2018永州市中考必备数学模拟试卷(4)附详细试题答案
2018年湖南省永州市中考真题数学

ab 2
×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0
13.一副透明的三角板,如图叠放,直角三角板的斜边 AB、CE 相交于点 D,则∠BDC=_____.
Hale Waihona Puke 解析:∵∠CEA=60°,∠BAE=45°, ∴∠ADE=180°-∠CEA-∠BAE=75°, ∴∠BDC=∠ADE=75°. 答案:75°.
3 n
=0.03,
2 2 解析: 由点 A(1, 1), 可得 OA= 1 1
2, 点 A 在第一象限的角平分线上, 那么∠AOB=45°,
再根据弧长公式计算即可. 答案:
2 4
.
17.对于任意大于 0 的实数 x、 y, 满足: log2(x· y)=log2x+log2y, 若 log22=1, 则 log216=_____. 解析:log216=log2(2·2·2·2)=log22+log22+log22+log22=1+1+1+1=4. 答案:4. 18.现有 A、B 两个大型储油罐,它们相距 2km,计划修建一条笔直的输油管道,使得 A、B 两个储油罐到输油管道所在直线的距离都为 0.5km, 输油管道所在直线符合上述要求的设计 方案有_____种. 解析:输油管道所在直线符合上述要求的设计方案有 4 种,如图所示.
2
A.
B.
C.
D. 解析:直接利用二次函数图象经过的象限得出 a,b 的值取值范围,进而利用反比例函数的 性质得出答案. 答案:D. 10.甲从商贩 A 处购买了若干斤西瓜,又从商贩 B 处购买了若干斤西瓜.A、B 两处所购买的 西瓜重量之比为 3:2,然后将买回的西瓜以从 A、B 两处购买单价的平均数为单价全部卖给 了乙,结果发现他赔钱了,这是因为( ) A.商贩 A 的单价大于商贩 B 的单价 B.商贩 A 的单价等于商贩 B 的单价 C.商版 A 的单价小于商贩 B 的单价 D.赔钱与商贩 A、商贩 B 的单价无关 解析:利润=总售价-总成本= ∴0.5b-0.5a<0, ∴a>b. 答案:A. 二、填空题(本大题共 8 个小题,每小题 4 分,共 32 分) 11.截止 2017 年年底,我国 60 岁以上老龄人口达 2.4 亿,占总人口比重达 17.3%.将 2.4 亿 用科学记数法表示为_____. 8 解析:2.4 亿=2.4×10 . 8 答案:2.4×10 . 12.因式分解:x -1=_____. 解析:原式=(x+1)(x-1). 答案:(x+1)(x-1).
2018届永州市零陵区中考第一次模拟考试数学试题(有答案)精选

零陵区2018年初中毕业学业水平考试第一次模拟考试数学(试题卷)温馨提示:本试卷满分150分,考试时间120分钟,共三道大题,26个小题。
一、选择题(本大题共10个小题,每小题只有一个正确答案。
每小题4分,共40分)1.-2018的相反数为()A.2017B.-2017C.2018D.-20182.下列计算正确的是()A. B. C. D.3.国产越野车“BJ40”中,哪个数学或字母既是中心对称图形又是轴对称图型()A.BB.JC.40D.04.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P至C路线。
用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边5.为了加强安全教育,某校组织以防溺水为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,8,9.5.这6名选手成绩的众数和中位数分别是()A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分6.某城市几条道路的位置关系如图所示,已知ABAEABCFEFC的( )A.48B.40C.30D.217.一元一次不等式组的解集在数轴上表示为()8.如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30,则劣弧的长等于()A. B.C. D.9.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足()A.16(1+2x)=25B.25(1-2x)=16C.16(1+x)2=25D.25(1-x)2=1610.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自D点出发沿折线DC—CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(),运动时间为x(秒),则下列图象中能大致反应y与x之间的函数关系式的是()二、填空题(本大题共8个小题,每小题4分,共32分)11.在,0,,,0.3245这五个数中,无理数有个.12.计算:的值是13.已知一次函数,若,则此函数的图像不经过第象限.14.在△ABC中,若∠C=90,AB=10,,则BC=.15.二次函数的顶点坐标是.16.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.17.在永州有一种叫“斗牛”的游戏,每人发5张扑克牌,在这5张牌中取出3张牌,若这3张牌的数字之和是10的整数倍,我们称之为“牛”(注:J,Q,K的数字规定为10);现某人得到J,K,4,6,9这5张牌,那么在这5张牌中任取出3张牌能组成“牛”的概率是.18.古希腊数学家把数1,3,6,10,15,21,……叫做三角形数,它有一定的规律性.若把第一个三角形数记为x1,第二个三角形数记为x2,……,第n个三角形数记为xn,则x10=;xn+xn+1=.三、简答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(本小题8分)计算:(20.(本小题8分)先化简,再求值:,请你在中选取一个合适整数求值.21.(本小题8分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,统计优秀和良好等级时分别漏掉4人和6人,于是及时更正,从而形成如下图表,请按正确数据解答下列各题:(1)填写统计表;(2)根据更正后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.22.(本小题10分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE.请写出CD与AB位置与数量之间的关系,并证明你的结论.23.(本小题10分)某商店购进了一批甲、乙两种不同品牌的雪糕,其中甲种雪糕花费了40元,乙种雪糕花费了30元,已知甲种雪糕比乙种雪料多了20个,乙种雪糕的单位是甲种雪糕单价的1.5倍.(1)求购进的甲、乙两种雪糕的单价;(2)若甲种雪糕每个的售价是1.5元,该商店保证卖出这批雪糕的利润不低于40元,那么乙种雪糕的售价至少是多少元?24.(本小题10分)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由;(3)若⊙O的半径为2,扇形AOC恰好是某一个圆锥的侧面展示图,求此圆锥的高.25.(本小题12分)如图,抛物线:与x轴交于A,B两点,与y 轴交于D点,顶点为M,别一条抛物线与x轴也交于A,B两点,且与y轴的交点是C(0,-),顶点是N. N(1)求A,B两点的坐标;(2)求抛物线的表达式并求出两条抛物线的对称轴;(3)当∠DBC=90时,求m的值;(4)在(3)的条件下,P是直线MN上一动点,且使PA+PD的值最小,请求出这个最小值,并求出P点的坐标.26.(本小题12分)探究题先下面这道基础题的证明过程,然后探究后面的问题:基础题:如图(1),分别以△ABC两边AB,AC向三角形外部作正方形ABDE,ACFG,H,K,N 分别是EB,BC,GC的中点.求证:(1)EC=BG;(2)EC⊥BG.证明:(1)在△AEC和△ABG中,因为AE=AB,∠EAC=90+∠BAC=∠BAG,AC=AG所以△AEC≌△ABG,所以EC=BG;(2)将△AEC绕点A逆时针旋转90后,恰好与△ABG重合,因此,EC⊥BG.探究1:已知如图(2),H,N分别是正方形ABDE,ACFG的中心,K是BC的中点.求证:(1)HK=NK;(2)HK⊥NK.探究2:利用探究1的方法和结论,我们继续探究以下两个问题:问题1:如图(3),分别以△ABC各边向外作正方形,点M,N,P分别是它们的中心,连接AP,MN.求证:(1)MN=AP;(2)MN⊥AP.问题2:如图(4),以凸四边形ABCD的各边向外作正方形,E,G,F,H依次是各正方形的中心,连接EF,GH,现请你猜想:线段GH与EF有怎样的数量关系和位置关系?请你直接写出你的结论(不必证明).。
(汇总3份试卷)2018年永州市中考三模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣2【答案】C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx ﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.2.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C 点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)【答案】B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A 是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.3.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.4.如图,在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,分别以点A ,B 为圆心,大于线段AB 长度的一半为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则△ACD 的周长为( )A .13B .17C .18D .25【答案】C 【解析】在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF 为线段AB 的垂直平分线,在Rt △ABC 中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB ,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.5.