中考数学常考知识点_2024中考数学命题常考考点及易错点

合集下载

2024年中考数学复习总结归纳(2篇)

2024年中考数学复习总结归纳(2篇)

2024年中考数学复习总结归纳____年的中考数学复习总结归纳,主要围绕中学数学的各个知识点展开,总结和归纳了相关的考点和解题方法,以便同学们在考试中能够更好地应对各种题型。

这里将主要对数与代数、函数与方程、几何与三角以及概率与统计这四个方面展开总结。

一、数与代数1. 数的四则运算数的四则运算是中学数学中的基础,包括加法、减法、乘法和除法。

在复习中要注意掌握整数、有理数和小数的四则运算性质和规则,同时也要熟练运用分配律、结合律和交换律等运算法则。

2. 方程与不等式方程和不等式是数与代数中的重要内容,包括一元一次方程、一元一次不等式、一元二次方程等。

在复习中要重点掌握各种方程和不等式的解法,包括通过变形、消元法、配方法等不同的解题思路。

3. 分式与比例分式是数与代数中的重要知识点,包括分数的加减乘除、分式的化简、比例的概念和性质等。

在复习中要掌握分式的运算方法,同时也要熟练应用在比例、相似形等相关题型中。

4. 数列与函数数列和函数是数与代数中的重要内容,包括等差数列、等比数列、函数的定义和性质等。

在复习中要熟悉数列和函数的基本概念和性质,同时也要能够灵活应用在各种题型中。

二、函数与方程1. 函数的概念与性质函数是数学中的一个重要概念,包括定义域、值域、单调性、奇偶性、周期性等性质。

在复习中要掌握函数的定义和性质,能够正确分析函数的图像和性质。

2. 一次函数与二次函数一次函数和二次函数是数学中常见的函数类型,包括一次函数的图像、斜率和截距的关系、二次函数的图像、顶点坐标、开口方向等。

在复习中要熟悉一次函数和二次函数的基本性质和图像特点,并能够应用在实际问题中。

3. 幂函数与指数函数幂函数和指数函数是数学中的重要函数类型,包括幂函数的图像、幂函数与指数函数的关系、指数函数的图像、指数函数的性质等。

在复习中要理解幂函数和指数函数的特点和性质,能够应用在解决实际问题中。

4. 对数函数与反比例函数对数函数和反比例函数是数学中的重要函数类型,包括对数函数的性质、反比例函数的性质、对数函数和指数函数的关系等。

中考数学命题陷阱与易错点汇总

中考数学命题陷阱与易错点汇总

很多同学习惯于依赖知识点,但是往往掉进了中考数学易错点的陷阱,这类同学往往都是看到题马上就用知识点去解,忽略了问题问什么,题目条件是什么。

基本上都是看到题目很熟悉,想都不想就做,结果一不小心方向就错了,没有弄清楚问题是什么,忽略了题目条件表述和你以前熟悉的题型上细微的差别,如果你也有这样的问题那么这些中考数学易错知识点一定要了解清楚了~关于做题,给你四点建议:其实早在之前突出的备考系列指导中,小编就为大家推荐过一些考试中常会用到的做题技巧和如何提高做题速度的经验方法,但是以下这四点你仍需要用心去理解:1.慢慢读题,至少两遍。

2.验算工整,防止计算错误,也方便检查。

3.回头检查,主要是检查没有把握的题目。

4.深挖根源。

对粗心的相关知识点要梳理。

重头戏来了,我们来看一下前两专题里的命题陷阱与中考数学易错知识点:1.数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。

弄不清绝对值与数的分类。

选择题考得比较多。

易错点2:关于实数的运算,要掌握好与实数的有关概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

易错点4:分式值为零时易忽略分母不能为零。

易错点5:分式运算要注意运算法则和符号的变化。

当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。

填空题易考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题易考。

五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法,精确度。

这个知道就好!易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

2.方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

一次函数和反比例函数综合问题(3易错7题型)—2024年中考数学(全国通用)(解析版)

一次函数和反比例函数综合问题(3易错7题型)—2024年中考数学(全国通用)(解析版)

