第一章 概率统计基础知识(2)概率的古典定义与统计定义

第一章 概率统计基础知识(2)概率的古典定义与统计定义
第一章 概率统计基础知识(2)概率的古典定义与统计定义

二、概率的古典定义与统计定义

二、概率的古典定义与统计定义(p5-11)

确定一个事件的概率有几种方法,这里介绍其中两种最主要的方法,在历史上,这两种方法分别被称为概率的两种定义,即概率的古典定义及统计定义。

(一) 概率的古典定义

用概率的古典定义确定概率的方法的要点如下:

(1)所涉及的随机现象只有有限个样本点,设共有n个样本点;

(2)每个样本点出现的可能性相同(等可能性);

若事件含有k个样本点,则事件的概率为:

(1.1-1)

[例1.1-3]

[例1.1-3]掷两颗骰子,其样本点可用数组(x , y)表示,其中,x与y分别表示第一与第二颗骰子出现的点数。这一随机现象的样本空间为:

它共含36个样本点,并且每个样本点出现的可能性都相同。参见教材6页图。这个图很多同学看不懂!其实就是x+y=?在坐标系反映出来的问题。

(二)排列与组合

(二)排列与组合

用古典方法求概率,经常需要用到排列与组合的公式。现简要介绍如下: 排列与组合是两类计数公式,它们的获得都基于如下两条计数原理。

(1)乘法原理: 如果做某件事需经k步才能完成,其中做第一步有m1种方

法,做第二步m2种方法,做第k步有m k种方法,那么完成这件事共有m1×m2×…×m k 种方法。

例如, 甲城到乙城有3条旅游线路,由乙城到丙城有2条旅游线路,那么从甲城经乙城去丙城共有3×2=6 条旅游线路。

(2) 加法原理: 如果做某件事可由k类不同方法之一去完成,其中在第一类方法中又有m1种完成方法, 在第二类方法中又有m2种完成方法,在第k类方法中又有m k种完成方法, 那么完成这件事共有m1+m2+…+m k种方法。

例如,由甲城到乙城去旅游有三类交通工具: 汽车、火车和飞机,而汽车有5个班次,火车有3个班次,飞机有2个班次,那么从甲城到乙城共有5+3+2=10 个班次供旅游选择。

排列与组合

排列与组合的定义及其计算公式如下:

①排列:从n个不同元素中任取)个元素排成一列称为一个排列。按乘法原理,此种排列共有n×(n1) ×…×(n-r+1) 个,记为。若r=n, 称为全排列,全排列数共有n!个,记为,即:= n×(n-1) ×…×(n-r+1), = n!

②重复排列:从n个不同元素中每次取出一个作记录后放回,再取下一个,如此连续取r次所得的排列称为重复排列。按乘法原理,此种重复排列共有个。注意,这里的r允许大于n。

例如,从10个产品中每次取一个做检验,放回后再取下一个,如此连续抽取4次,所得重复排列数为。假如上述抽取不允许放回,则所得排列数为10×9×8×7=5040 。

③组合: 从n个不同元素中任取x个元素并成一组 (不考虑他们之间的排列顺序)称为一个组合,此种组合数为: .特别的规定0!=1,因而。另外,在

组合中,r个元素"一个接一个取出"与"同时取出"是等同的。例如,从10个产品中任取4个做检验,所有可能取法是从10个中任取4个的组合数,则不同取法的种数为:

这是因为取出的任意一组中的4个产品的全排列有4!=24 种。而这24种排列在组合中只算一种。所以。

注意:排列与组合都是计算"从n个不同元素中任取r个元素"的取法总数公

式,他们的主要差别在于: 如果讲究取出元素间的次序,则用排列公式;如果不讲究取出元素间的次序,则用组合公式。至于是否讲究次序,应从具体问题背景加以辨别。

[例1.1-4]

[例1.1-4] 一批产品共有个,其中不合格品有个,现从中随机取出n个,问:事件= " 恰好有m个不合格品"的概率是多少?