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D 等于( )A .2B .3C .23D .32【答案】A 【解析】分析:由S △ABC =9、S △A′EF =1且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DE ABD S A D AD S ''=(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =1,且AD 为BC 边的中线,∴S△A′DE =12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.6.已知a,b ,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c【答案】A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.7.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【答案】B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义8.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【答案】B【解析】由(1)得x>-1,由(2)得x≤1,所以-1<x≤1.故选B.9.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似【答案】B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.10.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元【答案】C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.二、填空题(本题包括8个小题)11.计算:2(a-b)+3b=___________.【答案】2a+b.【解析】先去括号,再合并同类项即可得出答案.【详解】原式=2a-2b+3b=2a+b.故答案为:2a+b.12.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为,则__________.【答案】20%.【解析】试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.试题解析:依题意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考点:一元二次方程的应用.13.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.【答案】90°.【解析】根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A ﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.【详解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案为:90°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.14.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)【答案】甲【解析】由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S2甲<S2乙,即两人的成绩更加稳定的是甲.故答案为甲.15.已知2-是一元二次方程240x x c -+=的一个根,则方程的另一个根是________.【答案】2+【解析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将【详解】设方程的另一根为x 1,又∵x 1,解得x 1.故答案为:2【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解. 16.关于x 的一元二次方程2210ax x -+=有实数根,则a 的取值范围是 __________.【答案】a≤1且a≠0【解析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩ ,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥ ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.17.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y=﹣4x 图象上的两个点,则y 1与y 2的大小关系为__________. 【答案】y 1<y 1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 1的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0, ∴在每个象限内,y 随x 的增大而增大, ∵A (-4,y 1),B (-1,y 1)是反比例函数y=-4x 图象上的两个点,-4<-1, ∴y 1<y 1,故答案为:y 1<y 1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.18.如图,Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.【答案】5或1.【解析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【详解】∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=5.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如图5所示:当∠B′ED=90°时,C与点E重合.∵AB′=5,AC=6,∴B′E=5.设BD=DB′=x ,则CD=8-x .在Rt △′BDE 中,DB′5=DE 5+B′E 5,即x 5=(8-x )5+55.解得:x=1.∴BD=1.综上所述,BD 的长为5或1.三、解答题(本题包括8个小题)19.计算:2344(1)11x x x x x ++-+÷++. 【答案】22x x -+ 【解析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式=()22311112x x x x x ⎛⎫-+-⨯ ⎪+++⎝⎭ =()()()2x 22112x x x x +-+⨯++ =22x x -+. 【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.20.如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM=2∠A .判断直线MN 与⊙O 的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.【答案】(1)相切;(2)16433π- 【解析】试题分析:(1)MN 是⊙O 切线,只要证明∠OCM=90°即可.(2)求出∠AOC 以及BC ,根据S 阴=S 扇形OAC ﹣S △OAC 计算即可.试题解析:(1)MN 是⊙O 切线.理由:连接OC .∵OA=OC ,∴∠OAC=∠OCA ,∵∠BOC=∠A+∠OCA=2∠A ,∠BCM=2∠A ,∴∠BCM=∠BOC ,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC ⊥MN ,∴MN 是⊙O 切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT △BCO 中,OC=OA=4,∠BCO=30°,∴BO=12OC=2,BC=23 ∴S 阴=S 扇形OAC ﹣S △OAC =212041164234336023ππ-⨯⨯=-.考点:直线与圆的位置关系;扇形面积的计算.21.如图,在Rt ⊿ABC 中,90ACB ∠=,CD AB ⊥于D ,,AC 20BC 15== . ⑴.求AB 的长;⑵.求CD 的长.【答案】(1)25(2)12【解析】整体分析: (1)用勾股定理求斜边AB 的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).∵在Rt ⊿ABC 中,90ACB ∠=,20,15AC BC ==.∴2222201525AB AC BC +=+=,(2).∵S ⊿1122ABC AC BC AB CD =⋅=⋅, ∴AC BC AB CD ⋅=⋅即201525CD ⨯=,∴20×15=25CD.∴12CD =.22.孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?【答案】(1)60;(2)20,20;(3)38000【解析】(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.∵20出现次数最多,∴众数为20元;∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;(3)5610815102020301660⨯+⨯+⨯+⨯+⨯⨯2000=38000(元),∴估算全校学生共捐款38000元.【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.23.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.【答案】(1) 方案1; B(5,0);1(5)(5)5y x x=-+-;(2) 3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x=3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 24.如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=k x 交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且OA=AB .求双曲线的解析式;求点C 的坐标,并直接写出y 1<y 2时x 的取值范围.【答案】(1)24y x=;(1)C (﹣1,﹣4),x 的取值范围是x <﹣1或0<x <1. 