八年级上册期中考试数学试题
北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是()A .﹣53B .|﹣2|C D .2.下列语句中正确的是()A ±4B .任何数都有两个平方根C .∵a 的平方是a 2,∴a 2的平方根是aD .﹣1是1的平方根3.下列各组数中互为相反数的是()A .5B .5-和15C .和D .--和(-4.下列一次函数y 随x 的增大而增大是()A .y =-2xB .y =x -3C .y =-5xD .y =-x +35.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A 点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A .黑(1,5),白(5,5)B .黑(3,2),白(3,3)C .黑(3,3),白(3,1)D .黑(3,1),白(3,3)6是()A .在2和3之间B .在3和4之间C .在5和6之间D .在8和9之间7.已知一次函数y =kx +b (k≠0)的图象如图所示,则y =-bx -k 的图象可能是()A .B .C .D .8.下列计算正确的是()A 532=B 236=C .32353+=D 1472=9.在平面直角坐标系中,第四象限内有一点M ,它到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标为()A .()3,4-B .()4,3-C .()3,4-D .()4,3-10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到An .则△OA 2A 2018的面积是()A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题11.比较大小:“>”,“<”或“=”).12.若点P(2,3)与点Q 关于原点对称,则点Q 的坐标是__________.13.化简11=________.14.请写出两组勾股数:________.15.P 点在平面直角坐标系的第三象限,P 到x 轴的距离为1,到y 轴的距离为3,则P 点的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(1,3)、(1,3),(4,2),请你把这个英文单词写出来或者翻译中文为_________.17.已知a 的平方根为±3,b 的立方根是-1,c 是36的算术平方根,求a b c +-的值_________.18.如图,已知BA =BC .写出数轴上点A 所表示的数是____________.三、解答题19.计算:(1(2)(3)⎛- ⎝(4)2(11)1)-20.阅读下列计算过程:1==2=试求:(1(2(3+⋅⋅⋅+21.在△ABC中,∠C=90°,AC>BC,D是AB的中点.E在线段CA的延长线上,连接DE,过点D作DF⊥DE,交直线BC的延长线于点F,连接EF.求证:AE2+BF2=EF2.22.生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.品种项目单价(元/棵)成活率劳务费(元/棵)A1595%3B2099%4设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?23.如图,在平面直角坐标系中,直线y=−2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)在直线AB上是否存在点M,使得△MOC的面积是△AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.24.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?25.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C,若∠ACB=∠A′C′B′=90°,AC=BC=6,求B′C的长.参考答案1.C2.D3.D4.B5.D6.A7.C8.B9.D10.A11.>.【分析】根据根式的性质把根号外的因式移入根号内,再比较即可.【详解】>解:∵,2827∴>故答案为:>.【点睛】本题考查了平方根的大小比较的应用,能选择适当的方法比较两个数的大小是解此题的关键.12.(-2,-3).【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点P(2,3)与点Q关于原点对称,则点Q的坐标(-2,-3),故答案是:(-2,-3).【点睛】本题考查了关于原点的对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.13【解析】【分析】化简绝对值,再进行实数的计算.【详解】11+=11-+=【点睛】本题考查了实数的运算,化简绝对值,掌握化简绝对值是解题的关键.14.3,4,5;6,8,10(答案不唯一)【解析】【分析】勾股数:构成一个直角三角形三边的一组正整数,称之为勾股数,根据勾股数的定义可得答案.【详解】解:勾股数是构成一个直角三角形三边的一组正整数,2222222223+4=5,6810,51213,+=+=∴;6,8,10;5,12,13都是勾股数.3,4,5故答案为:3,4,5;6,8,10【点睛】本题考查的是勾股数的含义,勾股定理的逆定理的理解,掌握勾股数的定义是解题的关键. 15.(-3,-1)【解析】【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【详解】解:∵点P在第三象限,且点P到x轴的距离是1,∴点P的纵坐标为-1,∵点P到y轴的距离是3,∴点P的横坐标为-3,所以,点P的坐标为(-3,-1).故答案为:(-3,-1).【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.16.book【解析】【分析】根据每一个点的坐标确定其对应的位置,最后写出答案.【详解】解:(2,1)对应的字母是B,(1,3)对应的字母是O,(1,3)对应的字母是O,(4,2)对应的字母是K.故答案为:book.【点睛】本题考查了坐标位置的确定,熟记有序数对的规定,找出各点的对应字母是解题的关键.17.2【解析】【分析】根据平方根的含义求解,a立方根的含义求解,b算术平方根的含义求解,c再代入代数式求值即可.【详解】解: a的平方根为±3,b的立方根是-1,c是36的算术平方根,∴==-=a b c9,1,6,()∴+-=+--=a b c916 2.故答案为:2.【点睛】本题考查的是平方根,立方根,算术平方根的含义,熟悉“平方根,立方根,算术平方根的含义”是解题的关键.18.1-【分析】先利用勾股定理求解BC的长,可得BA的长,从而可得A到原点的距离,从而可得答案.【详解】解:由勾股定理得:BC===BA BC,∴=BA则A1,∴点A 1.1.【点睛】本题考查的是利用数轴表示无理数,勾股定理的应用,掌握利用勾股定理求解直角三角形的某条边长是解题的关键.19.(1);(2)-6;(3;(4)【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先把二次根式化为最简二次根式,然后合并即可;(4)根据完全平方公式和平方差公式计算即可.【详解】解:(11=⨯2=++=(2)==6=-;(3)⎛- ⎝434432⎛⎫=-⨯-⨯-⨯ ⎪ ⎪⎝⎭==(4)2(11)1)-+--15(51)=---1551=--+10=-+【点睛】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(1(2(3)【解析】【分析】(1,再利用平方差公式计算分母的结果,从而可得答案;(2(3)利用(2)的规律,把每个二次根式化简,再合并同类二次根式即可得到答案.【详解】解:(1=;(2()1n n ==--(3⋅⋅⋅+11 1.=21.见解析【解析】过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,证明()EAD GBD AAS ≅ ,推出ED GD =,AE BG =,得到EF FG =,再由勾股定理得到结论.【详解】证明:过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,∵//BG AC ,∴EAD GBD ∠=∠,DEA DGB ∠=∠,∵D 是AB 的中点,∴AD BD =,∴()EAD GBD AAS ≅ ,∴ED GD =,AE BG =,又∵DF DE ⊥,∴DF 是线段EG 的垂直平分线,∴EF FG =,∵90C ∠=︒,//BG AC ,∴90GBF C ∠=∠=︒,在Rt BGF 中,由勾股定理得:222FG BG BF =+,∴222EF AE BF =+.【点睛】此题考查全等三角形的判定及性质,勾股定理的应用,线段垂直平分线的判定及性质,熟记全等三角形的判定定理及正确引出辅助线解决问题是解题的关键.22.y=-6x+48000;45000.【解析】【分析】(1)A 种树苗x 棵,则B 种树苗(2000-x )棵,然后根据总费用=A 种的总价+B 种的总价得出函数关系式;(2)根据成活率求出x 的值,然后进行计算.【详解】解:(1)根据题意得∶y =(15+3)x +(20+4)(2000-x )=-6x +48000(2)由题意得:0.95x +0.99(2000-x )=1960,∴x =500当x =500时,y =-6×500+48000=45000∴造这片林的总费用需45000元.23.(1)(4,4);(2)(4,0)或(8,0)或(0)或(-,0);(3)存在,理由见解析,M (8,−4)或(0,12)【解析】【分析】(1)联立两直线解析式成方程组,解方程组即可得出点C 的坐标;(2)分OC=PC ,OC=OP ,PC=OP 三种情况进行讨论;(3)分两种情况讨论:当M 在x 轴下方时;当M 在x 轴上方时.把△MOC 的面积是△AOC面积的2倍的数量关系转化为△MOA 的面积与△AOC 面积的数量关系即可求解.【详解】解:(1)联立两直线解析式成方程组,得:212y x y x =-+⎧⎨=⎩,解得:44x y =⎧⎨=⎩,∴点C 的坐标为(4,4).(2)如图,分三种情况讨论:OC 为腰,当OC=P 1C 时,∵C (4,4),∴P 1(8,0);OC 为腰,当OC=OP 2=OP 3时,∵C (4,4),∴=2P ∴,3(P -;当P 4C=OP 4时,设P (x ,0),则x==解得x=4,∴P 4(4,0).