考查在三角形中位线为对应边长的的定理.2.(2015春?天津校级期中)如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△EFG是等腰三角形.【考点】三角形中位线定理;等腰三角形的判定.菁优网版权所有【专题】证明题.【分析】由于E,F,G分别是AB,CD,AC的中点,利用中位线定理,GF=AD,GE=BC,又因为AD=BC,所以GF=GE.【解答】证明:∵E,F,G分别是AB,CD,AC的中点.∴GF=AD,GE=BC.又∵AD=BC,∴GF=GE,即△EFG是等腰三角形.【点评】本题通过给出的中点,利用中位线定理,证得边相等,从而证明等腰三角形,是一道基础题.3.(2015秋?青岛校级月考)在△ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由.【考点】三角形中位线定理;平行四边形的判定.菁优网版权所有【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,MN∥BC且MN=BC,从而得到EF∥MN且EF=MN,再根据一组对边平行且相等的四边形是平行四边形判断.【解答】解:四边形MNEF是平行四边形.理由如下:∵BE、CF是中线,∴E、F分别是AC、AB的中点,∴EF是△ABC的中位线,∴EF∥BC且EF=BC,∵M、N分别是BO、CO中点,∴MN是△OBC的中位线,∴MN∥BC且MN=BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,熟记定理并准确识图是解题的关键.4.(2015春?泗洪县校级期中)如图,BE,CF是△ABC的角平分线,AN⊥BE 于N,AM⊥CF于M,求证:MN∥BC.【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】延长AN、AM分别交BC于点D、G,根据BE为∠ABC的角平分线,BE⊥AG可知∠BAN=∠BGN故△ABG为等腰三角形,所以BN也为等腰三角形的中线,即AM=GN.同理AM=DM,根据三角形中位线定理即可得出结论.【解答】证明:延长AN、AM分别交BC于点D、G.∵BE为∠ABC的角平分线,BE⊥AG,∴∠BAG=∠BGA,∴△ABG为等腰三角形,∴BN也为等腰三角形的中线,即AN=GN.同理AM=DM,∴MN为△ADG的中位线,∴MN∥BC.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.5.(2015春?富顺县校级月考)如图,BM、CN分别平分△ABC的外角∠ABD、∠ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】首先通过△ABM≌△DBM,得到AB=DB,AM=DM,同理:AN=EN,AC=CE,再根据三角形的中位线定理即可得到结果.【解答】证明:∵AM⊥BM,∴∠AMB=∠DMB=90°,∵BM平分∠ABD,∴∠ABM=∠DBM,在△ABM与△DBM中,,∴△ABM≌△DBM(asa),∴AB=DB,AM=DM,同理:AN=EN,AC=CE,∴MN=DE=(DB+BC+CE)=(AB+BC+AC).【点评】本题考查了三角形的中位线定理,全等三角形的判定与性质,证明三角形全等是解题的关键.6.(2014?宿迁)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.菁优网版权所有【专题】证明题;几何综合题.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BA C,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.7.(2014?丹阳市校级模拟)如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD的中点,且AC=BD.求证:OM=ON.【考点】三角形中位线定理;平行线的性质;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】取AD的中点G,连接EG,FG,构造三角形的中位线,根据三角形的中位线定理进行证明即可.【解答】证明:取AD的中点G,连接EG,FG,∵G、F分别为AD、CD的中点,∴GF是△ACD的中位线,∴GF=AC,同理可得,GE=BD,∵AC=BD,∴GF=GE=AC=BD.∴∠GFN=∠GEM,又∵EG∥OM,FG∥ON,∴∠OMN=∠GEM=∠GFN=∠ONM,∴OM=ON.【点评】本题考查了三角形的中位线性质定理,解题的关键是构造三角形的中位线.运用三角形的中位线的数量关系和位置关系进行分析证明.8.(2013?永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN 于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【分析】(1)证明△ABN≌△ADN,即可得出结论;(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.【解答】(1)证明:在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.【点评】本题考查了三角形的中位线定理及等腰三角形的判定,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.。

10、三角形的中位线定理