【解析】(1)作高线AC ,根据等腰直角三角形的性质和点A 的坐标的特点得:x=1x ﹣1,可得A 的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C 的坐标,根据图象可得结论.【详解】(1)∵点A 在直线y 1=1x ﹣1上,∴设A (x ,1x ﹣1),过A 作AC ⊥OB 于C ,∵AB ⊥OA ,且OA=AB ,∴OC=BC ,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.25.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).【答案】(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a 元时0.9a-266.2>0解得:a >2662295.89≈ 故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题26.列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.【答案】吉普车的速度为30千米/时.【解析】先设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时,列出方程求出x 的值,再进行检验,即可求出答案.【详解】解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. 由题意得:1515151.560x x -=. 解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( )A .±3B .3C .5D .9 【答案】B【解析】由已知可得:2,(12)(12)1m n mn +==+-=-,223m n mn +-=2()5m n mn +-.【详解】由已知可得:2,(12)(12)1m n mn +==+-=-,原式=22()525(1)93m n mn +-=-⨯-==故选:B【点睛】考核知识点:二次根式运算.配方是关键.2.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ).A .25︒B .30︒C .35︒D .40︒【答案】B 【解析】试题分析:作点P 关于OA 对称的点P 3,作点P 关于OB 对称的点P 3,连接P 3P 3,与OA 交于点M,与OB 交于点N,此时△PMN 的周长最小.由线段垂直平分线性质可得出△PMN 的周长就是P 3P 3的长,∵OP=3,∴OP 3=OP 3=OP=3.又∵P 3P 3=3,,∴OP 3=OP 3=P 3P 3,∴△OP 3P 3是等边三角形, ∴∠P 3OP 3=60°,即3(∠AOP+∠BOP )=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B .考点:3.线段垂直平分线性质;3.轴对称作图.3.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a+2bB .3a+4bC .6a+2bD .6a+4b【答案】A【解析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 4.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【答案】B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【答案】B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.7.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.【答案】A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.8.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.9.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=1(180°﹣45°)=67.5°,2∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=1(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),2∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质10.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.二、填空题(本题包括8个小题)11.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.【答案】(-2,-2)【解析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.12.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.【答案】1【解析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径.解:扇形的弧长为:1445180π⨯=4π;这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.13.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.【答案】1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1) ×(−1)=1,故答案为1.14.一元二次方程x2=3x的解是:________.【答案】x1=0,x2=1【解析】先移项,然后利用因式分解法求解.【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解15.如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.【答案】9332+.【解析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得AH=3.∴OB=3+3∴S△POB=12OB•PH=933+.16.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=23x(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB=______.【答案】33【解析】首先设点B的横坐标,由点B在抛物线y1=x2(x≥0)上,得出点B的坐标,再由平行,得出A和C的坐标,然后由CD平行于y轴,得出D的坐标,再由DE∥AC,得出E的坐标,即可得出DE和AB,进而得解.【详解】设点B 的横坐标为a ,则()2,B a a∵平行于x 轴的直线AC∴()()220,,3,A a C a a 又∵CD 平行于y 轴∴()23,3D a a 又∵DE ∥AC∴()23,3E a a∴()33,DE a AB a =-=∴DE AB=3﹣3 【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.17.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.【答案】2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长. 详解:解方程x 2-10x+21=0得x 1=3、x 2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.18.如图,小强和小华共同站在路灯下,小强的身高EF =1.8m ,小华的身高MN =1.5m ,他们的影子恰巧等于自己的身高,即BF =1.8m ,CN =1.5m ,且两人相距4.7m ,则路灯AD 的高度是___.【答案】4m【解析】设路灯的高度为x(m),根据题意可得△BEF ∽△BAD ,再利用相似三角形的对应边正比例整理得DF=x ﹣1.8,同理可得DN=x ﹣1.5,因为两人相距4.7m ,可得到关于x 的一元一次方程,然后求解方程即可.【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路灯AD的高度是4m.三、解答题(本题包括8个小题)19.某水果批发市场香蕉的价格如下表购买香蕉数(千克) 不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?【答案】第一次买14千克香蕉,第二次买36千克香蕉【解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<3时,则3<y<2.【详解】设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<3.则①当0<x≤20,y≤40,则题意可得。
2018年中考模拟考试数学试卷(有答案)

1 12 b c ),则 3a a b c 24 且 2a a b c 24
【解答】设三角形三边长为 a, b, c ( a
8 a 12 ,所以 a 的可能取值为 8,9,10,11 ,满足题意得数组 (a, b, c ) 可能为 (8,8,8) , (9,9,6) ,(9, 8,7) ,(10,10,4) ,(10,9,5) ,(10,8,6) ,(10,7,7) ,(11,11,2) , ,(11,9,4) , (11,10,3) (11,8,5) , (11,7,6) 共 12 组,其中为直角三角形三边长的只有 (10,8,6) ,所以所求概率为
数学试卷 第 2页 (共 4 页)
1 2 x bx c 的顶点为 P ,与 x 轴的正半轴交于 A( x1 ,0) 、 B( x2 ,0) 6 3 ) ,若 ( x1 x2 )两点,与 y 轴交于点 C , PA 是 ABC 的外接圆的切线,设 M (0, 2 AM // BC ,求抛物线的解析式.
2018 年数学试卷
(每小题 6 分, 共 48 分。 从每小题四个选项中选出一项符合题目要求的答案。 ) 一、 选择题 1.若实数 a,b 满足 A . a 2
1 a ab b 2 2 0 ,则 a 的取值范围是( 2
B. a 4 C. a 2 或 a 4
) D. 2 a 4 )
2 2
B.没有实根 D.方程的根有可能取值 a, b, c
4.若 ab 1 ,且有 5a 2018a 9 0 和 9b 2018b 5 0 ,则 A.