从个产品中随机抽取n个共有个不同的样本点,它们组成这个问题的样本空间。

其中“随机抽取”必导致这个样本点是等可能的。以后对“随机抽取”一词都可以作同样理解。下面我们先计算事件的概率,然后计算一般事件的概率。

事件="恰好有0个不合格品"="全是合格品",要使取出的n个产品全是合格品,那么必须从该批中个合格品中抽取,这有种取法。故事件的概率为:/ .

事件="恰好有1个不合格品",要使取出的n个产品只有一个不合格品,

其他n-1个是合格品,可分二步来实现。第一步从m个不合格品中随机取出1个,共有种取法;第二步从个合格品中随机取出n-1 个,共有种取法。依

据乘法原则,事件共含有个样本点。故事件的概率为:/

最后,事件发生,必须从个不合格品中随机抽取m个,而从个合格品中随机抽取n-m 个,依据乘法原则,事件共含有个样本点,故事件的概率是:

其中为n, 中的较小的一个数,它是m的最大取值,这是因为m既不可能超过取出的产品数n, 也不可能超过不合格品总数因此,假如,下面

来计算诸事件的概率:

而等都是不可能事件,因为10个产品中只有2个不合格品,而要从中抽出3个或4个不合格品是不可能。

[例1.1-5]

[例1.1-5](放回抽样)抽样有两种形式:不放回抽样与放回抽样。上例讨论的是不放回抽样,每次抽取一个,不放回,再抽取下一个,这相当于n个同时取出,因此可不论其次序。放回抽样是每次抽一个,将其放回,均匀混合后再抽下一个。这时要讲究先后次序,现对上例采取放回抽样方式讨论事件=“恰好有m个不合格品”的概率。

从n个产品中每次随机抽取一个,检查后放回抽第二个,这样直到抽出第n个产品为止。由于每次都有n种可能,故在放回抽样的问题中共有个可能的样本点。事件b0=“全是合格品”发生必须从n-m个合格品中用放回抽样的方式随机抽取n次,它共含有种取法,故事件b0的概率为:事件=“恰好有一件不合格品”发生,必须从个合格品中用放回抽样抽取n-1次,而从个不合格品中抽一次,这样就有种取法,再考虑不合格品出现的顺序,故事件的概率为

同样的可求的概率。

(二)概率的统计定义

(二)概率的统计定义

要点如下:

(1) 与事件a有关的随机现象是可以大量重复试验的;

(2) 若在n次重复试验中,事件a发生次,则事件a发生的频率为:

(1.1-2)

频率能反映事件a发生的可能性大小;

(3) 频率将会随着重复试验次数不断增加而趋于稳定,这个频率的稳定值就是事件a的概率。在实际中人们无法把一个试验无限次地重复下去,只能用重复试验次数n较大时的频率去近似表示概率。

[例1.1-6]

[例1.1-6 ]说明频率稳定的例子

(1) 为了验证掷一枚均匀硬币出现正面的概率为0.5 ,许多人做了大量的重复试验,图1.1-10 记录了前400 次掷硬币试验中频率的变化情况。在重复次数n较小时波动剧烈,随着n的增大,波动的幅度在逐渐变小。历史上有不少人做过更多次重复试验。其结果(见表1.1-1) 表明,正面出现的频率逐渐稳定在

0.5 。这个0.5 就是频率的稳定值,也是正面出现的概率,这与用古典方法计算的概率是相同的。图1.1-10(教材10页),表1.1-1(教材10页)。

(2) 在英语中

(2) 在英语中某些字母出现的频率远高于另外一些字母。人们对各类的英语书刊中字母出现的频率进行了统计。发现各个字母的使用频率相当稳定,其使用频率见表1.1-2。这项研究在计算机键盘设计(在方便的地方安排使用频率较高的字母键)、印刷铅字的铸造(使用频率高的字母应多铸一些)、信息的编码(使用频率高的字母用较短的码)、密码的破译等等方面都是有用的。表1.1-2(教材10页)

三、概率的性质及其运算法则

三、概率的性质及其运算法则(p11-14)

(一) 概率的基本性质及加法法则

根据概率的上述定义,可以看出它具有以下基本性质:

性质l:概率是非负的,其数值介于0与1之间,即对任意事件a,有:

特别,不可能事件的概率为0,必然事件的概率为1,即:,

[例1.1-7]

[例1.1-7] 抛三枚硬币,至少一个正面出现 (记为事件)的概率是多少?