一次函数和反比例函数综合问题目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)一次函数和反比例函数是全国中考的热点内容,更是全国中考的必考内容.每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分.1.从考点频率看,一次函数和反比例函数的图象和性质是考查的基础,也是高频考点、必考点,所以对一次函数和反比例函数的图象和性质必须熟记.2.从题型角度看,以解答题的第三题或第四题为主,分值8分左右,着实不少!易错点一 一次函数与反比例函数中由面积求点坐标【例1】(2024·广东珠海·模拟预测)如图,在平面直角坐标系xOy 中,一次函数图象5y x =−+与y 轴交于点A ,与反比例函数ky x=的图象的一个交点为(),4B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC 的面积为5,求点C 的坐标;S=ABCABCS=【例2】(2024·甘肃陇南·一模)如图,在平面直角坐标系xOy 中,一次函数4y x =−与反比例函数ky x=的图象交于A ,B 两点,与x 轴相交于点C ,已知点A ,B 的坐标分别为()5,n n 和(),5m −.(1)求反比例函数的解析式; (2)点P 为反比例函数ky x=图象上任意一点,若2POC AOC S S =△△,求点P 的坐标.【例3】(2024·山东济宁·一模)如图,点()3,6A ,()6,B a 是反比例函数y x=的图象上的两点,连接OA 、OB .(1)求a 的值; (2)求AOB 的面积;(3)若点C 的坐标为()9,0,点P 是反比例函数图象上的点,若POC △的面积等于AOB 面积的3倍,求点P的坐标. )AOB 的面积为AODBOES S=,由BOEAODAOEB S SS S=−四边形,可得AOBS=1273322POCAOBSOC PE S =⨯⨯==⨯,即可求解,【详解】(1)解:∵点()3,6A ,()6,B a 是反比例函数y x=的图象上的两点, ∴63m=,解得:18m =, ∴反比例函数解析式为:18y x=, ∴186a =,解得:3a =, 故答案为:3a =,(2)解:过点A ,B ,作AC x ⊥轴,BD x ⊥轴,垂足分别为D ,E ,由(1)可知,点()3,6A ,()6,3B 是反比例函数18y x=的图象上的两点, ∴6AC =,3OD =,3BD =,6OE =,AODBOES S=,∵BOEAODAOEB AOEB S SS S−=−四边形四边形,∴()()()()()1112763632222AOBADEB SS AD BE DE AD BE OE OD ==+⋅=+⋅−=+−=梯形, 故答案为:AOB 的面积为272, (3)解:设点P 坐标为18,p p ⎛⎫⎪⎝⎭,过点P ,作PE x ⊥轴,垂足为E ,∴18180PE p p=−=,9OC =, ∴1273322POCAOBSOC PE S =⨯⨯==⨯, 即:118279322p ⨯⨯=⨯,解得:2p =或2p =−, ∴()2,9P 或()2,9P −−,故答案为:点P 的坐标为()2,9或()2,9−−.一次函数中平移问题【例1】(2024·河北邯郸·二模)如图,直线1:4l y x =+与y 轴,x 轴交于点A ,点B ,直线2l 与y 轴,x 轴交于点A ,点,2C OC OA =.(1)求点A 的坐标及直线2l 的解析式;(2)点13,22D m m ⎛⎫+ ⎪⎝⎭在直线3l 上.①直接写出直线3l 的解析式;②若点D 在ABC 内部(含边界),求m 的取值范围;③横纵坐标都为整数的点为整点,将直线3l 向上平移n 个单位长度(n 为整数),直线3l 在第二象限恰有4个整点,直接写出n的值.=OC OA2①点在ABC 内部(含边界)【例2】(2024·河北石家庄·一模)如图,平面直角坐标系中,线段AB 的端点为(2,2)A ,(4,1)B .直线:2l y x =+与x 轴,y 轴分别交于C ,D 两点,动点P 从点D 出发,沿y 轴以每秒1个单位长度的速度向下移动,设移动时间为t 秒.某同学设计了一个动画:线段AB 为蓝色光带,当有动点或动直线经过线段AB 时,蓝色光带会变成红色.(1)求直线AB 的解析式;(2)①若直线l 随点P 向下平移,当2t =时,蓝色光带是否变红?②点M 是直线l 上的一点,若点M 向下平移4个单位长度的过程中,能使蓝色光带变红,求点M 的横坐标M x 的取值范围;Q m n三点共线时,直接写出m与t的函数关系式.