9 5
B.
2
5 9
C.
2018 5
2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案2018年中考数学模拟试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)-3的相反数是()A.-1 B.3 C.1 D.-32.(3分)下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷(xy)3=x-yC.D.2xy-3yx=xy(x2y3)2=x4y53.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是38.(3分)若∠α=32°22′,则∠α的余角的度数为57°38′9.(3分)化简:-3的结果是310.(3分)一组数据2、-2、4、1、的方差是5.511.(3分)若关于x的一元二次方程ax2-bx+2=0(a≠0)的一个解是x=1,则3-a+b的值是412.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为40√5 cm2.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于75°15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=3/516.(3分)抛物线y=mx2-2mx+m-3(m>0)在-1<x<3位于x轴下方,在3<x<4位于x轴上方,则m的值为2三、解答题17.1) $-2+|3\tan30^\circ-1|-(\pi-3)^\circ$2+|\frac{3}{\sqrt{3}}-1|-(\pi-3)^\circ$2+|\sqrt{3}-1|-(\pi-3)^\circ$2+\sqrt{3}-1-(\pi-3)^\circ$2-\sqrt{3}-\pi^\circ$2) $x^2-3x+2=0$x=1$或$x=2$所以方程的解为$x=1$或$x=2$。
<合集试卷3套>2018届永州市中考数学毕业升学考试一模试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90D.绕原点顺时针旋转90【答案】C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.2.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.【答案】C【解析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-22k-=1k>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.4【答案】A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质4.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-1【答案】C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.5.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150°B.140°C.130°D.120°【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.6.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.【答案】D【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.7.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A.63B.63C.6 D.4【答案】C【解析】由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【详解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故选C.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【答案】C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=5,AB=10.∵(5)1+(5)1=(10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.9.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°【答案】B【解析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=1 2(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.10.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长【答案】B 【解析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.【解答】用求根公式求得:22221244b a a b a a x x -+-+-== ∵90,2a C BC AC b ∠=︒==,, ∴224a ABb =+, ∴2222442a a b a a AD b +-=+= AD 的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.二、填空题(本题包括8个小题)11.若关于x 的一元二次方程(m-1)x 2-4x+1=0有两个不相等的实数根,则m 的取值范围为_____________.【答案】5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.【答案】2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长. 详解:解方程x 2-10x+21=0得x 1=3、x 2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.13.方程1223x x =+的解为__________. 【答案】1x =【解析】两边同时乘2(3)x x +,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘2(3)x x +,得34x x +=,解得1x =,检验:当1x =时,2(3)x x +≠0,所以x=1是原分式方程的根,故答案为:x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.14.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 【答案】1.【解析】方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使 最简公分母等于1的未知数的值求出x 的值,然后代入进行计算即可求出m 的值:方程两边都乘以(x -2)得,2-x -m=2(x -2).∵分式方程有增根,∴x -2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.15.一元二次方程x 2=3x 的解是:________.【答案】x 1=0,x 2=1【解析】先移项,然后利用因式分解法求解.【详解】x 2=1xx 2-1x=0,x(x-1)=0,x=0或x-1=0,∴x 1=0,x 2=1.故答案为:x 1=0,x 2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解16.如图,点A ,B 在反比例函数k y x=(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是______.【答案】【解析】试题解析:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC=2BD ,∴OD=2OC .∵CD=k ,∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92, ∴22229376()22AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.17.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.【答案】∠A=∠C或∠ADC=∠ABC【解析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【详解】添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点睛】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.△的顶点A,B,C均在格点上,D为AC边上的18.如图,在每个小正方形边长为1的网格中,ABC一点.△的线段AC的值为______________;在如图所示的网格中,AM是ABC+的值最小,请用无刻度的直尺,画出AM和点P,并简要说角平分线,在AM上求一点P,使CP DP明AM和点P的位置是如何找到的(不要求证明)___________.【答案】(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P. 【解析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,+的值最小.