综上所述,P 点坐标为P 1(8,0),P 2(0),3(P -,P 4(4,0).(3)当y=0时,有0=−2x+12,解得:x=6,∴点A 的坐标为(6,0),∴OA=6,∴S △OAC=12×6×4=12.设M (x ,y ),当M 在x 轴下方时△MOC 的面积是△AOC 面积的2倍,∴△MOA 的面积等于△AOC 的面积,1166422y ⨯⨯=⨯⨯,∴4y =,∴y=−4,∴4212x -=-+,∴x=8,∴M (8,−4)当M 在x 轴上方时△MOC 的面积是△AOC 面积的2倍,∴△MOA 的面积等于△AOC 的面积的3倍,11664322y ⨯⨯=⨯⨯⨯∴12y =∴y=12时,∴12212x =-+,∴x=0,∴M (0,12)综上所述,M (8,−4)或(0,12).【点睛】本题考查的是一次函数综合题,涉及到一次函数图象上点的坐标问题及等腰三角形的性质和判定等知识,在解答(2)、(3)时要注意进行分类讨论,不要漏解.24.(1)当0≤x≤20时,y 与x 的函数表达式是y=2x ;当x >20时,y 与x 的函数表达式是y=2.8x ﹣16;(2)小颖家五月份比四月份节约用水3吨.【解析】【分析】(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y 与x 的函数表达式是y=2x ;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x >20时,y 与x 的函数表达式是y=2×20+2.8(x-20),即y=2.6x-12;(2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x 计算用水量;四月份缴费金额超过40元,所以用y=2.8x-16计算用水量,进一步得出结果即可.【详解】解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x-20)=2.8x-16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x-16中,得x=22.所以22-19=3吨.答:小颖家五月份比四月份节约用水3吨.【点睛】一次函数的应用.25.B'C的长为【解析】【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【详解】解:∵∠ACB=∠AC′B′=90°,AC=BC=6,∴,∠CAB=45°,∵△ABC和△A′B′C′全等,∴∠C′AB′=∠CAB=45°,,∴∠CAB′=90°,∴B′C=,答:B'C的长为6。
沪科版八年级上册数学期中考试试卷含答案

沪科版八年级上册数学期中考试试题一、单选题1.点P(0,3)在()
A.x轴的正半轴上B.x的负半轴上C.y轴的正半轴上D.y轴的负半轴上2.如图的棋盘中,若“士”的坐标为(1,-2),“相””的坐标为(4,-2),则“炮”的坐标为()
A.(2,1)B.(-1,1)C.(-1,2)D.(1,-2)3.如图,直尺经过一副三角尺中的一块三角板DCB的顶点B,若∠C=30°,∠ABC=20°,则∠DEF度数为()
A.25°B.40°C.50°D.80°4.在平面直角坐标系中,点,1aa
不可能在()
A.第一象限B.第二象限C.第三象限D.第四象限5.一次函数y1=ax+b与一次函数y2=bx-a在同一平面直角坐标系中的图象大致是()
A.B.C.D.6.已知等腰ABC的两边长分别为2和5,则等腰ABC的周长为()A.9B.12C.9或12D.无法确定7.满足下列条件的ABC中,不是直角三角形的是()A.ABCB.::3:4:7ABCC.23ABCD.9A,81B
8.已知点,Aab位于第二象限,并且37ba,a,b均为整数,则满足条件的点A个数
有()A.4个B.5个C.6个D.7个9.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.24yxB.31yxC.31yxD.24yx
10.如图,在ABC中,E是BC上一点,3BCBE,点F是AC的中点,若ABC
Sa
,
则ADFBDESS()
A.12aB.13aC.16aD.
1
12a
二、填空题11.若直线6ykx与直线12xy没有交点,则k_____.
12.已知一次函数y=(1+m)x-1+m的图象上有两点A(0,y1)、B(1,y2),其中y1
>y
2
,那么m的取值范围是_______________
13.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______.
湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列各有理式222211.2455a b m a x y x a +-+,,,,中,分式有()A .1个B .2个C .3个D .4个2.要使分式1(1)(2)x x x ++-有意义,则x 应满足()A .x≠﹣1B .x≠2C .x≠±1D .x≠﹣1且x≠23.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为()A .B .C .D .4.下列分式是最简分式的是()A .11m m--B .3xy y xy-C .22x y x y -+D .6132m m-5.下列约分正确的是()A 、1-=---yx y x B 、022=--yx y x C 、yx y x x y -=--1)()(32D 、bab x a x =++6.下列长度的三条线段能组成三角形的是()A .1,2,3B .2,2,4C .3,4,5D .3,4,87.下列命题中正确的是()A .对顶角一定是相等的B .没有公共点的两条直线是平行的C .相等的两个角是对顶角D .如果|a|=|b|,那么a=b8.在等腰三角形ABC 中,它的两边长分别为8cm 和3cm ,则它的周长为()A .19cmB .19cm 或14cmC .11cmD .10cm9.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程()A .x x -=+306030100B .306030100-=+x x C .xx +=-306030100D .306030100+=-x x 10.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC的周长是()A .8B .9C .10D .11二、填空题11.当x=______时,分式242x x --没有意义.12.计算:222(1)a a a a a --÷=__________.13.若关于x 的分式方程222-=--x mx x 有增根,则m 的值为__________.14.在△ABC 中,∠A+∠B=150°,∠C=3∠A ,则∠A=_____.15.命题“互为相反数的两数的和是0”的逆命题是______________,它是__命题.(填“真、假”)16.如图,在△ABC 中,AB =5cm ,AC =3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,连接DC ,则△ACD 的周长为_______.17.如图,直线a ∥b ,△ABC 是等边三角形,点A 在直线a 上,边BC 在直线b 上,把△ABC 沿BC 方向平移BC 的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是___.三、解答题18.计算:(1)112111x x x ⎛⎫-÷⎪+--⎝⎭(2)2111 + 23π--⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭(1)19.解方程:(1)(2)2114+ = -33-9x x x +20.先化简,再求值:a 2−2ab+b 2a 2−b 2+ba+b-,其中a=﹣2,b=1.21.如图,已知线段AB .用尺规作图的方法作出线段AB 的垂直平分线(保留作图痕迹,不要求写出作法);22.在△ABC 中,∠BAC=50°,∠B=45°,AD 是△ABC 的一条角平分线,求∠ADB 的度数23.如图,△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE =5,求BC 长.24.在一次“手拉手”捐款活动中,某同学对甲.乙两班捐款的情况进行统计,得到如下三条信息:信息一.甲班共捐款120元,乙班共捐款88元;信息二.乙班平均每人捐款数是甲班平均每人捐款数的0.8倍;信息三.甲班比乙班多5人.请你根据以上三条信息,求出甲班平均每人捐款多少元?25.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE ,∠A=∠D ,AF=DC .求证:BC ∥EF .参考答案1.B 【详解】因为形如AB(0)B ≠的代数式是分式,所以215x a +,,是分式,故选:B .考点:分式的概念2.D 【解析】试题分析:当(x+1)(x-2)0≠时分式1(1)(2)x x x ++-有意义,所以x≠-1且x≠2,故选:D .考点:分式有意义的条件.3.B【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以用科学记数法表示0.000043=,故选B .考点:科学记数法4.C 【详解】解:A 、11m m--=﹣1;B 、1=33xy y x xy x --;C 、22x y x y -+分子、分母中不含公因式,不能化简,故为最简分式;D 、6161=3232m m --故选C .5.C 【解析】试题分析:因为()x y x y x y x y---+=--,不能约分,所以A 错误;因为212x y x y -=-,所以B 错误;因为2233()()1()()y x x y x y x y x y --==---,所以C 正确;因为b ab x a x =++,不能约分,所以D 错误;故选:C .考点:分式约分6.C 【详解】A 、1+2=3,不能构成三角形,故A 错误;B 、2+2=4,不能构成三角形,故B 错误;C 、3+4>5,能构成三角形,故C 正确;D 、3+4<8,不能构成三角形,故D 错误.故选C .7.A 【解析】试题分析:因为对顶角一定是相等,所以命题A 正确;因为在同一平面内,没有公共点的两条直线是平行的,所以命题B 错误;因为所有的直角都相等,但不一定是对顶角,所以C 错误;因为互为相反数的绝对值相等,所以D 错误;故选A .