(3)当点C,点P与蓝色光带上的点(,)直线过直线又直线②点A)()20C −,易错点三 一次函数与反比例函数中求线段和的最小值问题【例1】(2024·甘肃兰州·模拟预测)如图,一次函数8y x =+的图象与反比例函数()0ky x x=<的图象交于(),6A a ,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)在y 轴上存在点P ,使得AP BP +的值最小,求AP BP +的最小值.则AP BP +的最小值A =【例2】(2023·辽宁盘锦·二模)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于()1,A a −,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)当反比例函数值大于一次函数值时,直接写出x 的取值范围;(3)在y 轴上存在点P ,使得APB △的周长最小,求点P 的坐标并直接写出APB △的周长. )解:点点点A题型一 一次函数的图象和性质【例1】(2024·浙江·模拟预测)已知点()11,A m n ,()22,B m n ()12m m <在一次函数y kx b =+的图像上. (1)用含有1m ,1n ,2m ,2n 的代数式表示k 的值.(2)若123m m b +=,124n n kb +=+,2b >.试比较1n 和2n 的大小,并说明理由.【例2】(2024·浙江杭州·一模)设一次函数31y ax a =++(a 是常数,0a ≠). (1)无论a 取何值,该一次函数图象始终过一个定点,直接写出这个定点坐标: (2)若24x ≤≤时,该一次函数的最大值是6,求a 的值. 【详解】(1)解:一次函数1, 当3x =−时,11y =,∴无论a 取何值,该一次函数图象始终过定点(3,1)−;(2)解:当0a >时,当4x =时,一次函数14316y a a =++=,1.(2024·北京·一模)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2−,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.解:一次函数2.(2024·浙江宁波·模拟预测)已知一次函数10y mx n mn =+≠.(1)已知关于x 的一元二次方程20x mx n +−=必有两个不相等的实数根,试说明一次函数1y mx n =+的图象过第一和第二象限.(2)在(1)的条件下,已知另一函数2y nx m =+的图象与y 1图象的交点在第四象限,求不等式12y y >的解. 【答案】(1)见解析解:∵关于x 的一元二次方程20x mx n +−=的解,可看作抛物线2y x =与直线y mx n =−+的交点, 根据题意得,抛物线2y x =与直线y mx n =−+必有两个不同的交点, ∴0n >,∴一次函数1y mx n =+的图象过第一和第二象限; (2)解:∵2y nx m =+,0n >,∴直线2y nx m =+一定经过第一、三象限, ∵直线2y nx m =+与y 1图象的交点在第四象限,∴直线2y nx m =+一定经过第一、三、四象限, ∴0m <, ∴0m n −<, ∵12y y >, ∴mx n nx m +>+, 整理得()m n x m n −>−, ∴1x <,即不等式12y y >的解集为1x <.题型二 反比例函数的图象和性质【例1】(2024·陕西西安·一模)已知反比例函数3my x−=. (1)若该反比例函数图象在每一个象限内,y 都随着x 的增大而减小,求m 的取值范围; (2)若点()2,3A 在此反比例函数图象上,求反比例函数的解析式.1.(2024·福建南平·一模)反比例函数ky x=图象经过点(1,6)A ,(,3)B a . (1)求a 的值;(2)若点(,)C m n 在反比例函数ky x=图象上,其中3n <,求m 的取值范围. 题型三 一次函数和反比例函数与不等式综合问题【例1】(2024·贵州毕节·一模)如图,一次函数()0y ax b a =+≠与反比例函数()0ky k x=≠的图象在第一象限交于()2,3A 和()3,B m 两点,与x 轴交于点C .(1)求反比例函数和一次函数的表达式; (2)直接写出关于x 的不等式(0)kax b x x+>>的解集. )解:点又B【例2】(2024·陕西宝鸡·一模)如图所示,一次函数1y x m =−+图象与反比例函数2ky x=图象相交于点(,3)A n 和点(3,1)B −.