三角形的中位线定理【知识要点】问题1、什么是三角形的中线?什么是三角形的中位线?三角形有几条中位线?问题2、A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办?例(1):如图已知,在△ABC中,点D,E分别是△ABC的边AB、AC中点,求证:DE∥BC,且DE=1/2BC.三角形的中位线定理:.应用:已知:如图所示,在四边形ABCD中,E、F、H、M分别是AB、BC、CD、DA的中点.求证:(1)AC和HG的关系;(2)AC和EF的关系;(3)四边形EFHM是平行四边形.【例题讲解】考点1、中位线定理的概念例题1、如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长是多少?训练1、如图, E、F分别是ABCD 的两边AB、CD的中点, AF交DE于P, BF交CE于Q,则PQ与AB 的关系是 .考点2、中位线定理解决周长相关的问题例题2、如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()A.5 B.10 C.20 D.40训练1、如果一个三角形的周长为10,那么连接各边中点所成的三角形的周长为()A.4B.5C.6D.12例题2-1、如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②∥PAB的周长;③∥PMN的面积;④直线MN,AB之间的距离;⑤∥APB 的大小.其中会随点P的移动而变化的是()训练1、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11训练2、如图,E、F、G、H分别是四边形ABCD各边的中点,对角线AC、BD的长分别为7和9,则四边形EFGH的周长是______.训练3、如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是________.已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第50个三角形的周长为()A.()50B.()51C.()49D.()48考点3、中点四边形问题例题3、证明:顺次连接四边形各边重点所得到的四边形一定是();思考:什么情况下得到的平行四边形可以成为矩形?原来四边形的两条对角线连接四边中点所得到的四边形矩形菱形正方形平行四边形练习1.△ABC中,AB=3,BC=5,CA=7,顺次连结三边中点得△DEF的周长为_________.2.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形3.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形4.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【及时训练】1、如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()3.在△ABC中,D、E分别是BC、AC中点,BF平分△ABC.交DE于点F.AB=8,BC=6,则EF的长为()A.1B.2C.3D.44.平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm5.如图所示,在△ABC中,△A=60°,BD、CE分别是AC、AB上的高,H是BD、CE的交点,求△BHC的度数.6.如图,△ABC中,AB>AC,AD平分△BAC,CD△AD,点E是BC的中点,若AB=12,AC=10,求DE的长.7.如图,在△ABCD中,AB=3,AD=4,E是CD的中点,则EO等于()A.3B.4C.1.5D.28.如图,在△ABC中,AD=DE=EF=FB,DG△EH△FI△BC,已知BC=a,则DG+EH+FI的长是()A.B.C.2a D.9.(1)回顾定理:如图1,在△ABC中,DE是△ABC的中位线.那么DE与BC的关系有.(2)运用定理:如图2,在四边形ABCD中,△ABC=50°,△BCD=40°,点F为AC的中点,点E为BD的中点.若AB=4,CD=6,求EF的长.【课堂总结】1.2.3.4.【课上练习】1.如图,在∥ABC中,点D,E分别是AB,AC的中点,∥A=50°,∥ADE=60°,则∥C的度数为()A.50°B.60°C.70°D.80°3.如图,∥ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=4,AO=3,则四边形DEFG的周长为()A.6B.7C.8D.125.如图,∥ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2B.3C.4D.56.如图,等边∥ABC中,点D、E分别为边AB、AC的中点,则∥DEC的度数为()A.30°B.60°C.120°D.150°7.如图∥ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8B.9C.10D.118.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()AB=24m B.MN△AB C.△CMN△△CAB D.CM:MA=1:25.如图,D是△ABC内一点,E、F、G、H分别是AB、AC、CD、BD的中点,求证:四边形EFGH是平行四边形.【课后练习】【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.。

专题 三角形中位线定理的运用(原卷版)

八年级下册数学《第十八章 平行四边形》专题 三角形中位线定理的运用【例题1】(2022秋•长沙期中)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F ,G 分别是AD ,AE 的中点,且FG =2cm ,则BC 的长度是( )A .4cmB .6cmC .8cmD .10cm【变式1-1】(2022秋•海淀区期中)如图,BD 是△ABC 的中线,E ,F 分别是BD ,BC 的中点,连接EF .