解:在抛三枚硬币的随机试验中,样本空间共有8个样本点:(正、正、正)、(反、反、反)、(正、反、反)、(反、正、反)、(反、反、正)、(正、

正、反)、(正、反、正)、(反、正、正)。中所含的样本点较多,但其对立事件="抛三枚硬币,全是反面"={( 反,反,反)},只含一个样本点,从等可能

性可知再由性质2,可得:

[例1.1-8]

[例1.1-8]一批产品共100 件,其中5件不合格品,现从中随机抽出10件,其中最多有两件不合格品的概率是多少?解:设ai表示事件“抽出10件中恰好有i件不合格品”,于是所求事件上=“最多有2件不合格品可表示为:

并且为三个互不相容事件,由性质5可知:

余下就是用古典方法算得ai的概率。据a0的定义,从100 件产品随机抽出10件的所有样本点共有个。要使抽出的10件产品中有0件不合格品,即全是合格品,则10件必须从95件合格品中抽取,所以:

=0.0702 于是所求的概率为:=0.5837+0.3394+00.0702=

0.9933 可见事件a发生的概率很接近于1,说明发生的可能性大;而它的对立事件=“抽10件产品中至少有3件不合格品”的概率

,发生的可能性很小。

[例1.1-9]

[例1.1-9]某足球队在未来一周中有两场比赛,在第一场比赛中获胜的概率为1/2 ,在第二场比赛中获胜的概率是1/3,如果在两场比赛中都获胜概率是1/6,那么在两场比赛中至少有一场获胜的概率是多少?解:设事件=“第i场比赛获胜”,i=1,2。于是有:。由于事件“两场比赛中至少有一场获胜”可用事件表示,所求概率为。另外由于事件与是可能同时发生的,故与不是互不相容事件,应用性质4来求,即:这

表明在未来两场比赛中至少有一场获胜的概率为2/3 。

(二)条件概率及概率的乘法法则

(二)条件概率及概率的乘法法则

在事件发生的条件下,事件发生的概率称为的条件概率,记为。

可导出乘法公式

(三) 独立性和独立事件的概率

(三) 独立性和独立事件的概率

设有两个事件假如其中一个事件的发生不影响另一个事件的发生与否,则称事件相互独立。

性质7:假如两个事件相互独立,则同时发生的概率为:

(1.1-5)

性质8:假如两个事件相互独立,则的条件概率等于的无条件概率。

两个事件的相互独立性可以推广到三个或更多个事件的相互独立性。此时性质7可以推广到更多个事件上。

[例1 .1-13]

[例1 .1-13] 用晶体管装配某仪表要用到128 个元器件,改用集成电路元件后,只要用12只就够了,如果每个仪表才能正常工作,试分别求出上述两种场合下能正常工作2000 小时的概率。

经济数学基础-概率统计课后习题答案

习 题 一 写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次; (3) 掷一枚硬币,直到首次出现正面为止; (4) 一个库房在某一个时刻的库存量(假定最大容量为M ). 解 (1) Ω={正面,反面} △ {正,反} (2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m } 掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”, B =“奇数点”, C =“点数小于5”, D =“小于5的偶数点”,讨论上述各事件间的关系. 解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;A ?D ,C ?D. 3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++= B - C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B = 321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解 B A A B A +=+ C B A B A A C B A ++=++ C B A B B AC +=+ BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对立的区别何在,举例说明. 解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容. 7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系. 解 由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有 A =C +F ,C 与F 互不相容, D ?A ?F ,A ?C. 8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率. 解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1 315 C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有 图1-1 图1-2