(1)求反比例函数解析式; (2)当12y y >时,求x 的取值范围.1.(2024·山西朔州·一模)如图,反比例函数()1110,0k y k x x=>>与一次函数()2220y k x b k =+≠的图象交于()2,3A ,3,2B m ⎛⎫⎪⎝⎭两点.(1)求m 的值及一次函数的表达式. (2)直接写出当12y y >时,x 的取值范围.)解:反比例函数与一次函数的图象交于当24x <<时,12y y <,所以,当12y y >时, x 的取值范围为02x <<或4x >.2.(2024·江西九江·一模)如图一次函数y kx b =+的图象与反比例函数4y x=−的图象相交于点()1,A m −,(),1B n −.(1)求一次函数的解析式;(2)结合图象,直接写出不等式4kx b x+>−的解集.3.(2024·河南安阳·模拟预测)如图,一次函数12y x =−的图象与反比例函数(0)y k x=≠的图象交于()(),12,A a B b −,两点,与x 轴相交于点C .(1)求反比例函数的表达式;(2)观察图象,直接写出不等式112kx x−<的解集;(3)若(),0P m 为x 轴上的一动点,连接AP ,当APC △的面积为52时,求点P 的坐标. )解:函数)函数在112y x =−中, 当y =解得:2x =,()2,0C ∴, ()0,P m ,APC S =△题型四 一次函数和反比例函数中求三角形面积问题【例1】(2024·山西大同·一模)如图,一次函数y ax b =+的图象与反比例函数()0ky k x=>的图象相交于点()6,32A n −−,点(),3B n −,与y 轴交于点C .(1)求一次函数和反比例函数的解析式;(2)点D 是点C 关于x 轴的对称点,连接AD BD 、,求ABD △的面积.S=ABD【例2】(2024·吉林白山·一模)如图,在平面直角坐标系中,一次函数5y x =−+的图象与反比例函数(0)ky k x=>的图象相交于()1,A m 、()4,B n 两点,与x 轴相交于点C ,连接OA 、OB .(1)求反比例函数的解析式; (2)求AOB 的面积. AOBS=1.(2024·湖南长沙·三模)如图,在平面直角坐标系中,一次函数32y x b =−+与反比例函数()0ky k x=≠交于()(),6,4,3A m B −两点,与y 轴交于点C ,连接,OA OB .(1)求反比例函数和一次函数的表达式; (2)求AOB 的面积.解:点解:点AOBAOCBOCS SS=+与反比例函数(0)ky x x=>的图象交于点()1,C a ,D 是反比例函数图象上的一个动点,过点D 向y 轴作垂线与一次函数图象交于点E ,其中点A 的坐标为(3,0)−.(1)求反比例函数的表达式;(2)连接,DB DC ,当DCE △的面积等于DBC △面积的2倍时,求点E 的坐标;(3)若P 是x 轴上的一个动点,连接,EP DP ,当DPE 与AOB 相似时,求点D 的纵坐标. 坐标,根据DPE 与AOB 相似计算即可,注意分情况讨论.()033b =⨯−+∵过点D向y轴作垂线与一次函数图象交于点∴设12D mm⎛⎫⎪⎝⎭,,则点E纵坐标为∴1239y xm=+=,解得x412⎛⎫当AOB PED∽时,当时,AOB PED ∽,此时时,P AOB DE ∽,此时∴12PD m =,DE m ⎛=− ⎝∴1243PD m DE m m m ==⎛⎫−− ⎪⎝⎭时,E AOB PD ∽,此时时,P AOB ED ∽,此时,则N EPM PD ∽∴EM MP PEPN DN PD== 此时12EM DN m==,DE 当D AOB EP ∽时,PE PD 同理当AOB DPE ∽时,PD综上所述,当DPE 与AOB 相似时,求点题型五 一次函数和反比例函数中求证问题【例1】(新考法,拓视野)(2024·河南周口·一模)如图,反比例函数ky x=与正比例函数y ax =交于点()3,2A 和点C ,与正比例函数6y x =交于点B 和点D .(1)求k 与a 的值,并求点B ,C ,D 的坐标; (2)求证:CBD ADB ∠=∠.1.(2024·湖南怀化·一模)在平面直角坐标系中,点O 为坐标原点.如图,一次函数y ax b =+(a 为常数,0a ≠)与反比例函数ky x=(k 为常数,0k ≠)的图象相交于点()25A ,和点()4B m −,.(1)求反比例函数与一次函数的解析式;(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,相交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,相交于点D .