若AD =4,则EF 的长为( )A .32B .2C .52D .4【变式1-2】(2022秋•莲池区校级期末)如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD =E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C D 【变式1-3】(2022春•巨野县校级月考)如图,在△ABC 中,D 是AB 上一点,AE 平分∠CAD ,AE ⊥CD 于点E ,点F 是BC 的中点,若AB =10,AC =6,则EF 的长为( )A .4B .3C .2D .1【变式1-4】(2022秋•南关区校级期末)如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点,点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .2.3C .4D .7【变式1-5】如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为 .【变式1-6】(2022春•海淀区校级期中)如图,在Rt△ABC中,∠BAC=90°,点D和点E分别是AB,AC的中点,点F和点G分别在BA和CA的延长线上,若BC=10,GF=6,EF=4,则GD的长为 .【变式1-7】(2022春•本溪期末)如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,顺次连接EM,MF,FN,NE,若AB=CD=2,则四边形ENFM 的周长是 .过点C 作CF ∥BE ,交DE 的延长线于点F ,若EF =3,求DE 的长.【变式1-9】如图,在△ABC 中,AB =12cm ,AC =8cm ,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.【例题2】(2022秋•安岳县期末)如图,在△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,若∠CFE =55°,则∠ADE 的度数为( )A .65°B .60°C .55°D .50°60°,∠B=75°,则∠ANM= .【变式2-2】(2022•永安市模拟)如图,DE是△ABC的中位线,∠ABC的平分线交DE于点F,若∠DFB =32°,∠A=75°,则∠AED= .【变式2-3】(2022春•顺德区校级期中)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,求∠ADC的度数.【变式2-4】(2022•九江二模)如图,在四边形ABCD中,点E,F,G分别是AD,BC,AC的中点,AB =CD,∠EGF=144°,则∠GEF的度数为 .【变式2-5】(2022秋•新泰市期末)如图,四边形ABCD 中,AD =BC ,E ,F ,G 分别是AB ,DC ,AC 的中点.若∠ACB =64°,∠DAC =22°,则∠EFG 的度数为 .【变式2-6】(2022春•鼓楼区期中)如图所示,在△ABC 中,∠A =40°,D ,E 分别在AB ,AC 上,BD =CE ,BE ,CD 的中点分别是M ,N ,直线MN 分别交AB ,AC 于P ,Q .求∠APQ 的度数.【例题3】(2021秋•杜尔伯特县期末)如图,已知△ABC 中,D 是AB 上一点,AD =AC ,AE ⊥CD ,垂足是E ,F 是BC 的中点.求证:BD =2EF.【变式3-1】(2021春•秦都区期末)如图,在△ABC中,AB=AC,点D、E分别是边AB、AC上的点,连接BE、DE,∠ADE=∠AED,点F、G、H分别为BE、DE、BC的中点.求证:FG=FH.【变式3-2】(2021秋•互助县期中)如图,已知AB=AC,BD=CD,DB⊥AB,DC⊥AC,且E、F、G、H分别为AB、AC、CD、BD的中点,求证:EH=FG.【变式3-3】已知:如图,E为▱ABCD中DC边的延长线上的一点,且CE=DC,连接AE分别交BC、BD于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.【变式3-4】(2021春•崇川区校级月考)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:(1)DE∥FG;(2)DG和EF互相平分.【变式3-5】(2022春•富平县期末)如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H,取BC边的中点M,连接EM、FM.求证:(1)△MEF是等腰三角形;(2)OG=OH.【变式3-6】(2022春•瑶海区期末)已知:如图,在△ABC中,点D、E分别是AB、AC的中点(1)若DE=2,则BC= ;若∠ACB=70°,则∠AED= °;(2)连接CD和BE交于点O,求证:CO=2DO.【变式3-7】(2022春•虎丘区校级期中)如图,线段AM是∠CAB的角平分线,取BC中点N,连接AN,过点C作AM的垂线段CE垂足为E.(1)求证:EN∥AB.(2)若AC=13,AB=37,求EN的长度.【例题4】(2021春•莆田期末)如图,在四边形ABCD 中,AD =BC ,E 、F 分别是边DC 、AB 的中点,FE 的延长线分别AD 、BC 的延长线交于点H 、G ,求证:∠AHF =∠BGF .【变式4-1】(2022春•西峰区校级月考)如图,四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,N 、M 分别是AB 、CD 的中点,求证:∠PMN =∠PNM .【变式4-2】(2021春•歙县期中)如图,CD 是△ABC 的角平分线,AE ⊥CD 于E ,F 是AC 的中点,(1)求证:EF ∥BC ;(2)猜想:∠B 、∠DAE 、∠EAC三个角之间的关系,并加以证明.【变式4-3】如图,△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交AC于Q,求证:∠QPA=∠PQA.【变式4-4】一个对角线相等的四边形ABCD,E、F分别为AB,CD的中点,EF分别交对角线BD,AC 于M,N,求证:∠OMN=∠ONM.【变式4-5】(2022春•船营区校级月考)如图是华师版九年级上册数学教材第80页的第3题.