连接DF交AM于点P,此时CP DP【详解】(Ⅰ)根据勾股定理得22+=;345故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABC的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.三、解答题(本题包括8个小题)19.如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.【答案】见解析【解析】(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF【详解】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO由(1)知:∠OAC=∠OBF ,∴∠BDA=∠AOB=90°,∴AE ⊥BF .20.图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)【答案】1.4米.【解析】过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,延长FC 到点M ,使得BE=CM ,则EM=BC ,在Rt △ABE 、Rt △CDF 中可求出AE 、BE 、DF 、FC 的长度,进而可得出EF 的长度,再在Rt △MEF 中利用勾股定理即可求出EM 的长,此题得解.【详解】过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,延长FC 到点M ,使得BE=CM ,如图所示, ∵AB=CD ,AB+CD=AD=2,∴AB=CD=1,在Rt △ABE 中,AB=1,∠A=37°,∴BE=AB•sin ∠A≈0.6,AE=AB•cos ∠A≈0.8,在Rt △CDF 中,CD=1,∠D=45°,∴CF=CD•sin ∠D≈0.7,DF=CD•cos ∠D≈0.7,∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CM ,又∵BE=CM ,∴四边形BEMC 为平行四边形,在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=22EF FM+≈1.4,∴B与C之间的距离约为1.4米.【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.21.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元)7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x 的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?【答案】(1)W=216260(11020520(1015x x x xx x x⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【详解】(1)设p与x之间的函数关系式为p=kx+b,则有7.5k b+=⎧⎨,解得,0.5 k=⎧⎨,当1≤x<10时,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x16260(11020520(1015x x xx x x⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)当1≤x<10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.2221(1)6tan303π-︒⎛⎫--+-⎪⎝⎭解方程:544101236x xx x-++=--【答案】(1)10;(2)原方程无解.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)原式=323169+-⨯+=10; (2)去分母得:3(5x ﹣4)+3x ﹣6=4x+10,解得:x =2,经检验:x =2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.如图,已知点B 、E 、C 、F 在一条直线上,AB=DF ,AC=DE ,∠A=∠D 求证:AC ∥DE ;若BF=13,EC=5,求BC 的长.【答案】(1)证明见解析;(2)4.【解析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案.【详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ),∴∠ACE=∠DEF ,∴AC ∥DE ;(2)∵△ABC ≌△DFE ,∴BC=EF ,∴CB ﹣EC=EF ﹣EC ,∴EB=CF ,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.考点:全等三角形的判定与性质.24.在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;从中任意抽取1个球恰好是红球的概率是;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.【答案】(1)必然,不可能;(2)35;(3)此游戏不公平.【解析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:35;故答案为35;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:82 205;则选择乙的概率为:35,故此游戏不公平.【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键.25.如图,已知反比例函数y=kx(x>0)的图象与一次函数y=﹣12x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=kx(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.【答案】(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.【解析】(1)利用一次函数图象上点的坐标特征可求出n 值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.【详解】(1)当x=1时,n=﹣12×1+4=1, ∴点B 的坐标为(1,1).∵反比例函数y=k x 过点B (1,1), ∴k=1×1=1;(2)∵k=1>0,∴当x >0时,y 随x 值增大而减小,∴当2≤x≤1时,1≤y≤2.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.26.计算532224m m m m -⎛⎫+-÷ ⎪--⎝⎭. 【答案】26m + 【解析】分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭ ()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅-- 26m =+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A .2πcmB .4πcmC .6πc mD .8πcm【答案】B 【解析】首先连接OC ,AO ,由切线的性质,可得OC ⊥AB ,根据已知条件可得:OA=2OC ,进而求出∠AOC 的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长.【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切,∴OC ⊥AB ,∵OA=6,OC=3,∴OA=2OC ,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB 的长=1206180π⨯⨯ =4π, 故选B .【点睛】 本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.2.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是( )A B C D【答案】C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.3.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.【答案】D【解析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB=22AE BE=5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.4.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A 3B3C.33D.32【答案】B设BC=x ,∵在Rt △ABC 中,∠B=90°,∠A=30°,∴AC=2BC=2x ,33,根据题意得:AD=BC=x ,3,作EM ⊥AD 于M ,则AM=12AD=12x , 在Rt △AEM 中,cos ∠EAD=13263x AM AE x==; 故选B .【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM 是解决问题的关键.5.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 【答案】B【解析】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥1.