等差等比数列的性质总结

等差等比数列的性质总结
等差等比数列的性质总结

等差数列

1.等差数列的定义:(d为常数)();

2.等差数列通项公式:

,首项:,公差:d,末项:

推广:.从而;

3.等差中项

(1)如果,,成等差数列,那么叫做与的等差中项.即:或

(2)等差中项:数列是等差数列

4.等差数列的前n项和公式:

(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)

特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项

(项数为奇数的等差数列的各项和等于项数乘以中间项)

5.等差数列的判定方法

(1)定义法:若或(常数)是等差数列.(2)等差中项:数列是等差数列

(3)数列是等差数列(其中是常数)。

(4)数列是等差数列,(其中A、B是常数)。

6.等差数列的证明方法

定义法:若或(常数)是等差数列.

7.提醒:

(1)等差数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)设项技巧:

①一般可设通项

②奇数个数成等差,可设为…,…(公差为);

③偶数个数成等差,可设为…,,…(注意;公差为2)

8..等差数列的性质:

(1)当公差时,

等差数列的通项公式是关于的一次函数,且斜率为公差;

前和是关于的二次函数且常数项为0. (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。

(3)当时,则有,特别地,当时,则有.

注:,

(4)若、为等差数列,则都为等差数列

(5)若{}是等差数列,则,…也成等差数列

(6)数列为等差数列,每隔k(k)项取出一项()仍为等差数列

(7)设数列是等差数列,d为公差,是奇数项的和,是偶数项项的和,是前n项的和

1.当项数为偶数时,

2、当项数为奇数时,则

(其中是项数为2n+1的等差数列的中间项).

(8)、的前和分别为、,且,

则.

(9)等差数列的前n项和,前m项和,则前m+n项和

(10)求的最值

法一:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。

法二:(1)“首正”的递减等差数列中,前项和的最大值是所有非负项之和

即当由可得达到最大值时的值.

(2)“首负”的递增等差数列中,前项和的最小值是所有非正项之和。

即当由可得达到最小值时的值.

或求中正负分界项

法三:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对称轴最近的整数时,取最大值(或最小值)。

若S p = S q则其对称轴为

注意:解决等差数列问题时,通常考虑两类方法:

①基本量法:即运用条件转化为关于和的方程;

②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.

等比数列

1. 等比数列的定义:,称为公比

2. 通项公式:

,首项:;公比:推广:,从而得

3. 等比中项

(1)如果成等比数列,那么叫做与的等差中项.即:或

注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)

(2)数列是等比数列

4. 等比数列的前n项和公式:

(1) 当时,

(2) 当时,

(为常数)5. 等比数列的判定方法

(1)用定义:对任意的n,都有为等比数列

(2)等比中项:(0)为等比数列

(3)通项公式:为等比数列

(4)前n项和公式:

为等比数列

6. 等比数列的证明方法

依据定义:若或为等比数列

7. 注意

(1)等比数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)为减少运算量,要注意设项的技巧,一般可设为通项;

如奇数个数成等差,可设为…,…(公比为,中间项用表示);

8. 等比数列的性质

(1) 当时

①等比数列通项公式是关于n的带有系数的类指数函数,底数为公比

②前n项和

,系数和常数项是互为相反数的类指数函数,底数为公比

(2) 对任何m,n,在等比数列中,有,特别的,当m=1时,便得到等比数列的通项公式.因此,此公式比等比数列的通项公式更具有一般性。

(3) 若m+n=s+t (m, n, s, t),则.特别的,当n+m=2k时,得

注:

(4) 列,为等比数列,则数列,,, (k为非零常数) 均为等比数列.

(5) 数列为等比数列,每隔k(k)项取出一项()仍为等比数列

(6) 如果是各项均为正数的等比数列,则数列是等差数列

(7) 若为等比数列,则数列,,,成等比数列

(8) 若为等比数列,则数列

, , 成等比数列

(9) ①当时,②当时,

,

③当q=1时,该数列为常数列(此时数列也为等差数列);

④当q<0时,该数列为摆动数列.