李贤平 《概率论与数理统计 第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ; (3)C AB ?;(4)BC A ?. 3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ; (2)0)1(321321=-+-+--n n n n n n nC C C C Λ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

中北大学概率统计习题册第四章完整答案(详解)资料

中北大学概率统计习题册第四章完整答案 (详解)

1. 填空 1)设~(,)X B n p ,则EX =np ,DX = npq 。 2)设~()X P λ,则EX =λ, DX =λ。 3)设~()X E λ,则EX = 1λ ,DX = 2 1 λ。 4)设[]~,X U a b ,则EX = 2 a b +,DX = () 2 12 b a -。 5)设2~(,)X N μσ,则EX =μ, DX =2σ。 6)设(,)~(1,1;2,9;0.5)X Y N ,则 EX =1,DX = 1 ,EY = 2,DY = 9 ,(,)Cov X Y = 1.5 。 7)已知螺钉的重量服从()250, 2.5N ,则100个螺钉总重量服从分布()5000, 625N 。 2. 已知在一定工序下,生产某种产品的次品率0.001。今在同一工序下,独立生产5000件这种产品,求至少有2件次品的概率。 解:设X 表示5000件产品中的次品数,则 ()~5000,0.001X B 。 50000.0015λ=?=,则 ()()()2100P X P X P X ≥=-=-= 5000499910.99950000.0010.999=--?? 0155 5510!1! e e --≈--10.006740.033690.95957=--= 注:实际上 5000499910.99950.9990.95964--?= 3. 设某商店中每月销售某种商品的数量服从参数为7的泊松分布,问在月初进货时应至少进多少件此种商品,才能保证当月不脱销的概率为0.999。 解:设进货数件数为N ,当月销售需求为X ,则由题意知()~7X P ,且 {}7 07e 0.999! k N k P X N k -=≤=≥∑ 查泊松分布的数值表,可得16N ≥. 4 . 地下铁道列车的运行间隔时间为五分钟,一个旅客在任意时刻进入月台,求候车时间的数学期望与方差。 解:设旅客在地铁进站之前的X 时刻到达,即旅客候车时间也为X ;其数学期望和 分别为()~[0,5]X U , 52EX = ;2512 DX =。 5.设(){ }3.02010,,10~2=<

概率论与数理统计练习题练习题及参考答案

《 概率论与数理统计》练习题一 一、判断正误,在括号内打√或× 1.n X X X ,,,21 是取自总体),(2 σμN 的样本,则∑== n i i X n X 1 1 服从)1,0(N 分布; 2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ; 3.(√)设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; 4.若事件A 与B 互斥,则A 与B 一定相互独立; 5.对于任意两个事件B A 、,必有=B A B A ; 6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 7.(√)B A 、为两个事件,则A B A AB = ; 8.(√)已知随机变量X 与Y 相互独立,4)(, 8)(==Y D X D ,则4)(=-Y X D ; 9.(√)设总体)1,(~μN X , 1X ,2X ,3X 是来自于总体的样本,则3216 3 6161?X X X ++=μ 是μ的无偏估计量; 10.(√)回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。 二、填空题 1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示为C AB 2.设随机变量X 服从二项分布),(p n B ,则 =EX DX p -1: 3.?????≤≤-=,, , 0,1)(其他b x a a b x f 是 均匀 分布的密度函数; 4.若事件C B A 、、相互独立,且25.0)(=A P ,5.0)(=B P ,4.0)(=C P ,则)(C B A P =分布函数; 5.设随机变量X 的概率分布为 则=a )()(Y D X D +; 6.设随机变量X 的概率分布为

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论与数理统计2.第二章练习题(答案)