求证:C ,O ,D 三点在同一条直线上.2.(2024·河南平顶山·一模)如图,一次函数y ax b =+的图象与反比例函数y x=的图象交于第一象限(1,4)C ,D(4,m)两点,与坐标轴交于A 、B 两点,连接OC ,OD (O 是坐标原点).(1)求一次函数与反比例函数的解析式;(2)当kax bx+<时,直接写出x的取值范围;(3)将直线AB向下平移多少个单位长度,直线与反比例函数图象只有一个交点?题型六一次函数和反比例函数中求线段长问题【例1】(2024·广东珠海·一模)如图1.直线21y x =+与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点()1,A a .图2将线段AB 向右平移m 个单位长度()0m >,得到对应线段CD ,连接AC ,BD .当点D 恰好落在反比例函数图象上时,过点C 作CF x ⊥轴于点F ,交反比函数图象于点E .(1)求反比例函数表达式; (2)求EF 的长度.1.(2024·河南·模拟预测)如图所示,在平面直角坐标系中,一次函数1y ()0kx b k =+≠的图象与反比例函数2y ()0mm x=≠的图象相交于第二、四象限内的()1,3A −,(),1B a −两点,与y 轴交于点C .(1)求该反比例函数和一次函数的解析式;(2)在x 轴上找一点P ,使PA PC −最大,求PA PC −的最大值及点P 的坐标.一次函数的解析式为Rt ADC中,由勾股定理可得题型七利用反比例函数的图象和性质探究平移问题【例1】(新考法,拓视野)(2024·广东深圳·模拟预测)小明在学习了反比例函数的图象与性质后,进一步研究了函数1yx=−的图象与性质.其探究过程如下:(1)绘制函数图象,如图,列表:下表是x与y的几组对应值,其中m=;描点:根据表中各组对应值,x y,在平面直角坐标系中描出各点;连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;(2)通过观察函数图象,写出该函数的一条性质:.(3)利用函数图象,解不等式1230xx−+<.观察图形得出函数的性质:图象关于y轴对称;故答案为:图象关于y轴对称;(3)【例2】(2024·陕西西安·一模)乐乐同学在学习了反比例函数的基础上,进一步探究函数21y x =-的性质.以下是他的研究过程,请补充完整.(1)如表是y 与x 的几组对应值.(2)在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察图象,发现这个函数图象为中心对称图形,则它的对称中心为______;(4)若直线2y x =与函数21y x =-的图象交于第一象限内一点(),P x y ,则下面关于x 的取值范围描述正确的是( )A .1 1.25x <<B .1.25 1.5x <<C .1.5 1.75x <<D .1.752x <<【详解】(1)解:①4x =时,413y ==−, 23m ∴=, 故答案为:23; (2)解:如图:(3)解:观察图象,发现这个函数图象为中心对称图形,则它的对称中心为(1,0);故答案为:(1,0);(4)解:作出直线2y x =如图:把3y =代入2y x =求得 1.5x =,把3y =代入21y x =-,求得53x =, 观察图象,若直线2y x =与函数21y x =-的图象交于第一象限内一点(,)P x y ,则x 的取值范围是51.53x <<, ∴关于x 的取值范围描述正确的是C ,故答案为:C .1.(2024·山西大同·一模)中考新考法:注重过程性学习,某数学小组在研究函数221x y −+=+时,对函数的图象进行了探究,探究过程如下:(1)①x 与y 的几组对应值如下表,请补全表格;②在上图平面直角坐标系中,描出上表中各组对应值为坐标的点,并根据描出的点画出该函数的图象;(2)我们知道,函数()()20,0,0y a x h k a h k =−+≠>>的图象是由二次函数2y ax =的图象向右平移h 个单位,再向上平移k 个单位得到的.类似地,请直接写出将2y x =−的图象经过怎样的平移可以得到221x y −+=+的图象;(3)若一次函数123y x =−+的图象与函数221x y −+=+的图象交于A B 、两点,连接OA OB 、,求AOB 的面积. 【答案】(1)见解析,(2)向左平移1个单位,向上平移2个单位(3)5(2)2y x=−的图象向左平移1(3)一次函数123y x =−+的图象,如图,可知∴AOB 的面积为()12232⨯⨯+=。