考点:命题8.A 【分析】从①当等腰三角形的腰长为8cm ,底边长为3cm 时;②当等腰三角形的腰长为3cm ,底边长为8cm 时,两种情况去分析即可.【详解】当8cm 的边是腰时,三角形的周长=8+8+3=19cm ,当3cm 的边是腰时,因为3+3<8,所以不能组成三角形,所以等腰三角形ABC 的周长=19cm ,故选A .9.A 【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:xx -=+306030100,故选:A .考点:列分式方程.10.C 【分析】由ED 是AB 的垂直平分线,可得AD=BD ,又由△BDC 的周长=DB+BC+CD ,即可得△BDC 的周长=AD+BC+CD=AC+BC .【详解】解:∵ED 是AB 的垂直平分线,∴AD=BD ,∵△BDC 的周长=DB+BC+CD ,∴△BDC 的周长=AD+BC+CD=AC+BC=6+4=10.故选C .【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.11.x=2【解析】试题分析:因为当x-2=0时分式242x x --没有意义,所以x=2.考点:分式没有意义的条件.12.1-a 【解析】试题分析:22222222(1)(1)(1)1(1)a a a a a a a a a a a a a a a a ----÷=⋅=⋅=---.考点:分式的除法13.m=2【解析】试题分析:因为222-=--x m x x ,所以x-2(x-2)=m ,又关于x 的分式方程222-=--x mx x 的增根是x=2,所以把x=2代入x-2(x-2)=m 得m=2.考点:分式方程的增根14.10°.【解析】试题解析:∵∠A+∠B+∠C=180°,∠A+∠B=150°,∴∠C=30°,∵∠C=3∠A ,∴∠A=10°.考点:三角形内角和定理.15.如果两个数的和是零,那么这两个数互为相反数真【解析】试题分析:命题“互为相反数的两数的和是0”的逆命题是如果两个数的和是零,那么这两个数互为相反数.它是一个真命题.考点:命题与逆命题16.8㎝【解析】试题分析:因为DE 垂直平分线段BC ,所以BD=CD,所以△ACD 的周长=AD+CD+AC=AD+BD+AC=AB+AC=5+3=8cm .考点:线段垂直平分线的性质17.301.【详解】∵△ABC 是等边三角形,∴AB=BC=AC ,∵A′B′∥AB ,BB′=B′C=12BC ,∴B′O=12AB ,CO=12AC ,∴△B′OC 是等边三角形,同理阴影的三角形都是等边三角形.观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n 个图形中大等边三角形有n+1个,小等边三角形有2n 个.故第100个图形中等边三角形的个数是:100+1+2×100=301.故答案是301.考点:1.等边三角形的判定与性质2.平移的性质.18.(1)11+x ;(2)0【解析】试题分析:(1)先算小括号内的,然后除法变为乘法,然后约分即可;(2)先把所给的各数的值化简,然后加减计算即可.试题解析:(1)1121(1)1211111(1)(1)2(1)(1)21x x x x x x x x x x x x --+---⎛⎫-÷=⋅=⋅= ⎪+--+-+-+⎝⎭;(2)-2-111- - -+ 143023π⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭(1).考点:1.分合运算2.乘方.19.(1)x=-(2)x=2【详解】试题分析:(1)按照去分母,去括号,移项合并同类项,系数化为1,然后检验即可;(2)按照去分母,去括号,移项合并同类项,系数化为1,然后检验即可.试题解析:(1),3x-(3x+3)=2x ,3x-3x-3=2x ,3x-3x-2x=3,-2x=3,x=-,经检验x=-是原方程的根;(2)2114+ = -33-9x x x ,x+3+x-3=4,2x=4,x=2,经检验x=2是原方程的根.考点:解分式方程.20.r ,2【解析】解:原式=(a−b)2(a+b)(a−b)+ba+b=a−b a+b+ba+b=aa+b当a=﹣2,b=1时,原式=−2−2+1=2先约分、通分化简。
北师大版八年级上册数学期中考试试卷带答案

北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,是无理数的是()A B .2πC .0D .132.实数7的算术平方根是()A B C .D3.下列各组数中不能作为直角三角形三边长的是()A .1,2B .0.6,0.8,1C .5,12,16D .30,40,504.在平面直角坐标系中,点P (2,﹣3)在()A .第一象限B .第二象限C .第三象限D .第四象限5.下列计算正确的是()A =B=﹣7C D 6x 的取值范围是()A .x >2B .x≥2C .x≠2D .x≤27.下列各式中属于最简二次根式的是()AB C D 8.下列说法正确的是()A .任何实数都有平方根B .任何实数都立方根C .数轴上的每一个点都表示一个有理数D .两个无理数的和还是无理数9.下列问题中,变量y 与x 成一次函数关系的是()A .路程一定时,时间y (h )和速度x (km/h )的关系B .斜边长为5cm 的直角三角形的直角边y (cm )和x (cm )C .圆的面积y (cm 2)与它的半径x (cm )D .10m 长铁丝折成长为y (m ),宽为x (m )的长方形10.已知442=1936,452=2025,462=2116,472=2209,若n 为整数且n <n +1,则n 的值为()A .44B .45C .46D .47二、填空题11的相反数为____.12.若将教室里第5行、第3列的座位表示为(5,3),则第4行、第6列的座位表示为____.13.若()1my m x =-为y 关于x 的正比例函数,则m 的值为____.14.如图,一圆柱形物体高14cm ,底面圆的周长为32cm ,在外侧距下底1cm 的点S 处有一只蜘蛛,与蜘蛛相对的上端外侧距上底1cm 的点F 处有一只苍蝇,则蜘蛛捕获苍蝇的最短路线长为____cm .15.如图,在平面直角坐标系中,O 为坐标原点,等边三角形△OAB 的边OA 在x 轴上,且点A 的坐标为(4,0),则点B 的坐标为____.16.在△ABC 中,∠BAC =90°,AB =AC =4,以AC 为一边,在△ABC 外作等腰直角△ACD ,则线段BD 的长为____.三、解答题17.计算:(1﹣;(2+|5﹣|18.已知x2,y2,求代数式y2+2xy的值.19.如图正方形网格,每个小正方形的边长为1,格点三角形△ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在正方形网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)填空:①点B1的坐标是;②△A1B1C1的面积等于.20.如图,小明将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆5m处,发现此时绳子末端距离地面1m,求旗杆的高度.(滑轮上方的部分忽略不计)21.如图,边长为4的正方形ABCD,点E在AD边上,点F在CD边上,且AE=2,DF =1.(1)求BE的长;(2)请判断△BEF的形状,并说明理由.22.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元.(1)当月用电量不超过200时,y 与x 的函数关系式为,当月用电量超过200度时,y 与x 的函数关系式为.(2)小新家十月份用电量为160度,求本月应交电费多少元?(3)小明家十月份交纳电费117元,求本月用电多少度?23362-333333=⨯;6262(62)(62)+=--+624+,以上这种化简的方法叫做分母有理化.请化简下列各题(写出化简过程):(12(2157+(353-(4122334+++ (4950)+24.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在x轴上(点B在点C的左侧),点B,C的坐标分别为B(﹣8,0),C(5,0),点A在y轴正半轴上,且OA=1OB.点P是射线BO上一动点.2(1)填空:点A的坐标是;(2)连接AP,若△ABP的面积为10,求点P的坐标;(3)当点P在线段BO上运动时,在y轴负半轴上是否存在点Q使△POQ与△AOC全等?若存在,请直接写出点Q的坐标;若不存在,请说明理由;(4)当点P在射线BO上运动时,若△APC是等腰三角形,请直接写出点P的坐标.25.等腰Rt△AOB中,∠AOB=90°.点D为射线AB上动点,以OD为腰作等腰Rt△COD (点A,C在直线OB的同侧),∠COD=90°,连接AC.(1)如图1,点D在线段AB上运动,请判断AC与BD的关系;(2)当点D在线段AB的延长线上运动时,(1)的结论是否仍然成立,请在图2中画出相应的图形并说明理由;(3)若OB=,当BD=1时,请直接写出CD的长.参考答案1.B2.A3.C4.D5.A6.B7.D8.B9.D10.C11.【分析】根据实数的性质,相反数的定义求解即可.【详解】的相反数为故答案为:【点睛】本题考查了实数的性质,相反数的定义,掌握实数的性质,相反数的定义是解题的关键.12.()4,6【分析】根据题意用有序实数对表示位置即可,第一个数是行数,第二个数是列数,据此写出即可【详解】4,6;若将教室里第5行、第3列的座位表示为(5,3),则第4行、第6列的座位表示为() 4,6故答案为:()【点睛】本题考查了用有序实数对表示位置,理解题意是解题的关键.【解析】【分析】根据正比例函数为y=kx (k≠0),求出m 的值即可.【详解】若()1my m x =-为y 关于x 的正比例函数,则110m m ⎧=⎨-≠⎩,解得:m=-1,故答案为:-1.【点睛】本题是对正比例函数的考查,熟练掌握正比例函数解析式是解决本题的关键》14.20【解析】将圆柱展开,根据两点之间线段最短构造直角三角形,利用勾股定理求解即可.【详解】如图,将将圆柱展开得到侧面展开图,过点F 作FC AB ⊥,依题意,14AB =,132162CF =⨯=,212CS AB =-=20SF ∴===故答案为:20【点睛】本题考查了圆柱侧面展开图,勾股定理求最短距离,理解题意作出图形是解题的关键.15.