如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM(1)在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F,如图②,请先完成图①的证明,再继续证明∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为 .【例题5】(2022秋•任城区期末)如图,在△ABC 中,AE 平分∠BAC ,BE ⊥AE 于点E ,点F 是BC 的中点,若AB =10,AC =6,则EF 的长为( )A .2B .3C .4D .5【变式5-1】(2022春•綦江区校级月考)如图,在四边形ABCD 中,AC ⊥BD ,BD =16,AC =30,E ,F 分别为AB ,CD 的中点,则EF =( )A .15B ..16C .17D .8【变式5-2】(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12 CF.【变式5-3】如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P 为AE的中点,连接PG,则PG的长为 .【变式5-4】(2021•罗湖区校级模拟)如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN = .【变式5-5】(2022春•香坊区校级期中)如图所示,在四边形ABCD中,点E、F分别是AD、BC的中点,连接EF,AB=20,CD=12,∠B+∠C=120°,则EF的长为 .【变式5-6】(2022秋•张店区校级期末)已知:如图,在△ABC中,点D在AB上,BD=AC,E、F、G 分别是BC、AD、CD的中点,EF、CA的延长线相交于点H.求证:(1)∠CGE=∠ACD+∠CAD;(2)AH=AF.【变式5-7】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=12(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.【变式5-8】(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.【变式5-9】如图,在四边形ABCD中,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不必证明)(温馨提示:在图(1)中,连接BD,取BD的中点H,连接HE.HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线的性质,可证明∠BME=∠CNE)(1)如图(2),在四边形ADBC中,AB与CD相交于点O,AB=CD,E.F分别是BC.AD的中点,连接EF,分别交CD.BA于点M.N,判断△OMN的形状,请直接写出结论.(2)如图(3)中,在△ABC中,AC>AB,D点在AC上,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD形状并证明.。

专题12 三角形中位线定理-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)

专题12三角形中位线定理★知识归纳●三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.要点梳理:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.★实操夯实一.选择题(共18小题)1.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.4【解答】解:∵点D,E分别是边AB,CB的中点,∴DE=AC=2,故选:B.2.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.3.如图,在△ABC中,E,F分别为AC,BC中点,若AB=6,BC=7,AC=8,则EF=()A.3B.3.5C.4D.4.5【解答】解:∵E,F分别为AC,BC中点,∴EF是△ABC的中位线,∴EF=AB=×6=3,故选:A.4.如图,平地上A、B两点被池塘隔开,测量员在岸边选一点C,并分别找到AC和BC的中点M、N,测量得MN =8米,则A、B两点间的距离为()A.4米B.24米C.16米D.48米【解答】解:∵点M、N分别为AC和BC的中点,∴MN是△ABC的中位线,∴AB=2MN=16(米),故选:C.5.如图,EF是△ABC的中位线,BD平分∠ABC交EP于D,BE=3,DF=1,则BC的长为()A.2B.4C.6D.8【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF是△ABC的中位线,∴EF∥BC,BC=2EF,∴∠EDB=∠CBD,∴∠ABD=∠EDB,∴ED=EB=3,∴EF=ED+DF=4,∴BC=2EF=8,故选:D.6.一个三角形的三条中位线的长为6、7、8,则此三角形的周长为()A.10.5B.21C.42D.63【解答】解:∵三角形的三条中位线的长为6、7、8,∴三角形的三边长分别为12、14、16,∴此三角形的周长=12+14+16=42,故选:C.7.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大【解答】解:连接AQ,∵点Q是边BC上的定点,∴AQ的大小不变,∵E,F分别是AP,PQ的中点,∴EF=AQ,∴线段EF的长度保持不变,故选:A.8.如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.3B.4C.5D.6【解答】解:∵D,E分别是BC,AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF平分∠ABC,∴∠DBF=∠ABF,∴∠BFD=∠DBF,∴DF=DB=BC=3,故选:A.9.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A.2B.3C.4D.5【解答】解:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,∴DE=BC=7,∵∠AFB=90°,AB=8,∴DF=AB=4,∴EF=DE﹣DF=7﹣4=3,故选:B.10.