第二章练习题(答案) 一、单项选择题 1. 已知连续型随机变量X 的分布函数为 3.若函数f(x)是某随机变量X 的概率密度函数,则一定成立的是(C ) A. f(x)的定义域是[0, 1] B. f(x)的值域为[0,1] 4.设X - N(l,l),密度函数为f(x),则有(C ) 5.设随机变量X ~ N (/M6), Y ?N 仏25),记 P1 = P (X “ + 5), 则正确的是 (A)对任意“,均有Pi = p 2 (B)对任意“,均有Pi v p? (c)对任意〃,均有Pl > Pi (D )只对“的个别值有P1 = P2 6.设随机变量x ?N(10^s 2) 9 则随着s 的增加 P{|X- 10|< s} ( C ) F(x) = o, kx+b 、 x<0 0 < x< x> 则常数&和〃分别为 (A) k = —b = 0 龙, (B) k = 0,b 丄 (C) k = —,b = 0 (D) k = 0,b= 1 n In In 2.下列函数哪个是某随机变量的分布函数 (A ) z 7 fl -cosx ; 2 0, f sinx, A. f(x)』沁,xnO C. f (x)= a (a>0); B. f (x) 1, x < 0 [cosx, — - < X < - 1 2 2 D. f (x) 其他 0, 0 < X < 7T 其他 —-< x < - 2 2 其他 C- f(x)非负 D. f (x)在(-叫+00)内连续 A. P {X O } B. f(x)= f(-x) C. p{xl} D ? F(x) = l-F(-x) A.递增 B.递减 C.不变 D.不能确定

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

第四章习题解答 1.设随机变量X ~B (30, 6 1),则E (X )=( D ). A.6 1 ; B. 65; C.6 25; D.5. 1 ()3056 E X np ==?= 2.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( A ). A. 3; B. 6; C. 10; D. 12. ()1()3E X E Y == 因为随机变量X 和Y 相互独立所以()()()3E XY E X E Y == 3.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X 2的数学期望E (X 2)=____18.4______. (10,0.4)()4() 2.4X B E X D X ==: 22()(())()18.4E X E X D X =+= 4.某射手有3发子弹,射一次命中的概率为3 2,如果命中了就停止射击,否则一直射到子弹用尽.设表示X 耗用的子弹数.求E (X ). 解: X 1 2 3 P 2/3 2/9 1/9 22113()233999 E X = +?+?= 5.设X 的概率密度函数为 , 01()2,120,x x f x x x ≤≤?? =-<≤??? 其它 求2() ,().E X E X 解:12 20 1 ()()(2)1E X xf x dx x dx x x dx +∞-∞ ==+-=? ??, 12 22320 1 7 ()()(2)6 E X x f x dx x dx x x dx +∞ -∞ ==+-= ? ??.

概率统计练习题8答案

《概率论与数理统计》练习题8答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设有10个人抓阄抽取两张戏票,则第三个人抓到有戏票的事件的概率等于( )。 A 、0 B 、1 4 C 、18 D 、15 答案:D 2、如果,A B 为任意事件,下列命题正确的是( )。 A 、如果,A B 互不相容,则,A B 也互不相容 B 、如果,A B 相互独立,则,A B 也相互独立 C 、如果,A B 相容,则,A B 也相容 D 、AB A B =? 答案:B 3、设随机变量ξ具有连续的分布密度()x ξ?,则a b ηξ=+ (0,a b ≠是常数)的分布密度为( )。 A 、 1y b a a ξ?-?? ? ?? B 、1y b a a ξ?-?? ??? C 、1y b a a ξ?--?? ??? D 、 1y b a a ξ??? - ? ??? 答案:A 4、设,ξη相互独立,并服从区间[0,1]上的均匀分布则( )。 A 、ζξη=+服从[0,2]上的均匀分布, B 、ζξη=-服从[- 1,1]上的均匀分布, C 、{,}Max ζξη=服从[0,1]上的均匀分布,