(或(2,-【分析】过点B 作BC x ⊥轴,垂足为点C ,根据已知条件求得OC ,OB ,在Rt BOC 中,勾股定理求得BC 的长,进而求得B 的坐标.【详解】如图,过点B 作BC x ⊥轴,垂足为点C ,点A 的坐标为(4,0),4∴=OA ,OC AC ∴=2=,ABC 是等边三角形,4,60OB OA AOB ∴==∠=︒,在Rt BOC 中,BC ==(B ∴,同理当B 点在第四象限时,(2,B -,∴B 点的坐标为(或(2,-.故答案为:(2,或(2,-.【点睛】本题考查了坐标与图形,勾股定理,等边三角形的性质,掌握勾股定理是解题的关键.16.8或【解析】【分析】根据题意分类讨论,①90CAD ∠=︒,②90ACD ∠=︒,③90ADC ∠=︒,分别作出图形,再结合已知条件勾股定理求解即可.【详解】①如图,当90CAD ∠=︒时,904BAC AB AC ∠=︒== ,,ACD △是等腰直角三角形,4AC AD AB ∴===,180BAD BAC CAD ∠=∠+∠=︒448BD AB AD ∴=+=+=②如图,当90ACD ∠=︒时,过点D 作DE BC ⊥,交BC 的延长线于点E ,904BAC AB AC ∠=︒== ,,ACD △,ABC 是等腰直角三角形,4CD AC AB ∴===,18045DCE ACD ACB ∠=︒-∠-∠=︒又 DE BC⊥∴ DEC 是等腰直角三角形DE CE∴=在DEC Rt △中,22222DC CE DE DE =+=∴2DE ==在Rt ABC 中,BC =在Rt BDE 中,BD =③如图,当90ADC ∠=︒时904BAC AB AC ∠=︒== ,,ACD △,ABC 是等腰直角三角形,2CD AD AC ∴===在Rt ABC 中,BC =在Rt BDC 中,BD =综上所述,BD 的长为:8或【点睛】本题考查了勾股定理,等腰三角形的性质,分类讨论是解题的关键.17.(1;(2)8【解析】【分析】根据二次根式的除法运算进行计算,进而根据二次根式的加减计算即可;(2)根据求一个数的立方根,化简绝对值,二次根式的性质化简进行计算即可.【详解】(1﹣===(2|5|356=+--8=【点睛】本题考查了二次根式的性质,二次根式的乘除法运算,求一个数的立方根,正确的计算是解题的关键.18.15-【解析】【分析】将字母的值代入代数式中进而根据完全平方公式和平方差公式计算进而根据实数的运算进行求解即可.【详解】2,2x y =+=-))2222222y xy ∴+=-++-5423=-++⨯15=-【点睛】本题考查了二次根式的计算混合运算,掌握二次根式的性质是解题的关键.19.(1)见解析;(2)见解析;(3)①(2,1),②4.【解析】【分析】(1)根据点A 、C 的坐标作出直角坐标系;(2)分别作出点A 、B 、C 关于y 轴对称的点111,,A B C ,然后顺次连接;(3)①根据直角坐标系的特点写出点1B 的坐标;②根据网格的特点求出面积.【详解】(1)如图,根据点A 、C 的坐标作出直角坐标系;(2)如图,分别作出点A 、B 、C 关于y 轴对称的点111,,A B C ,然后顺次连接,则111A B C △即为所求(3)①点1B 的坐标为(2,1),②111A B C △的面积=3×4−12×2×4−12×2×1−12×2×3=4.故答案为①(2,1),②4.20.13m【分析】根据题意构造直角三角形,然后设旗杆高度为xm ,根据勾股定理即可求解.【详解】如图,设旗杆高度为x m ,即AD x =,1AB x =-,5BC =Rt ABC ∴ 中,222AB BC AC +=即()22215x x -+=解得13x =即旗杆的高度为13米.【点睛】本题考查了勾股定理的应用,构造直角三角形是解题的关键.21.(1)(2)直角三角形,理由见解析【解析】【分析】(1)直接根据勾股定理求解即可;(2)根据勾股定理分别求得,EF BF 的长,利用勾股定理的逆定理进行判断即可.【详解】(1) 四边形ABCD 是正方形,4AB AD DC BC ∴====,90A D C ∠=∠=∠=︒,2,1AE DF == ,BE ∴===,(2)BEF 是直角三角形,理由如下,四边形ABCD 是正方形,4AB AD DC BC ∴====,90A D C ∠=∠=∠=︒,2,1AE DF == ,2DE AD AE ∴=-=,在Rt DEF △中,EF ===413FC DC DF =-=-= ,∴在Rt BFC △中,5BF ===,(22222225,525BE EF BF ∴+=+===,222BE EF BF ∴+=.∴BEF 是直角三角形.【点睛】本题考查了勾股定理以及勾股定理的逆定理,掌握勾股定理是解题的关键.22.(1)0.55y x =()0.730200y x x =->;(2)88;(3)210【详解】当200x >时,y 与x 的函数解析式是0.552000.7(200)y x =⨯+-,即0.730y x =-;(2)160200< 0.5516088y ∴=⨯=(元)答:小明家4月份应交电费145元.(3)因为小明家5月份的电费超过110元,所以把117y =代入0.730y x =-中,得210x =.答:小明家5月份用电210度.【点睛】本题考查一次函数的应用,正确的列出函数关系是解题的关键.23.(1)2;(2)2;(3)522;(4)1【解析】【分析】(1)(2)(3)根据题意分母有理化即可(4)分母有理化后再进行实数的计算【详解】(1=(242==;(3522+=;(4……=⋅⋅⋅+1=⋅⋅⋅1=1=【点睛】本题考查了分母有理化,找到有理化因式是解题的关键.24.(1)()0,4;(2)(3,0)P -;(3)(0,4)Q -或(0,5)Q -;(4)P 点的坐标为()5,0-或(5或(5或9(,0)10【解析】【分析】(1)根据题意直接求得点A 的坐标;(2)设(,0)P p ,根据1=102ABP S BP OA ⋅⋅=△即可求得P 的坐标,(3)90POQ AOC ∠=∠=︒,则分类讨论POQ AOC △≌△或POQ COA △≌△,根据全等三角形的性质即可求得OQ ,进而求得Q 点的坐标,(4)根据题意,分三种情况讨论,根据等腰三角形的性质即可求得P 的坐标.【详解】(1) B (﹣8,0),OA =12OB ,8,4OB OA ∴==()0,4A ∴故答案为:()0,4(2)如图,()8,0B -,点P 是射线BO 上一动点,设(,0)P p ,8p ∴>-1=102ABP S BP OA ⋅⋅= △,4OA =5BP ∴=()85p ∴--=(3,0)P ∴-(3)90POQ AOC ∠=∠=︒POQ AOC ∴△≌△或POQ COA△≌△依题意,设(0,)Q q ,(0)q <,①当POQ AOC △≌△时,5OQ OC ∴==∴5q =-即(0,5)Q -②当POQ COA △≌△时,4OQ OA ==∴4q =-即(0,4)Q -综上所述,(0,4)Q -或(0,5)Q -(4)如图,4,5OA OC ==在Rt AOC △中,AC ===设P 点的坐标为()(),0,8m m >-①当AC AP =时,5OC OP ==()5,0P ∴-②当CA CP =时,CA = 5m ∴=(5P ∴-或(5+③当PA PC =时则Rt OAP △中,222OP OA AP +=即()22245m m +=-解得910m =9(,0)10P ∴综上所述,P 点的坐标为()5,0-或(5或(5+或9(,0)10.【点睛】本题考查了坐标与图形,全等三角形的性质,等腰三角形的性质与判定,分类讨论是解题的关键.25.(1)AC BD =,理由见解析;(2)AC BD =,理由见解析;(3【解析】【分析】(1)根据已知条件,证明AOC BOD ≌ 即可得AC BD =;(2)AC BD =,理由同(1);(3)①当D 点在线段AB 上时,②点D 在线段AB 的延长线上时,勾股定理求解即可.【详解】(1)AC BD =,理由如下,90COD AOB ∠=∠=︒ ,Rt △AOB ,Rt △COD 是等腰直角三角形,,AOC AOD AOD BOD AO BO CO DO∴∠+∠=∠+∠==AOC BOD∴∠=∠AOC BOD∴ ≌∴AC BD=(2)AC BD =,理由如下,如图,90COD AOB ∠=∠=︒ ,Rt △AOB ,Rt △COD 是等腰直角三角形,,AOC AOD AOD BOD AO BO CO DO ∴∠+∠=∠+∠==AOC BOD∴∠=∠AOC BOD∴ ≌∴AC BD=(3) 点D 为射线AB 上动点,①当D 点在线段AB 上时,如图1Rt △AOB 是等腰直角三角形45B OAB ∴∠=∠=︒,AO BO =,AOC BOD ≌ ,45CAO B ∴∠=∠=︒,90CAD CAO OAB ∴∠=∠+∠=︒,在Rt AOB 中,4AB ===,在Rt ADC 中,413AD AB BD =-=-=,1AC BD ==,∴CD ===②点D 在线段AB 的延长线上时,如图,Rt △AOB 是等腰直角三角形45B OAB ∴∠=∠=︒,AO BO =, AOC BOD ≌ ,45CAO B ∴∠=∠=︒,90CAD CAO OAB ∴∠=∠+∠=︒,在Rt AOB 中,4AB ===,1,415AC BD AD AB BD ===+=+= 在Rt ACD △中CD ==综上所述CD =。
人教版八年级数学上册期中测试题及参考答案(WL统考精编)