(10)在等比数列中, 当项数为2n (n)时,,.

(11)若是公比为q的等比数列,则

例1、(1)设是等差数列,且,求及S15值。

(2)等比数列中,,,前n项和Sn=126,求n和公比q。

(3)等比数列中,q=2,S99=77,求a3+a6+…+a99;

(4)项数为奇数的等差数列中,奇数项之和为80,偶数项之和为75,求此数列的中间项与项数。

例2、设等差数列的前n项之和为Sn,已知a3=12,S12>0,S13<0,(1)求公差d的取值范围。

(2)指出S1,S2,S3,…Sn中哪一个值最大,并说明理由。

例3、(1) 由正数组成的等比数列,若前项之和等于它前项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列的通项公式.

(2) 若数列成等差数列,且,求.

例4、已知等差数列,

(1)在区间上,该数列有多少项?并求它们的和;

(2)在区间上,该数列有多少项能被整除?并求它们的和.

课堂练习:

(1)若一个等差数列前3项的和为34,最后三项的和为146,且所有项

的和为,则这个数列有_______项;

(2)已知数列是等比数列,且,,,则

_________

(3)等差数列前项和是,前项和是,则它的前项和是________

(4)等差数列{an}和{bn}的前n项之和之比为(3n+1):(2n+3),求.。

(5)已知等差数列{an}中,,问S1,S2,S3,…Sn中哪一个值最大。

(6)设数列{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn

为数列{}的前n项和,求Tn。

回家作业:

1.在正整数100至500之间能被11整除的个数为()

A.34

B.35

C.36

D.37

2.{an}是等差数列,且a1+a4+a7=45,a2+a5+a8=39,则a3+a6+a9的值是()

A.24

B.27

C.30

D.33

3.设函数f(x)满足f(n+1)=(n∈N*)且f(1)=2,则f(20)为()

A.95

B.97

C.105

D.192

4. 若是等差数列,首项,则使前n项和

成立的最大自然数n是:()

A.4005 B.4006 C.4007 D.4008

5.等差数列{an}中,已知a1=-6,an=0,公差d∈N*,则n(n≥3)的最大值为()

A.5

B.6

C.7

D.8

6. 设命题甲:△ABC的一个内角为60o,命题乙:△ABC的三个内角的度数成等差数列.那么( )

(A)甲是乙的充分不必要条件 (B)甲是乙的必要不充分条件

(C)甲是乙的充要条件 (D)甲不是乙的充分条件也不是乙的

必要条件

7.已知等差数列{an}的公差为正数,且a3·a7=-12,a4+a6=-4,则S20为()

A.180

B.-180

C.90

D.-90

8.已知是等差数列,,,则该数列前10项和等于()

A.64 B.100 C.110 D.120

9.由公差为d的等差数列a1、a2、a3…重新组成的数列a1+a4, a2+a5, a3+a6…是()

A.公差为d的等差数列

B.公差为2d的等差数列

C.公差为3d的等差数列

D.非等差数列

10.在等差数列{an}中,若S9=18,Sn=240,an-4=30,则n的值为()

A.14

B.15

C.16

D.17

11.在数列{an}中,a1=1,an+1=(n∈N*),则是这个数列的第_________项.

12.在等差数列{an}中,已知S100=10,S10=100,则S110=_________.

13.在-9和3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n=_______.

14.等差数列{an},{bn}的前n项和分别为Sn、Tn,若=,则=_________.

15.已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是

16.若等比数列中,各项都是正数,且成等差数列,则

________

17.若一个等差数列的首项为,公差,从第10项起每一项都比1大,则的范围________.

18.等比数列的各项都为正数,且,则

______

19. 在等差数列{an}中,若a1=25且S9=S17,求数列前多少项和最大.

20. 已知f(x+1)=x2-4,等差数列{an}中,a1=f(x-1), a2=-,a3=f(x).

(1)求x值;(2)求a2+a5+a8+…+a26的值.

21.已知数列{an}的前n项和为Sn,且满足an+2Sn·Sn-1=0(n≥2),a1=.