中考数学常考易错点:2 2《分式方程》

中考数学常考易错点:2 2《分式方程》

中考数学常考易错点:2 2《分式方程》中考数学常考易错点:2-2《分式方程》分数阶方程易错清单1.为什么解分数阶方程容易出错?[示例1](2022新疆)求解分数阶方程:+=1【解析】先将分式方程转换为整式方程,再求出整式方程的解,最后检验后判定分式方程解的情况.[答:]将方程两边乘以(x+3)(x-3),得到3+x(x+3)=x-9。

去掉括号,得到3+X+3x=X-9,解为X=-4检验:把x=-4代入(x+3)(x-3)≠0,二2二∴x=-4是原分式方程的解.【纠错】最简单的公分母是错误的,这会增加计算负担并导致错误;在计算中,应注意常数项应乘以最简单的公分母【例2】(2021内蒙古呼和浩特)解方程:-=0.【分析】首先去掉分母,将其转换成积分方程。

这个问题最简单的公分母是x(x+2)(x-2)[回答]去掉分母,得到3x-6-x-2=0。

解为x=4,经检验,x=4是原方程的根,故x=4是原方程的解.【纠错】解分数阶方程会产生额外的根并忘记测试根【例3】(贵州省黔西南地区2022年)解方程:=【解析】将分式方程转化为整式方程时易产生增根,所以要检验,检验时只要代入最简公分母中即可.[答:]将方程两边乘以(x+2)(x-2)得到x+2=4,解为x=2,经检验,x=2不是分式方程的解,故原分式方程无解.[错误纠正]增加根不是分数方程式的根。

学生经常犯漏掉最后一句话的错误:“原始分数阶方程没有解”2.运用分式方程解决实际问题时,关键是找出等量关系.【例4】(2022年)云南“母亲节”前夕,根据市场调查,一家商店以3000元的价格购买了第一批盒装鲜花,上市后很快就售罄,然后用5000元买了第二批盒花据了解,第二批购买的盒花数量是第一批的两倍,每箱花的购买价格比第一批低5元第一批盒花的购买价格是多少?【解析】设第一批盒装花的进价是x元/盒,则第一批进的数量是,第二批进的数量是,再根据等量关系:第二批进的数量=第一批进的数量×2,可得方程.【答案】设第一批盒装花的进价是x元/盒,由题意,得2×=,解得x=30.经测试,x=30是原始方程的根,因此,第一批盒装鲜花的购买价格为每盒30元【误区纠错】题目中的相等关系不明显,倍数关系易出错,学生找不到相等关系而无法得到对应的分式方程.运用分式方程解决实际问题的关键是确定问题中的相等关系.名师忠告1.会利用分式方程的定义判断分式方程.2.能用最简单的公分母将分数阶方程转化为积分方程,能用代换的思想求解分数阶方程。

中考数学常考知识点整理

中考数学常考知识点整理

中考数学常考知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!中考数学常考知识点整理中考数学常考知识点整理大全为避免中考忘记知识,熟背考点。

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围通用的解题思路:第一步:先判定函数的增减性:一次函数、反比例函数看k ,二次函数看对称轴与区间的位置关系;第二步:当a x =时,min y y =;当b x =时,max y y =;所以max min y y y ≤≤.二次函数求取值范围之动轴定区间或者定轴动区间的分类方法:分对称轴在区间的左边、右边、中间三种情况。

(1)若自变量x 的取值范围为全体实数,如图①,函数在顶点处abx 2-=时,取到最值.(2)若abn x m 2-<≤≤,如图②,当m x =时,max y y =;当n x =时,min y y =.(3)若n x m ab≤≤<-2,如图③,当m x =,min y y =;当n x =,max y y =.(4)若n x m ≤≤,且n a b m ≤-≤2,m a b a b n -->+22,如图④,当a bx 2-=,min y y =;当n x =,max y y =.1.(中考真题)设a 、b 是任意两个不等实数,我们规定:满足不等式a ⩽x ⩽b 的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m ⩽x ⩽n 时,有m ⩽y ⩽n,我们就称此函数是闭区间[m,n]上的“闭函数”。

(1)反比例函数xy 2013=是闭区间[1,2013]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若二次函数5754512--=x x y 是闭区间[a,b]上的“闭函数”,求实数a ,b 的值。