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∴∠AED=∠C,∵∠C=68°,∴∠AED=∠C=68°.故选:B.11.如图,△ABC中,D、E分别是AB、AC边的中点,延长DE至F,使EF=DF,若BC=8,则DF的长为()A.6B.8C.4D.【解答】解:∵D、E分别是AB、AC边的中点,∴DE=BC=4,∵EF=DF,∴EF=2,∴DF=6,故选:A.12.如图,在直角三角形ABC中,∠C=90°,点E、F分别为AC和AB的中点,AF=5,AE=4,则BC=()A.3B.6C.8D.10【解答】解:∵点E、F分别为AC和AB的中点,∴EF∥BC,BC=2EF,∴∠AEF=∠C=90°,∴EF===3,∴BC=6,故选:B.13.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3B.4C.5D.6【解答】解:∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=DE=4.故选:B.14.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2C.D.3【解答】解:延长BC到E使BE=AD,则四边形ABED是平行四边形,∵BC=3,AD=6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,故选:C.15.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A.50°B.25°C.15°D.20°【解答】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN==25°.故选:B.16.如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE =2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是()A.①②④B.①③④C.①②③D.①②③④【解答】解:①∵CB是三角形ACE的中线,∴AE=2AB,又AB=AC,∴AE=2AC.故此选项正确;②取CE的中点F,连接BF.∵AB=BE,CF=EF,∴BF∥AC,BF=AC.∴∠CBF=∠ACB.∵AC=AB,∴∠ACB=∠ABC.∴∠CBF=∠DBC.又∵CD是三角形ABC的中线,∴AC=AB=2BD.∴BD=BF.又∵BC=BC,∴△BCD≌△BCF,∴CF=CD.∴CE=2CD.故此选项正确.③若要∠ACD=∠BCE,则需∠ACB=∠DCE,又∠ACB=∠ABC=∠BCE+∠E=∠DCE,则需∠E=∠BCD.根据②中的全等,得∠BCD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故此选项错误;④根据②中的全等,知此选项正确.故选:A.17.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④AD2+AE2=4AG2.其中正确结论的个数是()A.1B.2C.3D.4【解答】解:连接EC,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠F AC,∴∠F AC=2∠F AE,∵∠F AC=∠B+∠ACB,∴∠F AE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=BC,AG=AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.18.如图,△ABC中,AB>AC,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则①EF∥AB;②∠BCG=(∠ACB﹣∠ABC);③EF=(AB﹣AC);④(AB﹣AC)<AE<(AB+AC).其中正确的是()A.①②③④B.①②C.②③④D.①③④【解答】解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC=90°,在△AFG和△AFC中∴△AFG≌△AFC(ASA),∴GF=CF,∵AE为△ABC的中线,∴BE=CE,∴EF∥AB,故①正确;∵△AFG≌△AFC,∴∠AGC=∠ACG,∠AGF=∠ACF,∵∠AGC=∠B+∠BCG,∴∠ACG=∠B+∠BCG,∴∠BCG=∠ACB﹣∠ACG=∠ACB﹣(∠B+∠BCG),∴2∠BCG=∠ACB﹣∠B,∴∠BCG=(∠ACB﹣∠B),故②正确;∵△AFG≌△AFC,∴AC=AG,∴BG=AB﹣AG=AB﹣AC,∵F、E分别是CG、BC的中点,∴EF=BG,∴EF=(AB﹣AC),故③正确;∵∠AFG=90°,∴∠EAF<90°,∵∠AFE=∠AFG+∠EFG>90°,∴∠AFE>∠EAF,∴AE>EF,∵EF=(AB﹣AC),∴(AB﹣AC)<AE,延长AE到M,使AE=EM,连接BM,∵在△ACE和△MBE中∴△ACE≌△MBE(SAS),∴AC=MB,在△ABM中,AM<AB+MB=AB+AC,∵AE=EM,∴2AE<AB+AC,∴AE<(AB+AC),即(AB﹣AC)<AE<(AB+AC),故④正确;故选:A.二.填空题(共6小题)19.如图,在△ABC中,点D,E,F分别是边AB,BC,CA上的中点,且AB=10cm,AC=16cm,则四边形ADEF 的周长等于26cm.【解答】解:∵点D,E,F分别是边AB,BC,CA上的中点,∴DE,EF都是△ABC的中位线,∴DE=AC=8cm,DE∥AC,EF=AB=5cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=2×13=26(cm).故答案为:26.20.