(1)求证:{}是等差数列;(2)求an表达式;

(3)若bn=2(1-n)an(n≥2),求证:b22+b32+…+bn2<1.

文档已经阅读完毕,请返回上一页!

等差等比数列的性质总结

等差等比数列的性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S +=1(1)2n n na d -=+211()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间 项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

高中数学等差数列性质总结大全

等差数列的性质总结 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A += 或b a A +=2 . (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S +=1(1)2n n na d -=+211()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. ` (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: : ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 ? (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.

等差数列知识点总结最新版

等差数列 1.定义 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常 数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差, 公差通常用字 母d 表示。 用递推公式表示为a .—a .」二d ( d 为常数)(n_2); 2 ?等差数列通项公式 (1) a n (n -1)d =dn y -d(n N )(首项:a !,公差:d ,末项: 3. 等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即: 2a n = an-1 ■ an 1 (n — 2) = 2a . 1 二 a . a . .2 d 2 1 n (a 1 d )n 2 2 2 =An Bn 等差数列的证明方法 二d 或am-a n=d (常数「N )= & 是等差数列. 「a, 是等差数列 = 2a . - a n-1 ' a . 1 (n 一 2) = 2a n 1 = a . ' a . 2 ? (3) 数列"a n *是等差数列二a n 二kn ? b (其中k,b 是常数)。 (4) 数列乩1是等差数列二&二A n 2 ? Bn ,(其中A 、B 是常数)。 注:(1)等差数列的通项公式及前 n 和公式中,涉及到 5个元素:a 1、d 、n 、a n 及S n , (2) a n "m (n —m)d . 从而d =勺屯; n —m a n ) (2 ) 等差 中 项 数列;、和是等差 等差数列的前n 项和公式: n(a 1 +a n ) Sn 厂 (其中A 、B 是常数) (当d M 0时,S 是关于n 的二次式且常数项为 0) (1)定义法:若a n -a n j

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

等差数列的基本性质

等差数列 一、等差数列的定义以及证明方法: 1、定义:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. 注意一些等差数列的变形形式,如: 111n n d a a +-=(d 为常数,此时,数列{1 n a }为等差数列) d =(d 为常数,此时,数列??为等差数列) …… 2、证明方法: (1)定义法:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. (2)等差中项法:2a n+1=a n +a n+2 (3)通项公式法:若数列{a n }的通项公式为a n =pn+q 的一次函数,则数列{a n }为等差数列. (4)若数列{a n }的前n 项和为S n =An 2+Bn ,则数列{a n }为等差数列. 【例题1】【2013年,北京高考(文)】给定数列a 1,a 2,a 3,……,a n ,……,对i =1,2,……,n-1,该数列的前i 项的最大值记为A i ,后n –i 项a i+1,a i +2,……,a n 的最小值记为B i ,d i =A i –B i . (I)设数列{a n }为3,4,7,1,求d 1,d 2,d 3的值. (II)设d 1,d 2,……,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,a 3,……,a n -1是等差数列.

3、等差数列的通项公式: (1)等差数列的通项公式:a n =a 1+(n-1)d 累加法和逐项法:对于形如() 1n n a a f n --=的形式,我们一般情况下,可以考虑使用逐项法或者累加法,从而达到求a n 的目的. 变形形式: a n =a m +(n-m )d 由以上公式可以得到:n m a a d n m -= - (2)等差数列通项公式的一些性质: ①若实数m,n,p,q 满足:m+n=p+q ,则:n m p q a a a a +=+;特别的,若m+n=2p ,则: 2n m p a a a +=; ②若数列{a n }为等差数列,则下标成等差数列的新数列仍然成等差数列; ③若数列{a n }为等差数列,数列{b n }为等差数列,则数列{pa n +qb n }还是等差数列; ④当d >0时,{a n }为递增数列;当d =0时,数列{a n }为常数列;当d <0时,数列{a n }为递减数列; 【例题1】【2015届黑龙江省双鸭山一中高三上学期期末考试,3】在等差数列{}n a 中,首项 01=a ,公差,0≠d 若7321a a a a a k ++++=Λ,则k =( ) A . 22 B . 23 C . 24 D. 25 【变式训练】【2015届吉林省东北师大附中高三上学期第三次摸底考试,3】设等差数列{}n a 的前n 项和为n S ,若151,15a S ==,则6a 等于 ( ) A .8 B .7 C .6 D .5 4、等差数列的求和问题:——方法:倒序相加 ()()()111111222 n n n n n n S a a a a n d na d -= +=++-=+???? (1)在等差数列{a n }中,k S ,2k k S S -,32k k S S -成等差数列;或者:()233k k k S S S -=; (2)奇偶项问题: 在等差数列中,若项数为偶数项,即:当n=2m (n,m ∈N*)时,有:S 偶-S 奇=md , 1 = m m S a S a +奇偶;