【解答】解:(1)反比例函数y=是闭区间[1,2013]上的“闭函数”.理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2013;当x=2013时,y=1,所以,当1≤x≤2013时,有1≤y≤2013,符合闭函数的定义,故反比例函数y=是闭区间[1,2013]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣x﹣=(x﹣2)2﹣,∴该二次函数的图象开口方向向上,最小值是﹣,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大;①当b≤2时,此二次函数y随x的增大而减小,则根据“闭函数”的定义知,,解得,(不合题意,舍去)或;②当a<2<b时,此时二次函数y=x2﹣x﹣的最小值是﹣=a,根据“闭函数”的定义知,b=a2﹣a﹣或b=b2﹣b﹣;a)当b=a2﹣a﹣时,由于b=(﹣)2﹣×(﹣)﹣=<2,不合题意,舍去;b)当b=b2﹣b﹣时,解得b=,由于b>2,所以b=;③当a≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵<0,∴舍去.综上所述,或.2.(中考真题)若关于x 的函数y ,当1122t x t -≤≤+时,函数y 的最大值为M ,最小值为N ,令函数2M N h -=,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数4044y x =,当1t =时,求函数y 的“共同体函数”h 的值;②若函数y kx b =+(0k ≠,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数21y x x=≥(),求函数y 的“共同体函数”h 的最大值;(3)若函数24y x x k =-++,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.解析:(1)解:①当1t =时,则111122x -≤≤+,即1322x ≤≤, 4044y x =,4044k =0>,y 随x 的增大而增大,314044404422202222M N h ⨯-⨯-∴===,②若函数y kx b =+,当0k >时,1122t x t -≤≤+,∴11,22M k t b N k t b ⎛⎫⎛⎫=++=-+ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==,当0k <时,则11,22M k t b N k t b ⎛⎫⎛⎫=-+=++ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==-,综上所述,0k >时,2k h =,0k <时,2kh =-,(2)解:对于函数()21y x x=≥, 20>,1x ≥,函数在第一象限内,y 随x 的增大而减小,112t ∴-≥,解得32t ≥,当1122t x t -≤≤+时,∴2424,11212122M N t t t t ====-+-+,()()()()()()2221221144442221212121212141t t M N h t t t t t t t +---⎛⎫∴==-=== ⎪-+-+-+-⎝⎭,∵当32t ≥时,241t -随t 的增大而增大,∴当32t =时,241t -取得最小值,此时h 取得最大值,最大值为()()4412121242h t t ===-+⨯;(3)对于函数24y x x k =-++()224x k =--++,10a =-<,抛物线开口向下,2x <时,y 随x 的增大而增大,2x >时,y 随x 的增大而减小,当2x =时,函数y 的最大值等于4k +,在1122t x t -≤≤+时,①当122t +<时,即3t 2<时,211422N t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422M t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=22111114422222t t k t t k ⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫-++++---+-+⎢⎥⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭=2t -,∴h 的最小值为12(当32t =时),若124k =+,解得72k =-,但32t <,故72k =-不合题意,故舍去;②当122t ->时,即5t 2>时,211422M t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422N t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=2t -,∴h 的最小值为12(当52t =时),若124k =+,解得72k =-,但52t >,故72k =-不合题意,故舍去③当11222t t -≤≤+时,即3522t ≤≤时,4M k =+,i )当112222t t ⎛⎫⎛⎫--≥+- ⎪ ⎪⎝⎭⎝⎭时,即322t ≤≤时,211422N t t k⎛⎫⎛⎫=--+-+ ⎪ ⎝⎭⎝⎭22114415252222228k t t k M N h t t ⎛⎫⎛⎫++---- ⎪ ⎪-⎝⎭⎝⎭===-+ 对称轴为52t =,102>,抛物线开口向上,在322t ≤≤上,当t =2时,h 有最小值18,148k ∴=+,解得318k =-;i i )当112222t t ⎛⎫⎛⎫--≤+- ⎪ ⎪⎝⎭⎝⎭时,即522t ≤≤时,4M k =+,N =211422t t k ⎛⎫⎛⎫-++++ ⎪ ⎝⎭⎝⎭,∴2211441392222228k t t kM N h t t ⎛⎫⎛⎫+++-+- ⎪ ⎪-⎝⎭⎝⎭===-+, 对称轴为32t =,102>,抛物线开口向上,在522t <≤上,当t =2时,h 有最小值18,148k ∴=+解得318k =-,综上所述,2t =时,存在318k =-.3.