即最多打1折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.6.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A.35°B.45°C.55°D.65°【答案】C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.7.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元【答案】B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80%解这个方程得:x=125则这种服装每件的成本是125元.故选B.考点:一元一次方程的应用.8.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AEDB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=【答案】D【解析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得: AD AE DB EC =,AB AC AD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D .【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.9.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A .37B .38C .50D .51【答案】D【解析】试题解析: 第①个图形中有3 盆鲜花,第②个图形中有336+=盆鲜花,第③个图形中有33511++=盆鲜花,…第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+,则第⑥个图形中的鲜花盆数为26238.+=故选C.10.若 |x | =-x ,则x 一定是( )A .非正数B .正数C .非负数D .负数 【答案】A【解析】根据绝对值的性质进行求解即可得.【详解】∵|-x|=-x ,又|-x|≥1,∴-x≥1,即x≤1,即x是非正数,故选A.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.二、填空题(本题包括8个小题)11.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB 约是45 m,根据以上观测数据可求观光塔的高CD是______m.【答案】135【解析】试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=453m,所以在Rt△ACD中,CD=3AD=453×3=135m.考点:解直角三角形的应用.12.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.【答案】1:2【解析】△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC =3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.【详解】解:∵△ABC与△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,则OE:EB=1:2故答案为:1:2本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.13.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC 边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.【答案】110°或50°.【解析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.14.如果关于x的方程2x2x m0-+=(m为常数)有两个相等实数根,那么m=______.【答案】1【解析】析:本题需先根据已知条件列出关于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为115.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.【解析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=12BC,从而得2ADEABCS DES BC⎛⎫= ⎪⎝⎭,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=12BC,∴△ADE∽△ABC,则2ADEABCS DES BC⎛⎫= ⎪⎝⎭=14,即121124x-=,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.16.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.【答案】45°【解析】试题解析:如图,连接CE,∵AB=2,BC=1,。
人教版2018年数学中考第四次模拟及答案
人教版2018年数学中考第四次模拟及答案(考试用时100分钟,满分为120分)班级姓名学号得分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的4个选项中,只有一项是符合题目要求的.)1.-错误!未找到引用源。
的相反数是( B )A.-错误!未找到引用源。
B.错误!未找到引用源。
C.-5D.52.如图,已知AB∥CD,∠1=62°,则∠2的度数是( B )A.28°B.62°C.108°D.118°3.下列计算正确的是( D )A.(-1)-1=1B.(-1)0=0C.|-1|=-1D.-(-1)2=-14.我国南海海域面积为3 500 000 km2,用科学记数法表示正确的是( B )A.3.5×105km2B.3.5×106km2C.3.5×107km2D.3.5×108km25.下列说法错误的是( D )A.抛物线y=-x2+x的开口向下B.两点之间线段最短C.角平分线上的点到角两边的距离相等D.一次函数y=-x+1的函数值随自变量的增大而增大6.下列几何体的主视图、左视图、俯视图的图形完全相同的是( D )A.三棱锥B.长方体C.三棱柱D.球体7.方程组错误!未找到引用源。
的解是( C )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
8.在Rt△ABC中,∠C=90°,sin A=错误!未找到引用源。
,则tan B的值为( D )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
9.下列函数中,图象经过原点的是( A )A.y=3xB.y=1-2xC.y=错误!未找到引用源。
D.y=x2-110.如图,在正方形ABCD中,对角线BD的长为错误!未找到引用源。
.若将BD绕点B旋转后,点D落在BC延长线上的点D'处,点D经过的路径为错误!未找到引用源。
永州市2018年初中学业水平考试数学卷(附答案)
永州市2018年初中毕业学业水平考试•数学总分数 150分时长:不限题型单选题填空题简答题综合题题量10 8 3 5总分40 32 26 52一、选择题(共10题 ,总计40分)1.(4分)﹣2018的相反数是()A. 2018B. -2018C.D.2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.(4分)函数y=中自变量x的取值范围是()A. x≥3B. x<3C. x≠3D. x=34.(4分)如图几何体的主视图是()A.B.C.D.5.(4分)下列运算正确的是()A. m2+2m3=3m5B. m2•m3=m6C. (﹣m)3=﹣m3D. (mn)3=mn36.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A. 45,48B. 44,45C. 45,51D. 52,537.(4分)下列命题是真命题的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 任意多边形的内角和为360°D. 三角形的中位线平行于第三边,并且等于第三边的一半8.(4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A. 2B. 4C. 6D. 89.(4分)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.10.(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜。
A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A. 商贩A的单价大于商贩B的单价B. 商贩A的单价等于商贩B的单价C. 商版A的单价小于商贩B的单价D. 赔钱与商贩A、商贩B的单价无关二、填空题(共8题 ,总计32分)11.(4分)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%。
2018年湖南省永州市中考数学试卷(含答案与解析)