八年级数学上册期中测试题及参考答案(WL统考精编)(时间:120分钟满分:120分)第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()2.一副三角板如图叠放在一起,则图中∠a的度数为()A.15°B.25°C.30°D.35°3.已知等腰三角形的两边长分别为4cm、8cm,则该等腰三角形的周长是()A.12cmB.16cmC.16cm或20cmD. 20cm4.下列说法正确的是()A.三角形三条高交于三角形内一点B.一个钝角三角形一定不是等腰三角形,也不是等边三角形C.有两条边及其中一条边的对角对应相等的两个三角形全等D.平面上两个全等的图形不一定关于某直线对称5.如右图,已知点A(2,3)和点B(4,1),在坐标轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A(1,0) B.(0,-1)C.(1,0)或(0,-1)D.(2,0)或(0,1)6.△ABC中,AC=5,中线AD=6,则AB边的取值范围是()A.1<AB<11B.4<AB<6 C 5<AB<17 D.7<AB<177.如右图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,EB、CF相交于D,则∠CDE的度数是()A.130°B.70°C.80°D.75°8.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC、AB于点M、N;②分别以点M和点N为圆心、大于1/2MN的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60(8题)(9题图)(10题图)(11题图)9.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若AB=1,BC=2,则△ABE和△BC'F的周长之和为()A.3B.4C.6D.810.如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE=1,下列结论错误的是()A.∠ADE=30°B. AD=2C.△ABC的周长为10D.△EFC的周长为911.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°12.如图,已知△ABC和△CDE都是等边三角形,且A、C、E三点共线,AD与BE交点O,AD与BC交于点P,BE与CD交于点Q,连接PQ有以下五个结论:①AD=BE;②∠AOB=60°;③AP=BO;④△PCQ是等边三角形;⑤PQ∥AE.其中正确结论的个数是()A.5B.4C.3D.2第Ⅱ卷(非选择题共84分)二、填空题(本大题共4个小题;每小题4分,共16分)13.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为______。
【人教版】数学八年级上册《期中考试题》附答案

∴不合题意,舍去;
若3cm为底边长,8cm为腰长,
则此三角形的周长为:3+8+8=19(cm).
故选A.
【点睛】此题考查了三角形的三边关系定理.比较简单,注意掌握分类讨论思想的应用.
5.如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE等于( )
A.20°B.18°C.45°D.30°
6.如图,AD是△ABC的中线,E是AD的中点,S△AEC=3cm2,则S△ABC=()cm2
A. 10B. 11C. 12D. 13
7.如图,在 中, ,点 是两条角平分线的交点,则 的大小为()
A. B. C. D.
8.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()
11.在正方形网格中, 的位置如图所示,到 的两边距离相等的点应是( )
A.点MB.点QC.点PD.点N
12.如图,直线AC上取点B,在其同一侧作两个等边三角形△ABD和△BCE,连接AE,CD与GF,下列结论正确的有()
①AEDC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
即B点到AE和DC的距离相等,
∴BH平分∠AHC,所以④正确;
∵△AGB≌△DFB,
∴BG=BF,
∵∠GBF=60°,
∴△BGF 等边三角形,
∴∠BGF=60°,
∴∠ABG=∠BGF,
∴GF∥AC,所以⑤正确.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
北师大版八年级上册数学期中考试试题带答案
北师大版八年级上册数学期中考试试卷一、选择题。(每小题只有一个正确答案,每小题3分)1.在−1.414,8,π,2+3,3.212212221…,17这些数中,无理数的个数为( )
A.2B.3C.4D.52.下列函数中,y是x的正比例函数的是( )A.y=−2x+1B.3xy=-C.y=2x2D.1y
x=
3.在平面直角坐标系中,点P(−1,−2+3)在()
A.第一象限B.第二象限C.第三象限D.第四象限4.下列数据中,哪一组不是勾股数()A.7,24,25B.9,40,41C.3,4,5D.8,15,195.下面计算正确的是()A.3333B.2733C.23=5D.4=2
6.在平面直角坐标系中,点P(-3,5)关于x轴的对称点的坐标是()A.(3,-5)B.(-3,-5)C.(3,5)D.(5,-3)7.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()
A.B.C.D.8.坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点的坐标为()A.(-5,4)B.(-4,5)C.(4,5)D.(5,-4)9.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2
=( )
A.169B.119C.169或119D.13或25
10.下列哪个点在函数11
2yx
的图象上()
A.(2,1)B.(2,1)C.(2,0)D.(2,0)11.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是()A.32B.2C.3D.1.412.如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()
A.(0,0)B.(-12,12)C.(22,-22)D.(12,-12)
二、填空题13.16的算术平方根是_____.
人教版八年级上册数学期中考试试题含答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列各组线段不能组成三角形的是()A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm2.三角形一个外角小于与它相邻的内角,这个三角形()A.是钝角三角形B.是锐角三角形C.是直角三角形D.属于哪一类不能确定.3.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是()A.6 B.8 C.10 D.124.如图,在△AEC中,点D和点F分别是AC和AE上的两点,连接DF,交CE的延长线于点B,若∠A=25°,∠B=45°,∠C=36°,则∠DFE=()A.103°B.104°C.105°D.106°5.如图所示,有一个简易平分角的仪器(四边形ABCD),其中AB=AD,BC=DC,将点A放在角的顶点处,AB和AD沿着角的两边张开,并分别与AQ,AP重合,沿对角线AC画射线AE,AE就是∠P AQ的平分线这个平分角的仪器的制作原理是()A.角平分线性质B.AAS C.SSS D.SAS6.如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57.如下图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A .8+2aB .8+aC .6+aD .6+2a8.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A .15°B .225°C .30°D .45°9.下列四个图形中,不是轴对称图形的是( )A .B .C .D . 10.如下图所示,已知点O 是△ABC 内一点,且点O 到三边的距离相等,∠A=40゜,则∠BOC=( )A .130°B .140°C .110°D .120°二、填空题11.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.12.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n=_____.13.如图,△ABC纸片中,AB=AC,∠BAC=90°,BC=8,沿过点C的直线折叠这个三角形,使点A落在BC边上的点F处,折痕为CD,BE⊥CD,垂足E在CD的延长线上,则结论①DF=DA;②∠ABE=22.5︒;③△BDF 的周长为8;④CD=2BE.正确的是________________(填上正确的结论序号).≅.(只需填写14.如图,已知AC DB=,再添加一个适当的条件________,使ABC DCB满足要求的一个条件即可).15.如图,AD⊥BC于点D,D为BC 的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=________________.16.已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为______.三、解答题17.已知:如图,在△ABC中,点D是BC上一点,∠1=80°,AB=AD=DC.求:∠C的度数.18.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.19.如图,线段AB和BC,交于B点:(1)请你用尺规作图的方法作出线段AB和BC的垂直平分线.(不写作法,保留作图痕迹)(2)如果线段AB和BC的垂直平分线交于点P,若AB=BC,求证:PB平分∠ABC.20.一个等腰三角形的周长为28cm.(1)如果底边长是腰长的1.5倍,求这个等腰三角形的三边长;(2)如果一边长为10cm,求这个等腰三角形的另两边长.21.如图,Rt△ABC的直角顶点C置于直线l上,AC=BC,现过A.B两点分别作直线l 的垂线,垂足分别为点D.E.(1)求证:△ACD≌△CBE.(2)若BE=3,DE=5,求AD的长.22.(1)如图,请在方格纸中画出△ABC 关于x 轴的对称图形△A ′B ′C ′.(2)写出对称点的坐标:A ′( , ),B ′( , ),C ′( , ). (3)△ABC 的面积是 .(4)请在图中找出一个格点D ,画出△ACD ,使△ACD 与△ABC 全等.23.如图,在△ABC 中,∠ABC =90°,AD ∥BC ,AB =BC ,E 是AB 的中点,CE ⊥BD . (1)求证:△ABD ≌△BCE .(2)求证:AC 是线段ED 的垂直平分线.24.如图,ABC ∆中,AB=AC ,36A ︒∠=,AC 的垂直平分线交AB 于E,D 为垂足,连结EC . (1)求ECD ∠的度数;(2)若CE=12,求BC 长.25.已知四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB =BC ,∠ABC =120°,∠MBN =60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .(1)当∠MBN 绕B 点旋转到AE =CF 时(如图1),求证:△ABE ≌△CBF .