如图,△ABC的面积为4,分别取AC,BC两边的中点A1,B1,记△A1B1C的面积为S1;再分别取A1C,B1C 的中点A2,B2,记△A2B2C的面积为S2,再分别取A2C,B2C的中点A3,B3,记△A3B3C的面积为S3;则S3的值等于.【解答】解:∵点A1,B1是AC,BC两边的中点,∴A1B1是△ABC的中位线,∴A1B1=AB,A1B1∥AB,∴△CA1B1∽△CAB,∴=()2=,∵△ABC的面积为4,∴S1=1,同理可得,S3=,故答案为:.21.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是35°.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=35°,∴∠PEF=∠PFE=35°,故答案为:35°.22.如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=13.【解答】解:连接BD,取BD的中点F,连接MF、NF,如图所示:∵M、N、F分别是AB、DE、BD的中点,∴NF、MF分别是△BDE、△ABD的中位线,∴NF∥BE,MF∥AD,NF=BE=5,MF=AD=12,∵∠ACB=90°,∴AD⊥BC,∵MF∥AD,∴MF⊥BC,∵NF∥BE,∴NF⊥MF,在Rt△MNF中,由勾股定理得:MN===13;故答案为:13.23.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是33.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故答案为:33.24.如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,DE =2.5cm,AB=4cm,则BC的长为9cm.【解答】解:∵BF平分∠ABC,AG⊥BF,∴△ABG是等腰三角形,∴AB=GB=4cm,∵BF平分∠ABC,∴AD=DG,∵E为AC的中点,∴DE是△AGB的中位线,∴DE=CG,∴CG=2DE=5cm,∴BC=BG+CG=4+5=9cm,故答案为:9三.解答题(共6小题)25.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC.(1)利用直尺与圆规先作∠ACB的平分线,交AD于F点,再作线段AB的垂直平分线,交AB于点E,最后连接EF.(2)若线段BD的长为6,求线段EF的长.【解答】解:(1)所作图形如下:(2)∵CF平分∠ACB∴∠ACF=∠BCF又∵DC=AC∴CF是△ACD的中线∴点F是AD的中点∵点E是AB的垂直平分线与AB的交点∴点E是AB的中点∴EF是△ABD中位线∴EF=BD=326.在△ABC中,E是AC边上一点,线段BE垂直∠BAC的平分线于D点,点M为BC边的中点,连接DM.(1)求证:DM=CE;(2)若AD=6,BD=8,DM=2,求AC的长.【解答】(1)证明:在△ADB和△ADE中,,∴△ADB≌△ADE(ASA)∴AE=AB,BD=DE,∵BD=DE,BM=MC,∴DM=CE;(2)解:在Rt△ADB中,AB==10,∴AE=10,由(1)得,CE=2DM=4,∴AC=CE+AE=14.27.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.【解答】解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.28.如图,四边形ABCD中,已知AB=CD,点E、F分别为AD、BC的中点,延长BA、CD,分别交射线FE于P、Q两点.求证:∠BPF=∠CQF.【解答】证明:如图,连接BD,作BD的中点M,连接EM、FM.∵点E是AD的中点,∴在△ABD中,EM∥AB,EM=AB,∴∠MEF=∠P同理可证:FM∥CD,FM=CD.∴∠MFQ=∠CQF,又∵AB=CD,∴EM=FM,∴∠MEF=∠MFE,∴∠P=∠CQF..29.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.【解答】证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.30.如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=CF.【解答】证明:如图,过D作DG∥AC,则∠EAF=∠EDG,∵AD是△ABC的中线,∴D为BC中点,∴G为BF中点,∴DG=CF,∵E为AD中点,∴AE=DE,在△AEF和△DEG中,,∴△AEF≌△DEG(ASA),∴DG=AF,∴AF=CF.。

8.4中位线定理


随堂练习

已知:如图,A,B两地被池塘隔 开,在没有任何测量工具的情 况下,有通过学习方法估测出 了A,B两地之间的距离:先在 AB外选一点C,然后步测出 AC,BC的中点M,N,并测出MN 的长,由此他就知道了A,B间的 距离.你能说出其中的道理吗?
A
M
C B
N
三角形中位线性质
1 ∴DE∥BC, DE BC . 2 这个定理提供了证明线段平行,和线 段成倍分关系的根据.
证明后的结论,以后可以直接运用.
想一想
你能将任意一个三角形分成四个全等的三角形吗?
连接每两边的中点,看看得到了什么样的图形?
A
四个全等的三角形. 请你设法验证.
D E
连接三角形两边中点的线段 B 叫做三角形的中位线. 猜一猜,三角形中位线有什么性质?
F
C
引入新知 定理:三角形的中位线平行于第三边,且等于第三边的一半. 已知:如图,DE是△ABC的中位线. 1 求证:DE∥BC, DE 2 BC . 分析:要证明线段的倍分关系,可将DE加倍后证明与BC相等. A 从而转化为证明平行四边形的对边的关系 于是可作辅助线,利用全等三角形来 证明相应的边相等. D E 证明:如图,延长DE至F, 使EF=DE,连接CF. B C ∵ AE=CE,∠AED=∠CEF, ∴△ADE≌△CFE(SAS). (一组对边平等且相等的四 边形是平行四边形.) NhomakorabeaC
D
C D C
Q
N
证明后的结论,以后可以直接运用.