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前湖南省永州市2018年初中学业水平考试数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分 1.﹣2 018的相反数是( )A .2 018B . 2 018-C .12 018D .12 018-2.誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( )ABC D 3.函数13y x =-中自变量x 的取值范围是( )A .3x ≥B .3x <C .3x ≠D .3x = 4.如图几何体的主视图是( )A B CD5.下列运算正确的是( )A .23523m m m +=B .236m m m =⋅C .()33m m =-- D .()33mn mn =6.已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( ) A .45,48B .44,45C .45,51D .52,53 7.下列命题是真命题的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .任意多边形的内角和为360°D .三角形的中位线平行于第三边,并且等于第三边的一半 8.如图,在ABC △中,点D 是边AB 上的一点,ADC ACB ∠=∠,2AD =,6BD =,则边AC 的长为( )A .2B .4C .6D .89.在同一平面直角坐标系中,反比例函数0by b x=≠()与二次函数()20y ax bx a =+≠的图象大致是 ( )10.甲从商贩A 处购买了若干斤西瓜,又从商贩B 处购买了若干斤西瓜.A 、B 两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A 、B 两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为( )A .商贩A 的单价大于商贩B 的单价B .商贩A 的单价等于商贩B 的单价C .商贩A 的单价小于商贩B 的单价D .赔钱与商贩A 、商贩B 的单价无关第Ⅱ卷(非选择题 共110分)二、填空题(本大题共8个小题,每小题4分,共32分)11.截止2 017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为__________.ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)12.因式分解:21x -=__________.13.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠=__________.14.化简:2211121x xx x x +⎛⎫+÷= ⎪--+⎝⎭__________. 15.在一个不透明的盒子中装有n 个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是__________.16.如图,在平面直角坐标系中,已知点()1,1A ,以点O 为旋转中心,将点A 逆时针旋转到点B 的位置,则AB 的长为__________.17.对于任意大于0的实数x 、y ,满足:()222 log x y log x log y ⋅=+,若221log =,则216log =__________.18.现有A 、B 两个大型储油罐,它们相距2 km ,计划修建一条笔直的输油管道,使得A 、B 两个储油罐到输油管道所在直线的距离都为0.5 km ,输油管道所在直线符合上述要求的设计方案有__________种.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程) 19.(本小题满分8分)计算:12|1-︒+-.20.(本小题满分8分)解不等式组()2112112x x x ⎧-++⎪⎨--⎪⎩<>,并把解集在数轴上表示出来.21.(本小题满分8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为__________人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为__________; (3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为__________.. 22.(本小题满分10分)如图,在ABC △中,90ACB ∠=︒,90ACB ∠=︒,以线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形; (2)若6AB =,求平行四边形BCFD 的面积.数学试卷 第5页(共24页) 数学试卷 第6页(共24页)23.(本小题满分10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.24.(本小题满分10分)如图,线段AB 为O 的直径,点C ,E 在O 上,BC CE =,CD AB ⊥,垂足为点D ,连接BE ,弦BE 与线段CD 相交于点F . (1)求证:CF BF =; (2)若4cos 5ABE ∠=,在AB 的延长线上取一点M ,使4BM =,O 的半径为6.求证:直线CM 是O 的切线.25.(本小题满分12分)如图1,抛物线的顶点A 的坐标为()1,4,抛物线与x 轴相交于B 、C 两点,与y 轴交于点()0,3E .(1)求抛物线的表达式;(2)已知点()0,3F -,在抛物线的对称轴上是否存在一点G ,使得EG FG +最小,如果存在,求出点G 的坐标:如果不存在,请说明理由.(3)如图2,连接AB ,若点P 是线段OE 上的一动点,过点P 作线段AB 的垂线,分别与线段AB 、抛物线相交于点M 、N (点M 、N 都在抛物线对称轴的右侧),当MN最大时,求PON △的面积.26.(本小题满分12分)如图1,在ABC △中,矩形EFGH 的一边EF 在AB 上,顶点G 、H 分别在BC 、AC 上,CD 是边AB 上的高,CD 交GH 于点I .若4CI =,3HI =,92AD =.矩形DFGI 恰好为正方形.(1)求正方形DFGI 的边长;(2)如图2,延长AB 至P .使得AC CP =,将矩形EFGH 沿BP 的方向向右平移,当点G 刚好落在CP 上时,试判断移动后的矩形与CBP △重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG ,将正方形DFGI 绕点D 顺时针旋转一定的角度得到正方形DF G I ''',正方形DF G I '''分别与线段DG 、DB 相交于点M ,N ,求MNG '△的周长.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页)数学试卷 第8页(共24页)湖南省永州市2018年初中学业水平考试数学答案解析1.【答案】A【解析】解: 2 018-的相反数是2 018. 故选:A.【考点】相反数的定义. 2.【答案】C【解析】解:A.是轴对称图形,故此选项错误;B.是轴对称图形,故此选项错误;C.不是轴对称图形,故此选项正确;D.是轴对称图形,故此选项错误; 故选:C.【考点】轴对称图形的概念. 3.【答案】C【解析】解:根据题意得:30x -≠, 解得:3x ≠. 故选:C.【考点】函数自变量的范围. 4.【答案】B【解析】解:由图可得,几何体的主视图是:故选:B. 【考点】三视图. 5.【答案】C【解析】解:A.2m 与32m 不是同类项,不能合并,此选项错误;B.235 m m m =⋅,此选项错误;C.()33m m =--,此选项正确; D.()333mn m n =,此选项错误; 故选:C.【考点】整式的运算. 6.【答案】A【解析】解:数据从小到大排列为:44,45,45,51,52,54, 所以这组数据的众数为45,中位数为14551482+=().5 / 12故选:A.【考点】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数. 7.【答案】D【解析】解:A.对角线相等的平行四边形是矩形,所以A 选项为假命题;B.对角线互相垂直的平行四边形是菱形,所以B 选项为假命题;C.任意多边形的外角和为360︒,所以C 选项为假命题;D.三角形的中位线平行于第三边且等于第三边的一半,所以D 选项为真命题. 故选:D.【考点】命题与定理. 8.【答案】B【解析】解:A A ∠=∠,ADC ACB ∠=∠,ADC ACB ∴△∽△, AC ADAB AC∴=, 2 2816AC AD AB ∴=⋅=⨯=,0AC >,4AC ∴=,故选:B.【考点】相似三角形的判定和性质.2y ax bx =+ 9.【答案】D【解析】解:A.抛物线2y ax bx =+开口方向向上,则0a >,对称轴位于y 轴的右侧,则a 、b 异号,即0b <.所以反比例函数by x=的图象位于第二、四象限,故本选项错误;B.抛物线2y ax bx =+开口方向向上,则0a >,对称轴位于y 轴的左侧,则a 、b 同号,即0b >.所以反比例函数by x=的图象位于第一、三象限,故本选项错误; C.抛物线开口方向向下,则0a <,对称轴位于y 轴的右侧,则a 、b 异号,即0b >.所以反比例函数by x=的图象位于第一、三象限,故本选项错误; D.抛物线2y ax bx =+开口方向向下,则0a <,对称轴位于y 轴的右侧,则a 、b 异号,即0b >.所以反比例函数by x=的图象位于第一、三象限,故本选项正确; 故选:D.【考点】反比例函数的图象,二次函数的图象. 10.【答案】A【解析】解:5320.50.52a ba b b a +==⨯-+=-利润总售价-总成本(),赔钱了说明0利润<数学试卷 第11页(共24页)数学试卷 第12页(共24页)0.50.50b a ∴-<,a b ∴>.故选:A.【考点】一元一次不等式组的应用. 11.【答案】82.410⨯【解析】解:82.4 2.410=⨯亿. 故答案为:82.410⨯【考点】科学记数法的表示方法. 12.