(2)当∠MBN 绕点B 旋转到AE ≠CF 时,如图2,猜想线段AE ,CF ,EF 有怎样的数量关系,并证明你的猜想.(3)当∠MBN 绕点B 旋转到图3这种情况下,猜想线段AE ,CF ,EF 有怎样的数量关系,并证明你的猜想.参考答案1.B【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【详解】A 、4485+=>,∴445cm cm cm 、、能组成三角形,故本选项错误;B 、461011+=<,∴4611cm cm cm 、、不能组成三角形,故本选项正确;C 、5496+=>,∴456cm cm cm 、、能组成三角形,故本选项错误;D 、5121713+=>,∴51213cm cm cm 、、能组成三角形,故本选项错误.故选:B .【点睛】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.2.A【分析】由三角形的外角与它相邻的内角互为邻补角,且根据此外角小于与它相邻的内角,可得此外角为锐角,与它相邻的角为钝角,可得这个三角形为钝角三角形.【详解】∵三角形的外角与它相邻的内角互补,且此外角小于与它相邻的内角,∴此外角为锐角,与它相邻的角为钝角,则这个三角形为钝角三角形.故选:A.【点睛】此题考查了三角形的外角性质,其中得出三角形的外角与它相邻的内角互补是解本题的关键.3.B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B.【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.4.D【分析】由∠FEB是△AEC的一个外角,根据三角形外角的性质可得∠FEB=∠A+∠C=61°,再由∠DFE是△BFE的一个外角,根据三角形外角的性质即可求得∠DFE=∠B+∠FEB=106°,问题得解.【详解】∵∠FEB 是△AEC 的一个外角,∠A=25°,∠C=36°,∴∠FEB=∠A+∠C=61°,∵∠DFE 是△BFE 的一个外角,∠B=45°,∴∠DFE=∠B+∠FEB=106°,故选D .【点睛】本题考查了三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.5.C【分析】根据题意,利用SSS 证明三角形全等,然后有对应角相等,即可得到答案.【详解】解:在△ABC 与△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ),∴∠BAC =∠DAC .即AE 平分∠BAD .∴不论∠DAB 是大还是小,始终有AE 平分∠BAD .故选C .【点睛】本题考查了角平分线的判定,解题的关键是熟练掌握全等三角形对应角相等.6.C【分析】直接根据角平分线的性质即可得出结论.【详解】∵O 是△ABC 三条角平分线的交点,AB 、BC 、AC 的长分别12,18,24,∴S △OAB :S △OBC :S △OAC =AB :OB :AC =12:18:24=2:3:4.故选C .【点睛】本题考查了角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.7.D【解析】试题分析:由∠P=60°,MN=NP,可得△MNP是等边三角形,再根据等边三角形的“三线合一”的性质以及等腰三角形的判定,即可求得结果.∵∠P=60°,MN=NP∴△MNP是等边三角形.又∵MQ⊥PN,垂足为Q,∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,∵NG=NQ,∴∠G=∠QMN,∴QG=MQ=a,∵△MNP的周长为12,∴MN=4,NG=2,∴△MGQ周长是6+2a.故选D.考点:本题考查的是等边三角形的判定和性质点评:认识到△MNP是等边三角形是解决本题的关键.同时熟练掌握等腰三角形的“三线合一”的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.8.C【分析】可以取AB的中点G,连接CG交AD于点F,根据等边△ABC的边长为4,AE=2,可得点E是AC的中点,点G和点E关于AD对称,此时EF+FC=CG最小,根据等边三角形的性质即可得∠DCF的度数.【详解】解:如图,取AB的中点G,连接CG交AD于点F,∵等边△ABC的边长为4,AE=2,∴点E是AC的中点,所以点G和点E关于AD对称,此时EF+FC=CG最小,根据等边三角形的性质可知:∠ECF=1∠ACB=30°.2所以∠ECF的度数为30°.故选:C.【点睛】本题考查了轴对称-最短路线问题、等边三角形的性质,解决本题的关键是利用等边三角形的性质找对称点.9.D【解析】试题解析:根据轴对称的概念可知:选项A、B、C的图形均为轴对称图形,只有选项D的图形不是轴对称图形.故选D.10.C【分析】由已知,O到三角形三边距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC 的度数.【详解】由已知,O到三角形三边距离相等,所以O是内心,即三条角平分线交点,AO,BO,CO都是角平分线,所以有∠CBO=∠ABO=12∠ABC,∠BCO=∠ACO=12∠ACB,∠ABC+∠ACB=180゜-40゜=140゜∠OBC+∠OCB=70゜∠BOC=180゜-70゜=110°故选C.【点睛】此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题.11.180°【分析】根据多边形的外角和减去∠B和∠C的外角的和即可确定四个外角的和.【详解】解:∵AB∥DC,∴∠B+∠C=180°,∴∠B的外角与∠C的外角的和为180°,∵六边形ABCDEF的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B和∠C的外角的和为180°12.-14【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【详解】由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14,故答案为:﹣14.【点睛】本题考查平面直角坐标系中点坐标的特征,熟记基本结论准确求解参数是解题关键.13.①②③④【分析】由折叠的性质可得AC=CF,AD=DF,∠ACD=∠DCB=22.5°,由余角的性质可得∠EBC=67.5°,可求∠EBA=∠EBC-∠ABC=22.5°,由线段的和差关系可求△BDF的周长为8,延长CA,BE交于点H,通过证明△BCE≌△HCE和△ACD≌△ABH,可证CD=2BE.【详解】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵沿过点C的直线折叠这个三角形,使点A落在BC边上的点F处,∴△ACD≌△FCD,∴AC=CF,AD=DF,∠ACD=∠DCB=22.5°,故①正确;∵BE⊥CD,∴∠EBC=67.5°,∴∠EBA=∠EBC-∠ABC=22.5°,故②正确;∵△BDF的周长=BD+DF+BF=BD+AD+BF=AC+BF=CF+BF,∴△BDF的周长为8,故③正确,如图,延长CA,BE交于点H,∵∠ACD=∠BCD,CE=CE,∠BEC=∠CEH=90°,∴△BCE≌△HCE(ASA)∴BE=EH,∴BH=2BE,∵∠EBA=∠ACD=22.5°,∠BAH=∠CAD=90°,AC=AB,∴△ACD≌△ABH(ASA)∴CD=BH,∴CD=2BE,故④正确,故答案为:①②③④.【点睛】本题考查了翻折变换,全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.14.AB=DC或∠ACB=∠DBC【详解】若添加AB=DC,∵AC=DB,BC=BC,AB=DC∴△ABC≌△DCB∴加一个适当的条件是AB=DC.若添加∠ACB=∠DBC,∵AC=DB,∠ACB=∠DBC,BC=BC,∴△ABC≌△DCB∴加一个适当的条件是∠ACB=∠DBC.故答案为:AB=DC或∠ACB=∠DBC.15.70°【分析】略【详解】试题分析:根据题意可得:∠COD=55°,根据等腰三角形的三线合一定理可得:∠BOC=110°,根据等腰三角形的性质可得:∠OBC=∠C=35°,则根据角平分线的性质可得:∠ABC=35°×2=70°.【点睛】略16.12【详解】解:∵AB=AC=4,∠A=60°,∴△ABC是等边三角形,∴BC="AB=AC=4,"∴△ABC的周长为12.故答案为12.【点睛】本题考查等边三角形的判定与性质,难度不大.17.25°【分析】根据三角形的内角和定理和等腰三角形的性质求出∠ADB,根据等腰三角形的性质得出∠C =∠DAC,根据三角形的外角性质得出∠C+∠DAC=∠ADB,代入求出即可.【详解】解:∵∠1=80°,AB=AD,∴∠B=∠ADB=12⨯(180°﹣∠1)=50°,∴AD=CD,∴∠C=∠DAC,∵∠C+∠DAC=∠ADB=50°,∴∠C=∠DAC=12⨯50°=25°.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.18.(1)12;(2)1800°.【分析】(1)任何多边形的外角和是360度,n边形的内角和是(n-2)•180°,根据多边形的内角和与外角和的总和为2160°列方程求解即可;(2)多边形的每一个内角都等于150°,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出,外角和中外角的个数,即多边形的边数,从而求出内角和.【详解】(1)设这个多边形的边数是n,(n-2)•180°+360°=2160°,解得n=12.(2)∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,∴这个多边形的内角和为=(12-2)×180°=1800°.故答案为1800°.【点睛】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n变形的内角和为:(n-2) ×180°,n变形的外角和为:360°;然后根据等量关系列出方程求解.19.(1)见解析;(2)见解析【分析】(1)依据几何语言进行作图即可得到线段AB和BC的垂直平分线;(2)依据全等三角形的对应角相等,即可得到PB平分∠ABC.【详解】解:(1)如图所示,DP为AB的垂直平分线,EP为BC的垂直平分线;(2)如图所示,∵AB=BC,DP为AB的垂直平分线,EP为BC的垂直平分线,∴DB=EB,∠BDP=∠BEP=90°,又∵BP=BP,∴Rt△BDP≌Rt△BEP(HL),∴∠PBD =∠PBE ,即BP 平分∠ABC .