平行四边形判定
定理:两组对边分别相等的四边形是平行四边形. A D ∵AB=CD,AD=BC, ∴四边形ABCD是平行四边形 B C 定理:一组对边平行且相等的四边形是平行四边形. ∵AB∥CD,AB=CD, ∴四边形ABCD是平行四边形. 定理:对角线互相平分的四边形是平行四边形. A D ∵AO=CO,BO=DO, O ∴四边形ABCD是平行四边形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中位线定理证明题1、 如图,若CD AB //,E 、F 分别是BC 、AD 的中点, 且a AB =,b CD =,求EF 的长2、已知矩形ABCD 中,cm AB 15=,cm BC 8=,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,求四边形EFGH 的周长和面积3、 如图,已知四边形ABCD 中,BC AD //, 若DAB ∠的角平分线AE 交CD 于E ,连结BE , 且BE 平分ABC ∠,求证:BC AD AB +=4、如图,在ABC ∆中,C B ∠=∠2,BC AD ⊥,垂足为D ,M 是BC 的中点,cm AB 10=,求MD 的长5、 如图,D 、E 、F 分别是ABC ∆三边的中点,G 是AE 的中点,BE 与DF 、DG 分别交于P 、Q 两点,求BE PQ :的值6、 如图,在ABC ∆中,AD 平分BAC ∠,AD BD ⊥, AC DE //,交AB 于E ,若5=AB ,求DE 的长7、连接凸四边形一组对边中点的线段等于另一组对边和的一半,问这个凸四边形是什么四边形?试证明你的结论8、分别以ABC ∆的边AC 和BC 为一边,在ABC ∆外作正方形ACDE 和CBFG ,点P 是EF 的中点,如图,求证:点P 到边AB 的距离是AB 的一半9、如图,在梯形ABCD 中,BC AD //,︒=∠30B ,︒=∠60C ,E 、M 、F 、N 分别是AB 、BC 、CD 、DA 的中点,已知7=BC ,3=MN ,求EF 的值10、如图,已知梯形ABCD 中,BC AD //,︒=∠=∠90ADC DCB ,E 为AB 中点,求证:DE CE =11、如图,已知梯形ABCD 中,CD AB //,︒=∠=∠90D DAB ,ACB ∆是等边三角形,梯形中位线m EF 43=,求梯形的下底AB 的长 12、如图,梯形ABCD 的面积是12,求此梯形四边的中点组成的四边形EFGH 的面积13、如图,已知A 为DE 的中点,设DBC ∆、ABC ∆、EBC ∆的面积分别为1S 、2S 、3S ,求1S 、2S 、3S 之间的关系14、如图,在ABC ∆中,︒=∠120BAC ,以AB 、AC 为向形外作等边三角形ABD 和ACE ,M 为AD 中点,N 为AE 中点,P 为BC 中点,试求MPN ∠的度数15、如图,以ABC ∆的边AB 、AC 为斜边向外作直角三角形ABD 和ACE ,且使ACE ABD ∠=∠,M 是BC 的中点,求证:EM DM =中位线定理证明题答案:1、解:连结AC ,取AC 中点G ,连结EG 、FG ΘE 、F 分别是BC 、AD 的中点∴EG 、FG 分别是ACB ∆、ACD ∆的中位线∴AB EG //,AB EG 21=,CD FG //,CD FG 21= ΘCD AB //,∴FG EG //,∴E 、F 、G 三点在一条直线上)(21AB CD EG FG EF -=-=∴,Θa AB =,b CD =,∴)(21a b EF -=2、解:连结AC 、BDΘBE AE =,CF BF =,DG CG =,AH DH =AC EF 21=∴,BD FG 21=,AC GH 21=,BD HE 21=Θ矩形ABCD 中,BD AC =,HE GH FG EF ===∴, ∴四边形EFGH 是菱形, 在ABC Rt ∆中,)(178152222cm BC AB AC =+=+=∴四边形EFGH 的周长为cm 34,)(602cm S EFGH =菱形3、证明:取AB 中点F ,连结EFΘBC AD //,∴︒=∠+∠180CBA DAB ΘABE CBE ∠=∠,BAE DAE ∠=∠∴︒=∠=∠90EAB EBA ,∴︒=∠90AEB ,AB EF 21=∴ ΘBF AF =,DE CE =,)(21BC AD EF +=∴,BC AD AB +=∴ 4、解:取AB 中点N ,连结DN 、MN在ABD Rt ∆中,AB BN DN 21==,NDB B ∠=∠∴,BN AN CM BM ==,Θ,AC MN //∴,C NMD ∠=∠∴C B ∠=∠2Θ,NMD NDB ∠=∠∴2,NMD DNM NDB ∠+∠=∠Θ NMD DNM ∠=∠∴,MD ND =∴,Θcm AB 10=,cm MD 5=∴5、解:ΘCD BD =,AF BF =,∴AC DF //,CE