等差数列知识点总结最新版

等差数列 1. 定义 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 用递推公式表示为d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: (1)* 11(1)()n a a n d dn a d n N =+-=+-∈(首项:1a ,公差:d ,末项:n a ) (2)d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 ( 2 ) 等差中项:数列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式:1() 2 n n n a a s += 1(1) 2 n n na d -=+ 211 ()22 d n a d n = +- 2An Bn =+ (其中A 、B 是常数) (当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的证明方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. ( 2 ) 等差中项:数列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 注:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,

等差数列的性质、求和知识点及训练

等差数列的性质、求和知识点及训练 重点:掌握等差数列的通项公式、求和公式以及等差中项的求法 难点:对等差数列的综合考察 一知识梳理 1.定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: * 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 ( 2 ) 等 差 中 项 : 数 列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数) (当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法 (1)定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数 列.

(2)等差中项:数列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. 7.提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、 n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便 可求出其余2个,即知3求2。 (2)通常把题中条件转化成只含1a 和d 的等式! 8.等差数列的性质: (1)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差 0d =,则为常数列。 (2)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有 2m n p a a a +=. (3) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (公差为md ) 图示: m m m m m m S S S m m S S m m S m a a a a a a a a 323231221321-+-+++++++++++ (4)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n n A f n B =, 则 21 21 (21)(21)(21)n n n n n n a n a A f n b n b B ---===--. (5)若{}n a 、{}n b 为等差数列,则{}n n a b ±为等差数列 (6)求n S 的最值 法一:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。若S p = S q 则

等差、等比数列以及数列求和专题(汇编)

§6.2 等差数列 一.课程目标 1.理解等差数列的概念; 2.掌握等差数列的通项公式与前n 项和公式; 3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题; 4.了解等差数列与一次函数的关系. 二.知识梳理 1.定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 2.通项公式 若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 3.前n 项和公式 等差数列的前n 项和公式:2 2111)() (n n a a n d n n na S +=-+=其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的常用性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和.

(1)通项公式的推广:*),()(N m n d m n a a m n ∈-+= (2)若m +n =p +q (m ,n ,p ,q ∈N *),则有q p n m a a a a +=+。特别的,当p n m 2=+时,p n m a a a 2=+ (3)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列. (4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (5)若}{},{n n b a 是等差数列,则}{n n qb pa +仍是等差数列. 4.与等差数列各项和相关的性质 (1)若}{n a 是等差数列,则}{n S n 也是等差数列, 其首项与}{n a 的首项相同,公差为}{n a 的公差的 2 1。 (2)数列m m m m m S S S S S 232--,,…也是等差数列. (3)关于非零等差数列奇数项与偶数项的性质。 a .若项数为n 2,则1 +==-n n a a S S nd S S 偶奇奇偶, 。 b .若项数为12-n ,则n a n n S )(1-=偶,n na S =奇,1 += =-n n S S a S S n 偶奇奇偶, 。 (4)若两个等差数列}{},{n n b a 的前n 项和分别为n n T S ,,则 1 21 2--=n n n n T S b a 5.等差数列的前n 项和公式与函数的关系: (1)n d a n d S )(2 212-+= ,数列{a n }是等差数列? S n =An 2+Bn (A ,B 为常数). (2)在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.