【点睛】本题主要考查了基本作图,解决问题的关键是掌握线段垂直平分线的定义以及全等三角形的性质.20.(1)8,8,12; (2)10,8或9,9【解析】试题分析:(1)、首先设腰长为xcm ,则底边长为1.5xcm ,然后根据三边长的和列出方程从而求出x 的值,得出三角形的三边长;(2)、本题需要分两种情况进行讨论,即10cm 为腰长或10cm 为底边时两种情况分别进行计算,得出答案.试题解析:(1)、设腰长为xcm ,则底边长为1.5xcm ,根据题意可得:2x+1.5x=28解得:x=8cm 则1.5x=1.5×8=12cm 即这个等腰三角形的三边长为8cm ,8cm ,12cm(2)、当10cm 为腰长时,则底边长为28-10×2=8cm ,则两边长为10cm ,8cm当10cm 为底边时,则腰边长为(28-10)÷2=9cm ,则两边长为9cm ,9cm 综上所述,这个等腰三角形的两边长为10cm ,8cm 或9cm ,9cm21.(1)详见解析;(2)AD=8【分析】(1)根据AAS 即可证明△ACD ≌△CBE ;(2)由(1)知△ACD ≌△CBE ,根据全等三角形的对应边相等,得出CD=BE=3,AD=CE ,由CE=CD+DE ,从而可求出AD 的长.【详解】(1)证明:∵AD ⊥CE ,BE ⊥CE ,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=∠CBE=90°-∠ECB .在△ACD 与△CBE 中,ADC CEB ACD CBE AC BC ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ACD≌△CBE(AAS);(2)解:∵△ACD≌△CBE,∴CD=BE=3,AD=CE,又∵CE=CD+DE=3+5=8,∴AD=8.【点睛】本题考查全等三角形的判定与性质,余角的性质,熟练掌握全等三角形的判定与性质是解题的关键.22.(1)见解析;(2)A′(﹣4,﹣5),B′(﹣6,﹣2),C′(﹣3,﹣1);(3)5.5;(4)见解析【分析】(1)利用关于x轴对称的点的坐标特征写出A、B、C关于x轴的对称点A′、B′、C′的坐标,然后描点即可;(2)根据作图即可确定A′,B′,C′三点坐标;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(4)以AC为对角线,作平行四边形ABCD即可.【详解】解:(1)如图,△A′B′C′为所作;(2)对称点的坐标:A′(﹣4,﹣5),B′(﹣6,﹣2),C′(﹣3,﹣1).(3)△ABC的面积=3×4﹣12×3×1﹣12×3×2﹣12×4×1=5.5;故答案为5.5.(4)如图,点D 为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了三角形全等的判定. 23.(1)见解析 (2)见解析【分析】(1)根据等角的余角可知∠1=∠2,利用ASA 即可证得△BAD ≌△CBE ;(2)由△BAD ≌△CBE 可知AD=BE ,根据E 是AB 中点,故EB=EA ,进而可得AE=AD ,根据平行线的性质可得∠5=∠ACB=45°,再根据AD=AE ,即可知AF ⊥DE ,且EF=DF ,即可得证.【详解】如图(1)证明:∵∠ABC=90°,BD ⊥EC ,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,在△BAD 和△CBE 中,2190BA CB BAD CBE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△BAD ≌△CBE (ASA ),(2)证明:∵△BAD ≌△CBE ,∴AD=BE∵E 是AB 中点,∴EB=EA ,∴AE=AD ,∵AD ∥BC ,∴∠5=∠ACB=45°,∵∠4=45°,∴∠4=∠5,又∵AD=AE ,∴AF ⊥DE ,且EF=DF ,即AC是线段ED的垂直平分线;【点睛】本题考查全等三角形的判定及性质以及等腰三角形的性质,还涉及了等角的余角相等、平行线性质等知识点,熟练掌握各个性质定理是解题关键.24.(1)36°;(2)12.【分析】(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°,又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=12.【详解】(1)解:∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°.(2)解:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵∠ECD=36°,∴∠BCE=∠ACB-∠ECD=36°,∠BEC=72°=∠B,∴BC=EC=12.25.(1)见解析;(2)AE+CF=EF,证明见解析;(3)AE﹣CF=EF,证明见解析【分析】(1)利用SAS定理证明△ABE≌△CBF;(2)延长DC至点K,使CK=AE,连接BK,分别证明△BAE≌△BCK、△KBF≌△EBF,根据全等三角形的性质、结合图形证明结论;(3)延长DC 至G ,使CG =AE ,仿照(2)的证明方法解答.【详解】(1)证明:在△ABE 和△CBF 中,=90?AB BCBAE BCF AE CF=⎧⎪=⎨⎪=⎩∠∠,∴△ABE ≌△CBF (SAS );(2)解:AE +CF =EF ,理由如下:延长DC 至点K ,使CK =AE ,连接BK , 在△BAE 与△BCK 中,=BA BCBAE BCK AE CK=⎧⎪=⎨⎪⎩∠∠,∴△BAE ≌△BCK (SAS ),∴BE =BK ,∠ABE =∠KBC ,∵∠FBE =60°,∠ABC =120°,∴∠FBC +∠ABE =60°,∴∠FBC +∠KBC =60°,∴∠KBF =∠FBE =60°,在△KBF 与△EBF 中,BK BEKBF EBF BF BF=⎧⎪=⎨⎪=⎩∠∠,∴△KBF ≌△EBF (SAS ),∴KF =EF ,∴AE +CF =KC +CF =KF =EF ;(3)解:AE ﹣CF =EF ,理由如下:延长DC 至G ,使CG =AE ,由(2)可知,△BAE ≌△BCG (SAS ),∴BE =BG ,∠ABE =∠GBC ,21 ∠GBF =∠GBC ﹣∠FBC =∠ABE ﹣∠FBC =120°+∠FBC ﹣60°﹣∠FBC =60°, ∴∠GBF =∠EBF ,∵BG =BE ,∠GBF =∠EBF ,BF =BF ,∴△GBF ≌△EBF ,∴EF =GF ,∴AE ﹣CF =CG ﹣CF =GF =EF .【点睛】本题考查的是全等三角形的判定和性质,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.。
人教版数学八年级上册期中测试题及答案(一)
人教版数学八年级上册期中测试题(一)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.243.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.117.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1913.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB 于点G.求证:CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【考点】待定系数法求正比例函数解析式.【专题】待定系数法.【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选D.2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.24【考点】一次函数图象上点的坐标特征.【专题】数形结合.【分析】求出直线y=3x+6与两坐标轴的交点坐标,画出函数图象,再根据三角形的面积公式求出三角形的面积.【解答】解:设直线与x轴交点坐标为A(x,0),与y轴交点为B(0,y).将A、B两点分别代入解析式得,x=﹣2,y=6.故A、B两点坐标为A(﹣2,0)、B(0,6).于是S=×2×6=6.△ABC如图:3.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o【考点】直角三角形的性质.【专题】计算题.【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:直角三角形中,两锐角三角形度数和为90°,则两锐角的各一半度数和为45°,根据三角形内角和为180°,可得钝角度数为135°,故选B.4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)【考点】坐标与图形性质.【专题】计算题.【分析】因为四边形为正方形,四条边相等,根据正方形的性质与边长为:|AB|=4,从而可计算出D的坐标.【解答】解:设D点的坐标为(x,y),已知四边形为正方形,四条边相等,且易知|AB|=4,AB∥CD,∴C,D两点的从坐标相等,∴y=﹣3,又∵AD∥BC,∴A,D两点的横坐标相等,∴x=﹣3,∴D的坐标为(﹣3,﹣3),故选A.5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司【考点】函数的图象.【专题】计算题;应用题;函数及其图像.【分析】观察函数图象可知,函数的横坐标表示路程,纵坐标表示收费,根据图象上特殊点的意义即可求出答案.【解答】解:A、交点为(2000,2000),那么当月用车路程为2000km,两家汽车租赁公司租赁费用相同,说法正确,不符合题意;B、由图象可得超过2000km时,相同路程,乙公司收费便宜,∴租赁乙汽车租赁公司车比较合算,说法正确,不符合题意;C、由图象易得乙的租赁费较高,当行驶2000千米时,总收费相同,那么可得甲租赁公司每公里收取的费用比乙租赁公司多,说法正确,不符合题意;D、∵由图象易得乙的租赁费较高,说法错误,符合题意,故选:D.6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【考点】角平分线的性质;三角形内角和定理.【专题】计算题.