DP CD BD //,=Θ 在BCE ∆中,可得EP BP =,∴CE DP 21=,AG EG CE AE ==,Θ ∴EG PD =,在QPD ∆和QEG ∆中QEG QPD ∠=∠,EG PD =, QGE QDP ∠=∠QPD ∆∴≌QEG ∆,QE QP =∴,BE PE QP 4121==∴,4:1:=∴BE PQ 6、解:延长BD 、AC 相交于K ,在ABD ∆和AKD ∆中21∠=∠,AD AD =,︒=∠=∠90ADK ADB ,ABD ∆∴≌AKD ∆ KD BD =∴,AK AB =AC DE //Θ,AE BE =∴,AK DE 21=∴,5=AB Θ,25=∴DE7、证明:连结BD ,取BD 中点M ,连结EM 、FM ΘE 、F 分别是AB 、CD 的中点∴AD EM 21=,BC FM 21=,且AD EM //,BC FM // ∴)(21BC AD FM EM +=+,FM EM EF +=∴,M ∴点在EF 上AD BC //∴,∴四边形ABCD 是平行四边形或梯形 8、证明:作AB EM ⊥,AB FN ⊥,AB PQ ⊥,AB CH ⊥, 垂足分别是M 、N 、Q 、H∴FN CH PQ EM //////,FP EP =Θ,∴NQ MQ =,)(21FN EM PQ +=∴ ︒=∠90EAC Θ,︒=∠+∠∴90BAC EAM︒=∠+∠90AEM EAM Θ,BAC AEM ∠=∠∴ ︒=∠=∠90AHC M Θ,AC AE =EAM ∆∴≌ACH ∆,AH EM =∴,同理可得BH FH =BH EM BH AH AB +=+=∴,AB PQ 21=∴9、过点N 作AB NG //,CD NH //,分别交BC 于G 、H , BC AD //Θ∴四边形ABGN 、NHCD 是平行四边形∴BG AN =,NG AB //,HC ND =,CD NH // B NGM ∠=∠Θ,C NHM ∠=∠ Θ︒=∠30B ,︒=∠60C ︒=∠+∠∴90NHM NGM ︒=∠∴90GNHCM BM =Θ,DN AN = HM GM =∴62==∴MN GH ,1=-=+=∴GH BC ND AN AD∴EF 是梯形ABCD 的中位线,∴4)(21=+=BC AD EF10、证明:取CD 中点F ,连结EFBE AE =Θ,∴BC EF //,︒=∠90DCB Θ,︒=∠∴90EFD CD EF ⊥∴,∴EF 是CD 的垂直平分线,DE CE =∴11、解:在等边CAB ∆中,AB AC =,︒=∠60CAB ︒=∠90DAB Θ,︒=∠∴30DAC∴在ACD Rt ∆中,AB AC CD 2121==EF Θ是梯形的中位线,)(21AB CD EF +=∴m AB AB 43)21(21=+∴ m AB =∴,∴梯形的下底AB 的长为m 12、解:连结BD 、AC ,取BD 中点O 连结EO 、HOBE AE =Θ,DH AH =,AD EO //∴,AB HO //,BD EH // ∴四边形AEOH 、EBOH 、EODH 都是平行四边形EBO ODH EOH AEH S S S S ∆∆∆∆===∴,ABD AEH S S ∆∆=∴41同理可得CBD CFG S S ∆∆=41,ACD DHG S S ∆∆=41,ABC BEF S S ∆∆=416=∴EFGH S 四边形13、解:分别过D 、A 、E 作BC 的垂线,垂足分别为M 、H 、N , 则EN AH DM ////,AE AD =Θ,NH MH =∴)(21EN DM AH +=∴,23122212121S AH BC EN BC DM BC S S =⋅=⋅+⋅=+∴)(21312S S S +=∴14、证明:连结DE 、MN 、BM 、CN︒=∠120BAC Θ,︒=∠60EAC ,︒=∠60DAB︒=∠+∠∴180EAC BAC ︒=∠+∠180DAB BACB ∴、A 、E 三点共线,C 、A 、D 三点共线 在BAC ∆和DAE ∆中,(易证全等),DE BC =∴DM AM =Θ,EN AN =,CB DE MN 2121==∴DB AB =Θ,CE AC =,AD BM ⊥∴,AE CN ⊥ ︒=∠=∠∴90CNB BMCCP BP =Θ,BC MP 21=∴,BC NP 21=NP MP MN ==∴ MNP ∆∴是等边三角形 ︒=∠∴60MPN15、证明:延长BD 至P ,使DB DP =延长CE 至Q ,使EC EQ = 连结AP 、AQ 、PC 、QBDB AD ⊥Θ,CE AE ⊥ AB AP =∴,AC AQ = ACE ABD ∠=∠Θ CAE DAB ∠=∠∴又DAB PAD ∠=∠Θ,EAQ CAE ∠=∠QAC PAB ∠=∠∴,BAQ PAC ∠=∠∴PAC ∆∴≌BAQ ∆BQ PC =∴MD Θ、ME 为中位线PC MD 21=∴,BQ ME 21= ME MD =∴。

相关文档
最新文档