高二数学 等差数列的定义及性质

等差数列的定义及性质 ?等差数列的定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为a n+1-a n=d。 ?等差数列的性质: (1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列; (2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和; (3)m,n∈N*,则a m=a n+(m-n)d; (4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p; (5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数。 (6) (7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即 (8)仍为等差数列,公差为

?对等差数列定义的理解: ①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同 一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. ②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有 ③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数 列;当d<0时,数列为递减数列; ④是证明或判断一个数列是否为等差数列的依据; ⑤证明一个数列是等差数列,只需证明a n+1-a n是一个与n无关的常数即可。 等差数列求解与证明的基本方法: (1)学会运用函数与方程思想解题; (2)抓住首项与公差是解决等差数列问题的关键; (3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,a n,S n,知道其中任意三 个就可以列方程组求出另外两个(俗称“知三求二’).

等差等比数列的性质总结

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: * 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 注:12132n n n a a a a a a --+=+=+=???,

等差数列的性质总结

等差数列性质总结 1.等差数列的定义式:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项:数列{}n a 是等差数列+-112(2,n N )n n n a a a n +?=+≥∈212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘 以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列 等差中项性质法:-112(2n )n n n a a a n N ++=+≥∈,.

2.2等差数列的概念、通项公式、性质练习含答案

2.2 等差数列概念、通项公式、性质 第1课时 等差数列的概念及通项公式 题型一 等差数列的概念 例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,…. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 题型二 等差中项 例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中, (1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10. 跟踪训练3 (1)求等差数列8,5,2,…的第20项; (2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 等差数列的判定与证明 典例1 已知数列{a n }满足a n +1=3a n +3n ,且a 1=1. (1)证明:数列???? ??a n 3n 是等差数列;

(2)求数列{a n }的通项公式. 典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式. 【课堂练习】 1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2 B .3 C .-2 D .-3 3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120° 4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13 的等差数列 C .公差为-13 的等差数列 D .不是等差数列 5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92 B .47 C .46 D .45 1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)?{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)?{a n }是等差数列; (3)a n =kn +b (k ,b 为常数,n ∈N +)?{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可. 2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量. 【巩固提升】 一、选择题 1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4 B .3 C .2 D .1 2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52 B .62 C .-62 D .-52 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( )

高中数列知识点总结

高中数列知识点总结 Written by Peter at 2021 in January

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1 ()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次 函数图像的分点表示形式。 四 性质结论 或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =- 1+=n n a a S S 偶 奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设 12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -=

等差数列及等比数列的性质总结

等差数列与等比数列总结 一、等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示; 等差中项,如果2 b a A += ,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数; 等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-; 等差数列}{a n 的前n 项和公式:n S =2n )a a (n 1?+=d 2)1-n (n na 1?+ = 中12na n )2d -a (n )2d (=?+?; 【等差数列的性质】 1、d )1-n (a a m n += 【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+ 【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+ 3、md 成等差数列,公差为、a 、a 、a m 2k m k k ??++ 【说明】md a -a a -a m k m 2k k m k =??==+++ 4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ??成等差数列,公差为d n 2 【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+??+++??++=++, ) a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+??+++??++=++++??=,d n 2 5、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=?+

数列复习知识点总结

数列 一、知识梳理 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. 2.通项公式:如果数列 {}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②?? ?≥-==-) 2() 1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如:.,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使 +∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得 M a n >. 等差数列 1.等差数列的概念 如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式 ⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S += 或d n n na S n )1(2 1 1-+=. 3.等差中项 如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项. 即:A 是a 与b 的等差中项?b a A +=2?a ,A ,b 成等差数列. 4.等差数列的判定方法 ⑴定义法:d a a n n =-+1 (+∈N n ,d 是常数)?{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )?{}n a 是等差数列. 5.等差数列的常用性质 ⑴数列 {}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列; ⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd . ⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a ) ⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+; ⑸若等差数列 {}n a 的前n 项和n S ,则? ?? ???n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则n n a a S S nd S S 1 , +==-奇偶奇偶 ;

相关文档
最新文档