【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.13.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【考点】轴对称的性质.【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【考点】角平分线的性质.【专题】压轴题.【分析】先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【考点】等边三角形的性质;全等三角形的判定;角平分线的性质.【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正确.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】在直角三角形中,根据两锐角互余即可得到∠BAD=20°,根据角平分线的性质可求出∠BAO和∠ABO,最后由三角形外角的性质求得∠AOF=75°.【解答】解:∵AD是高,∠ABC=70°,∴∠BAD=90°﹣70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.【解答】解:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.【考点】全等三角形的判定与性质.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【考点】等腰三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…(3分)在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】作CE⊥AB,利用直角三角形性质求出CE长,和15海里比较即可看出船不改变航向是否会触礁.【解答】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】求证△AFC≌△CEB可得∠ACF=∠BCF,根据等腰三角形底边三线合一即可解题.【解答】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.【考点】作图—基本作图;等边三角形的性质.【专题】作图题.【分析】(1)根据等边三角形的性质得∠ABC=∠ACB=60°,利用∠CFD=∠D,则根据三角形外角性质得到∠ACB=2∠D,即∠D=∠ACB=30°,然后利用FB=FD得到∠FBD=∠D=30°,则BF平分∠ABC,于是根据等边三角形的性质可得到点F为AC的中点;(2)如图,过点F作FE⊥BD于E,利用含30度的直角三角形三边的关系得到CF=2CE,而CD=CF,则CF=2CE,再利用BC=2CF,所以BD=6CE.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BC=4CE,∴BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【专题】压轴题;动点型.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.【解答】证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF(SAS);(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.。
北师大版八年级上册数学期中考试试题及答案
北师大版八年级上册数学期中考试试卷一、选择题:(每小题3分,共30分。
每小题只有一个正确的选项。
)1、下列各数中,无理数是()A.7B.3C.0.101D.2-32、下列数组中是勾股数的是()A.6,8,9B.7,15,17C.7,24,26D.5,12,13 3、在平面直角坐标系中,点M(﹣4,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限值是()A.在6和7之间B.在5和6之间C.在4和5之间D.在3和4之间5、下列二次根式中是最简二次根式的是()C、56、根据下列表述,能确定位置的是()A.福鼎环球影院2排B.福鼎市海口路C.北偏东30°D.东经118°,北纬40°7、下列函数中,y是x的正比例函数的是()A.y=3x+1B.y=C.y=x2D.y=-4x8、下列一次函数中,y随x增大而减小的是()A.y=2x B.y=3x﹣2C.y=﹣5x+2D.y=2x﹣29、如图,长方形ABCD中,点E在边AB上,将长方形ABCD沿直线DE折叠,点A恰好落在边BC上的点F处,若AD=5,DC=3,则BF的长是()A.1B.2C.3D.410、如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②',…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A.2B.4C.8D.16二、填空题(共6小题,每小题3分,满分18分。
请将答案用黑色签字笔填入答题卡的相应位置)11、9的算术平方根是12、比较大小:2521.(填“>”或“<”号)13、|3﹣π|的计算结果是14、如果点P (m+3,m﹣1)在直角坐标系的x 轴上,则m=15、如图:一个圆柱的底面周长为16cm,高为6cm,BC 是上底面的直径,一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,则蚂蚁爬行的最短路程为cm.(第15题)16、观察下列各式:234===……请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来:.三、解答题(本大题有8小题,满分52分.)17、计算下列各题(每小题4分,满分8分).(1)﹣+③'④'④③②'②①18、(本题满分6分)已知一次函数y=x+2(1)在给定坐标系中画出这个函数的图象;(列表,描点,连线);(2)求该图象与y 轴的交点坐标;19、(本题满分5分)阅读下列材料,然后回答问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学 1
2017-2018第一学期期中教学质量检测
八年级数学试题
(考试时间:100分钟 满分:120分 )
一、选择题(本大题10小题,每小题3分,共30分)
1.下列图形中,是轴对称图形的是 ( )
A. B. C. D.
2.下列长度的三条线段中,能组成三角形的是 ( )
A.3,4,8 B.5,6,11 C.4,6,7 D. 4,4,10
3. 在平面直角坐标系xoy中,点P (-2, 3)关于x轴的对称点坐标是( )
A. (-2 ,-3) B. (2 ,-3) C. (2 ,3) D. (-3 ,-2)
4.如果等腰三角形两边长是6cm和3cm,那么它的周长是 ( )
A.9cm B. 12cm C. 12cm或15cm D. 15cm
5.五边形的内角和是 ( )
A.180° B.540° C.360° D.600°
6. 如图,点P是∠BOA的平分线OC上一点,PE⊥OB于点E.已知PE=3,则点P到OA的距
离是( )
A.6 B.5 C.4 D.3
7.如图,在△ABC中,B=40°,C=30°,延长BA到D,则CAD的度数为( )
A. 110° B. 80° C. 70° D. 60°
8.如图,△ABC≌△DEF,A=50°,B=100°,则F的度数是( )
A. 30° B. 50° C. 60° D. 100°
第6题 第7题 第8题 第9题
9. 如图,在△ABC中,AB=AC,AD⊥BC,BD=4cm,∠BAC=40°,则BC的长度和∠BAD的度数
分别是( )
A.8cm,20° B.4cm,40° C.8cm,40° D.4cm,20°
10.如图,AC=BD,AB=CD,图中全等的三角形的对数是( )
A. 2 B. 3 C. 4 D. 5
八年级数学 2
二、 填空题(每题4分,共24分)
11.如图,若△OAD ≌ △OBC,且∠O = 65°,
∠C = 20°,则∠OAD = 。
12.一个正多边形的每个外角都等于30°,则这个正多边形的边数为________.
13.如图,AC、BD交于O,且AB=CD,请添加一个条件: ,
使得△ABO≌△CDO;
14.已知等腰三角形的顶角是80°,则它的一个底角为_______________.
15.若△ABC的三个内角的比为1:2:3,则这个三角形是_________ 三角形.
16.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,
BD=3,则AD= .
三、解答题(一)(本大题3小题,每小题6分,共18分)
17. 如图,AB∥CD,∠B=76°,∠F=30°,求∠D的度数.
18.如图,在平面直角坐标系中,△ABC的 顶点坐标分别为(33)A,,(21)B,,(51)C,.
(1)在图中作出ABC△关于y轴的对称图形111ABC△.(3分)
(2)写出点111ABC,,的坐标.(3分)
19.已知:如图,AD=AC,∠1=∠2,∠B=∠E. 求证AB=AE
八年级数学 3
四、解答题(二)(本大题3小题,每小题7分,共21分)
20. .如图,AE,AD分别是△ABC的高和角平分线,且∠B=40°,∠C=60°,求∠BAD
和∠DAE的度数.
21.如图,已知AB=CD,DE⊥AC,BF⊥AC,AE=CF,求证:AB∥CD
22. 如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写
作法,保留作图痕迹)(2)连接AP,当∠B为多少度时,AP平分∠CAB.
八年级数学 4
五、解答题(三)(本大题3小题,每小题9分,共27分)
23. 在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,
分别交AB、AC于点D、E.
(1)直接写出图中所有的等腰三角形
(2)若AB=7,AC=5,求△ADE的周长
24.如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D,
(1)若AB=10,BC=6.求△BEC的周长;(5分)
(2)若BE=BC,求∠A的度数.(4分)
25.如图,点A,B,C在同一直线上,△ABD,△BCE都是等边三角形.
(1)求证:AE=CD;
(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.