【答案】()()11x x +- 【解析】解:原式()()11x x =+-. 故答案为:()()11x x +-. 【考点】因式分解﹣运用公式法. 13.【答案】75︒【解析】解:60CEA ∠=︒,45BAE ∠=︒,18075ADE CEA BAE ∴∠=︒-∠-∠=︒, 75BDC ADE ∴∠=∠=︒,故答案为75︒.【考点】三角板的性质、三角形内角和定理. 14.【答案】11x x -+ 【解析】解:2211121x x x x x +⎛⎫+÷ ⎪--+⎝⎭()()211111x x x x x --+=⋅-+ ()()2111x xx x x -=⋅-+ 11x x -=+, 故答案为:11x x -+. 【考点】分式的混合运算. 15.【答案】100【解析】解:由题意可得,30.03n=, 解得,100n =;故估计n 大约是100. 故答案为:100.【考点】利用频率估计概率.7 / 1216.【答案】4【解析】解:点下()1,1A ,OA ∴=A 在第一象限的角平分线上,以点O 为旋转中心,将点O 逆时针旋转到点B 的位置,45AOB ∴∠=︒,AB ∴=.. 【考点】弧长公式. 17.【答案】4【解析】解:()22222216 2 2 2 2222211114log log log log log log =⋅⋅⋅=+++=+++=. 故答案为4. 【考点】规律型.18.【答案】A【解析】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.【考点】整体﹣应用与设计. 19.【答案】解:原式12122=-+=. 【考点】实数的运算.20.【答案】解:()2112112x x x ⎧-++⎪⎨--⎪⎩<>,解不等式①,可得3x <, 解不等式②,可得1x >-, ∴不等式组的解集为13x -<<,在数轴上表示出来为:【考点】解一元一次不等式组.21.【答案】解:(1)参观的学生总人数为1230%40÷=(人);数学试卷 第15页(共24页)数学试卷 第16页(共24页)(2)喜欢“瑶文化”的学生占参观总学生数的百分比为6100%15%40⨯=; (3)“德文化”的学生数为401281064----=,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:共有12种等可能的结果,甲同学被选中的有6种情况, ∴甲同学被选中的概率是:61=122. 故答案为:40;15%;12【考点】条形统计图和扇形统计图、树状图法与列表法求概率. 22.【答案】(1)证明:在ABC △中,90ACB ∠=︒,30CAB ∠=︒,60ABC ∴∠=︒.在等边ABD △中,60BAD ∠=︒,60BAD ABC ∴∠=∠=︒. E 为AB 的中点,AE BE ∴=. 又AEF BEC ∠=∠, AEF BEC ∴△≌△.在ABC △中,90ACB ∠=︒,E 为AB 的中点,12CE AB ∴=,12BE AB =.CE AE ∴=,30EAC ECA ∴∠=∠=︒, 60BCE EBC ∴∠=∠=︒.又AEF BEC △≌△,60AFE BCE ∴∠=∠=︒.又60D ∠=︒,60AFE D ∴∠=∠=︒.FC BD ∴∥.又60BAD ABC ∠=∠=︒,AD BC ∴∥,即FD BC ∥.∴四边形BCFD 是平行四边形.(2)解:在Rt ABC △中,30BAC ∠=︒,6AB =,9 / 12132BC AB ∴==,AC ==,3BCFD S ∴=⨯=平行四边形.【考点】平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理.23.【答案】解:设小明班上参观禁毒教育基地的男生人数为x 人,女生人数为y 人,依题意得:551.55x y x y +=⎧⎨=+⎩,解得3520x y =⎧⎨=⎩,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人. 【考点】二元一次方程组的应用.24.【答案】证明:(1)延长CD 交O 于G ,如图,CD AB ⊥,BC BG ∴=,BC CE =,CE BG ∴=,CBE GCB ∴∠=∠,CF BF ∴=;(2)连接OC 交BE 于H ,BC CE =,OC BE ∴⊥, 在Rt OBH △中, 4cos 5BH OBH OB ∠==, 424655BH ∴=⨯=,185OH ∴==,数学试卷 第19页(共24页)数学试卷 第20页(共24页)183565OH OC ==,63645OB OM ==+ OH OBOC OM∴=,而HOB COM ∠=∠, OHB OCM ∴△∽△,90OCM OHB ∴∠=∠=︒,OC CM ∴⊥,∴直线CM 是O 的切线.【考点】切线的判定.25.【答案】解:(1)设抛物线的表达式为()214y a x =-+:, 把()0,3代入得:()23014a =-+,1a =-,∴抛物线的表达式为:221423y x x x =--+=-++();(2)存在,如图1,作E 关于对称轴的对称点'E ,连接'E F 交对称轴于G ,此时EG FG +的值最小,()0,3E ,()'2,3E ∴,易得'E F 的解析式为:33y x =-, 当1x =时,3130y =⨯-=,()1,0G ∴ (3)如图2,()1,4A ,()3,0B ,易得AB 的解析式为:26y x =-+,设()2,23N m m m -++,则(),26Q m m +-,03m ≤≤(), ()()22232643NQ m m m m m ∴=+++=-+----,11 / 12AD NH ∥,DAB NQM ∴∠=∠,90ADB QMN ∠=∠=︒,QMN ADB ∴△∽△,QN AB MN∴=,243m m MN -+-∴= )2255MN m ∴=-+, 50-<, ∴当2m =时,MN 有最大值;过N 作NG y ⊥轴于G ,GPN ABD ∠=∠,90NGP ADB ∠=∠=︒,NGP ADB ∴△∽△,2142PG BD NG AD ∴===, 1122PG NG m ∴==, 221323322OP OG PG m m m m m ∴=-=-++-=-++, 2113 3 222PON S OP GN m m m ∴=⋅=++⋅(-), 当2m =时,()1243322PON S =⨯++=△-. 【考点】二次函数的综合应用.26.【答案】解:(1)如图1中,HI AD ∥,HI CI AD AD∴=, 3492AD ∴=, 6AD ∴=,2ID CD CI ∴=-=,∴正方形的边长为2.(2)如图2中,设等G 落在PC 时对应的点为G ',点F 的对应的点为F '.数学试卷 第23页(共24页)数学试卷 第24页(共24页)CA CP =,CD PA ⊥,ACD PCD ∴∠=∠,A P ∠=∠,HG PA '∥,CHG A ∴∠'=∠,CG H P ∠'=∠,CHG CG H ∴∠'=∠',CH CG ∴=',3IH IG DF ∴='='=,IG DB ∥,IG CI DB CD∴=, 246DB ∴=,3DB ∴=, 3DB DF ∴='=,∴点B 与点F '重合,∴移动后的矩形与CBP △重叠部分是BGG '△,∴移动后的矩形与CBP △重叠部分的形状是三角形.(3)如图3中,如图将DMI '△绕点D 顺时针旋转90︒得到DF R '△,此时N 、’F 、R 共线.’45MDN NDF MDI NDF DF R NDR ∠=∠+∠'=∠'+∠'=∠=︒,DN DN =,DM DR =,NDM NDR ∴△≌△,MN NR NF RF NF MI ∴=='+'='+',MNG ∴'△的周长24MN MG NG MG MI NG F R I G =+'+'='+'+'+'=''=.【考点】四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质.。
最新-2018年中考模拟试题四之真题练习及答案 精品
2018年中考模拟试题四之真题练习一. 选择题(共16个小题,每小题3分,共48分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的。
1. 的倒数是()A. B. C.5 D.2. 计算的结果是()A. B. C.D.3. 计算的结果是()A. 1B. 0C.D.4. 9的平方根是()A. 3B.C.81 D.5. 我区2004年参加中考的考生预计达到9400人,用科学记数法表示这个数为()A. 人B. 人C. 人D.人6. 在函数中,自变量x的取值范围是()A. B. C.D.7. 如果梯形的中位线的长是6cm,上底长是4cm,那么下底长为()A. 2cmB. 4cmC.6cm D. 8cm8. 六边形的内角和为()A. B. C.D.9. 如图,ABCD为圆内接四边形,若,则等于()A. B. C.D.10. 如果两圆的半径分别为3和4,圆心距为7,那么这两个圆的位置关系是()A. 外切B. 内切C. 相交D. 外离11. 在中,,若,则的值为()A. B. C.D.12. 在直角坐标系中,点一定在()A. 抛物线上B.双曲线上C. 直线上 D. 直线上13. 如图,在中,,若,,则BC的长为()A. 2B. 4C.6 D. 814. 如图,PA切⊙O于点A,若,则⊙O的半径是()A. B. C.D.15. 若数据的平均数是4,则这组数据的中位数和众数是()A. 3和2B. 2和3C. 2和2 D. 2和416. 如果,那么二次函数的图象大致是()A. B.C. D.第II卷(非选择题 52分)注意事项:1. 第II卷包括七道大题。
考生要在本试卷上按要求作答。
2. 卷面不够用时,可将答案写在第8页内的空白处,但须注明题号。
二. 填空题(共4个小题,每小题3分,共12分)17. 计算:18. 若,则19. 如果圆柱的高为4cm,底面半径为3cm,那么这个圆柱的侧面积是20. 要使一个菱形成为正方形,则需增加的条件是(填上一个正确的条件即可)。