D 、(,)ξη服从区域01 01x y ≤≤??≤≤? 上的均匀分布 答案:D 5、~(0, 1), 21,N ξηξ=-则~η( )。 A 、(0, 1)N B 、(1, 4)N - C 、(1, 2)N - D 、(1, 3)N - 答案:B 6、设1ξ,2ξ都服从区间[0,2]上的均匀分布,则12()E ξξ+=( )。 A 、1 B 、2 C 、0.5 D 、4 答案:B 7、设随机变量ξ满足等式{||2}116P E ξξ-≥=,则必有( )。 A 、14D ξ= B 、14 D ξ> C 、1 4 D ξ< D 、{} 15216 P E ξξ-<= 答案:D 8、设1(,,)n X X 及1(,,)m Y Y 分别取自两个相互独立的正态总体21(, )N μσ及 2 2(, )N μσ的两个样本,其样本(无偏)方差分别为21 S 及22 S ,则统计量2 122 S F S =服从F 分 布的自由度为( )。 A 、(1, 1)n m -- B 、(, )n m C 、(1, 1)n m ++ D 、( 1, 1,)m n -- 答案:A 9、在参数的区间估计中,给定了置信度,则分位数( )。 A 、将由置信度的大小唯一确定; B 、将由有关随机变量的分布唯一确定; C 、可按置信度的大小及有关随机变量的分布来选取; D 、可以任意规定。 答案:C 10、样本容量n 确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有( )。

概率统计基础训练题

第一章基础训练题 一、填空 1、设}1),({},4),({2222>+=≤+=y x y x B y x y x A ,则=?B A 。 2、事件A 、B 、C 至少有一个发生可表示为 ,至少有两个发生 ,三个都不发生 。 3、设}6,5,4,3,2,1{},7,5,3,1{==B A ,则=-B A 。 4、设事件A 在10次试验中发生了4次,则事件A 的频率为 。 5、设,)(),()(p A p B A p AB p ==则=)(B p 。 6、A 、B 二人各抛一枚硬币3次,则出现国徽一面次数相同的概率是 。 7、筐中有4个青苹果和5个红元帅,随机地从中取出2个,则取出的苹果为同一品种的概 率为 ,恰好取出2个青苹果的概率为 ,恰好取出1个青苹果和1个红元帅的概率 为 。 8、从一批由45件正品,5件次品组成的产品中任取3件产品,其中恰有一件次品的概率为 ,至少有一件正品的概率为 。 9、从一筐装有95个一等品,5个二等品的苹果中,每次随机取一个,记录它的等级后放回 原筐搅匀后再取一个,共取50次,则无二等品的概率为 。 10、已知,3.0)(,4.0)(==B p A p 5.0)(=?B A p ,则=)(B A p 。 11、已知,8.0)(,6.0)(,5.0)(===A B p B p A p 则=)(AB p ,=?)(B A p 。 12、对任意二事件B A ,,=-)(B A p 。 13、已知,3.0)(,4.0)(==B p A p (1)当A ,B 互不相容时,=?)(B A p ,=)(AB p (2)当A ,B 相互独立时,=?)(B A p ,=)(AB p ;(3)当A B ?时,=)(A p , =)(A B p ,=?)(B A p ,=)(AB p ,=-)(B A p 。 14、设C B A ,,为三事件,A 与B 都发生而C 不发生,则用C B A ,,的运算关系可表示 为 。设A ,B ,C 都发生,则用C B A ,,的运算关系可表示为 。 15、设B A ,为互斥事件,且,8.0)(=A p 则)(B A p = 。 16、从一批由10件正品,3件次品组成的产品中,任取一件产品,取得次品的概率为 。 17、设B A ,为两事件,则=)(AB p 。若B A ,为互斥事件,则=?)(B A p 。 18、设2.0)(,5.0)(=-=A B p A p ,则=?=)()(B A p B A p 。 (7.0)()()(),()()(=?=-+-=-B A p A B p A p AB p B p A B p )

概率统计第一章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第一章 概率论的基本概念 教学要求: 一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算. 二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式. 三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法. 重点:事件的表示与事件的独立性;概率的性质与计算. 难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理 解与应用;独立性的应用. 练习一 随机试验、样本空间、随机事件 1.写出下列随机事件的样本空间 (1)同时掷两颗骰子,记录两颗骰子点数之和; (2)生产产品直到有5件正品为止,记录生产产品的总件数; (3)在单位圆内任意取一点,记录它的坐标. 解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12 }; (2){=Ω5;6;7;…}; (3)(){} 1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件: (1)A 发生,B 与C 不发生,记为 C B A ; (2)C B A ,,至少有一个发生,记为C B A Y Y ; (3) C B A ,,中只有一个发生,记为C B A C B A C B A Y Y ; (4)C B A ,,中不多于两个发生,记为ABC . 3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑

球},,2,1=i 叙述下列事件的内涵: (1)21A A ={}次都取得黑球次、第第21. (2)21A A Y ={}次取得黑球次或地第21. (3)21A A ={}次都取得白球次、第第21 . (4)21A A Y ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21. 4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件. 解:321A A A B Y = 练习二 频率与概率、等可能概型(古典概率) 1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 16 3)(=AC P , 求事件A 、B 、C 都不发生的概率. 解:由于 ,AB ABC ? 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是 ()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=Y Y 16 9163414141=-++= 所以 ()().16 716911=- =-=C B A P C B A P Y Y 2.设,)(,)(,)(r B A P q B P p A P ===Y 求B A P (). 解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ?则() ()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=Y

概率论及数理统计 练习题及答案

练习 1.写出下列随机试验的样本空间 (1)把一枚硬币连续抛掷两次.观察正、反面出现的情况; (2)盒子中有5个白球,2个红球,从中随机取出2个,观察取出两球的颜色; (3)设10件同一种产品中有3件次品,每次从中任意抽取1件,取后不放回,一直到3件次品都被取出为止,记录可能抽取的次数;(4)在一批同型号的灯泡中,任意抽取1只,测试它的使用寿命. 解:(1)U={正正正反反正反反} (2)U={白白白红红白红红} (3)U={1,4,5,6,7,8,9,10} (4)U={t>0} 2.判断下列事件是不是随机事件 (1)一批产品有正品,有次品,从中任意抽出1件是正品; (2)明天降雨; (3)十字路口汽车的流量; (4)在北京地区,将水加热列100℃,变成蒸汽; (5y掷一枚均匀的骰子,出现1点. 解:(1)(2)(3)(5)都是随机事件,(4)不是随机事件。 3.设A,B为2个事件,试用文字表示下列各个事件的含义 (1)A+B; (2)AB; (3)A-B; (4)A-AB;(5)AB; (6)AB AB .

解:(1)A ,B 至少有一个发生;(2) A ,B 都发生;(3) A 发生而B 不发生;(4) A 发生而B 不发生;(5)A ,B 都不发生;(6)A ,B 中恰有一个发生(或只有一个发生)。 4.设A,B,C 为3个事件,试用A,B,C 分别表示下列各事件 (1)A ,B ,C 中至少有1个发生; (2)A ,B ,C 中只有1个发生; (3)A ,B ,C 中至多有1个发生; (4)A ,B ,C 中至少有2个发生; (5)A ,B ,C 中不多于2个发生; (6)A ,B ,C 中只有C 发生. 解: (1)A B C, (2)AB C A B C A B C, (3)AB C ABC A B C A B C, (4)ABC ABC ABC ABC AB BC AC, (5)ABC A B C, (6)A B C ++?+??+???++??+??+++++++??或或 练习 1.下表是某地区10年来新生婴儿性别统计情况: 出生年份 1990 1991 1992 1993 1094 1995 1996 1997 1998 1999 总计 男 3 011 2 531 3 031 2 989 2 848 2 939 3 066 2 955 2 967 2 974 29 311 女 2 989 2 352 2 944 2 837 2 784 2 854 2 909 2 832 2 878 2 888 28

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

(完整版)概率论第四章答案

习题4-1 1. 设随机变量X 求()E X ;E (2-3 X ); 2()E X ;2(35)E X +. 解 由定义和数学期望的性质知 2.03.023.004.0)2()(-=?+?+?-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-?-=; 8.23.023.004.0)2()(2222=?+?+?-=X E ; 4.1358.235)(3)53(22=+?=+=+X E X E . 2. 设随机变量X 的概率密度为 ,0,()0, 0.x e x f x x -?>?=???≤ 求X e Z X Y 22-==和的数学期望. 解 ()(2)2()22x E Y E X E X x x ∞ -====?e d , 220 1 ()()3 X x x E Z E e e e dx ∞ ---==?= ?. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第 55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60] 上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为 1 ,060,()600, .x f x =?????≤≤其它 记Y 为游客等候电梯的时间,则 5,05,25,525,()55,2555,65, 5560. X X X X Y g X X X X X -<-<==-<-

概率统计练习题答案

概率统计练习题答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

《概率论与数理统计》练习题 2答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、A 、B 任意二事件,则A B -=( )。 A 、B A - B 、AB C 、B A - D 、A B 答案:D 2、设袋中有6个球,其中有2个红球,4个白球,随机地等可能地作无放回抽样,连 续抽两次,则使P A ()=1 3成立的事件A 是( )。 A 、 两次都取得红球 B 、 第二次取得红球 C 、 两次抽样中至少有一次抽到红球 D 、 第一次抽得白球,第二次抽得红球, 答案:B 3、函数()0 0sin 01 x F x x x x ππ

A 、ξη= B 、2ξηξ+= C 、2ξηξ= D 、~(2,)B p ξη+ 答案:D 5、设随机变量12,,,n ξξξ???相互独立,且i E ξ及i D ξ都存在(1,2, ,)i n =,又 12,,, ,n c k k k ,为1n +个任意常数,则下面的等式中错误的是( )。 A 、11n n i i i i i i E k c k E c ξξ==??+=+ ???∑∑ B 、11n n i i i i i i E k k E ξξ==??= ???∏∏ C 、11n n i i i i i i D k c k D ξξ==??+= ???∑∑ D 、()111n n i i i i i D D ξξ==??-= ???∑∑ 答案:C 6、具有下面分布密度的随机变量中方差不存在的是( )。 A 、()150050x x x e x ?-≤?=?>? B 、( )2 6 2x x ?-= C 、()312 x x e ?-= D 、()() 42 1 1x x ?π= + 答案:D 7、设随机变量的数学期望和方差均是1m +(m 为自然数),那么 (){}041P m ξ<<+≥( )。 A 、 11m + B 、1m m + C 、0 D 、1m 答案:B 8、设1, , n X X 是来自总体2(, )N μσ的样本, 2 211 11, (),1n n i n i i i X X S X X n n --==--∑∑则以下结论中错误的是( )。 A 、X 与2n S 独立 B 、 ~(0, 1)X N μ σ -

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论与数理统计练习题及答案

概率论与数理统计习题 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2=? ≤?,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/2 4.事件A ,B 为对立事件,则_____不成立。 (A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____ (A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____ A . B A ? B . A B ? C.A B -=Φ D.0)(=-B A P 7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的 是_____ A . 0()1F x ≤≤ B .0()1f x ≤≤ C.{}()P X x F x == D.{}()P X x f x == 8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是 统计量的是____ A.4114i i X X ==∑ B.142X X μ+- C.4 22 1 1 ()i i K X X σ==-∑ D.4 2 1 1()3i i S X X ==-∑ 9.设,A B 为两随机事件,且B A ?,则下列式子正确的是_____ A . ()()P A B P A += B .()()P AB P A =

概率论课后答案

习题1-2 1. 选择题 (1) 设随机事件A ,B 满足关系A B ?,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生. (C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生. 解 根据事件的包含关系, 考虑对立事件, 本题应选(D). (2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销. 解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = , 本题应选(D). 2. 写出下列各题中随机事件的样本空间: (1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2}; (4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }. 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生; (2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生; (6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C . 4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2 3A A ; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标. 习题1-3 1. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ). (A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ . (C)()()()P AB P A P B = . (D)()()()P A P AB P AB =+. 解 由文氏图易知本题应选(D). (2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C). 2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= , 故()()1P A P B +=. 于是()1.P B p =- 3. 已知() 0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .

相关文档
最新文档