(中考真题)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =()②my (m 0)x=≠()③31y x =-()(2)若点()1,A m 与点(),4B n -关于x 的“H 函数”()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值或取值范围;(3)若关于x 的“H 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,②(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【详解】(1)①2y x =是“H 函数”②my (m 0)x=≠是“H 函数”③31y x =-不是“H 函数”;故答案为:√;√;×;(2)∵A,B 是“H 点”∴A,B 关于原点对称,∴m=4,n=1∴A(1,4),B (-1,-4)代入()20y ax bx c a =++≠,得44a b c a b c ++=⎧⎨-+=-⎩,解得40b ac =⎧⎨+=⎩,又∵该函数的对称轴始终位于直线2x =的右侧,∴-2b a >2,∴-42a >2,∴-1<a <0,∵a+c=0,∴0<c <1,综上,-1<a <0,b=4,0<c <1;(3)∵223y ax bx c =++是“H 函数”,∴设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩,解得ap 2+3c=0,2bp=q ,∵p 2>0,∴a,c 异号,∴ac <0,∵a+b+c=0,∴b=-a-c ,∵(2)(23)0c b a c b a +-++<,∴(2)(23)0c a c a c a c a -----+<,∴(2)(2)0c a c a -+<,∴c 2<4a 2,∴22c a<4,∴-2<c a <2,∴-2<c a <0,设t=c a ,则-2<t <0,设函数与x 轴的交点为(x 1,0)(x 2,0),∴x 1,x 2是方程223ax bx c ++=0的两根,∴12x x -=,又∵-2<t <0,∴2<12x x -<4.(2022春•芙蓉区校级期末)在y 关于x 的函数中,对于实数a ,b ,当a ≤x ≤b 且b =a +3时,函数y 有最大值y max ,最小值y min ,设h =y max ﹣y min ,则称h 为y 的“极差函数”(此函数为h 关于a 的函数);特别的,当h =y max ﹣y min 为一个常数(与a 无关)时,称y 有“极差常函数”.(1)判断下列函数是否有“极差常函数”?如果是,请在对应()内画“√”,如果不是,请在对应()内画“×”.①y =2x ();②y =﹣2x +2();③y =x 2().(2)y 关于x 的一次函数y =px +q ,它与两坐标轴围成的面积为1,且它有“极差常函数”h =3,求一次函数解析式;(3)若,当a ≤x ≤b (b =a +3)时,写出函数y =ax 2﹣bx +4的“极差函数”h ;并求4ah 的取值范围.【解答】解:(1)①∵y =2x 是一次函数,且y 随x 值的增大而增大,∴h =2(a +3)﹣2a =6,∴y =2x 是“极差常函数”,故答案为:√;②∵y =﹣2x +2是一次函数,且y 随x 值的增大而减小,∴h =﹣2a +2﹣[﹣2(a +3)+2]=6,∴y =﹣2x +2是“极差常函数”,故答案为:√;∵y =x 2是二次函数,函数的对称轴为直线x =0,当a +3≤0时,h =a 2﹣(a +3)2=﹣9﹣6a ;当a ≥0时,h =(a +3)2﹣a 2=9+6a ;∴y =x 2不是“极差常函数”,故答案为:×;(2)当x =0时,y =q ,∴函数与y 轴的交点为(0,q ),当y =0时,x =﹣,∴函数与x 轴的交点为(﹣,0),∴S =×|q |×|﹣|=1,∴=2,当p >0时,h =p (a +3)+q ﹣(pa +q )=3,∴p =1,∴q =±,∴函数的解析式为y =x ;当p <0时,h =pa +q ﹣[p (a +3)+q ]=3,∴p =﹣1,∴q =±,∴函数的解析式为y =﹣x;综上所述:函数的解析式为y =x 或y =﹣x;(3)y =ax 2﹣bx +4=a (x ﹣)2+4﹣,∴函数的对称轴为直线x =,∵b =a +3,∴x ==+,∵,∴≤+≤,≤a +3≤,∵(a +3﹣﹣)﹣(+﹣a )=2a +2﹣,∵,∴2a +2﹣>0,∴a +3到对称轴的距离,大于a 到对称轴的距离,∴当x =a +3时,y 有最大值a (a +3)2﹣(a +3)2+4,当x =时,y 有最小值4﹣=4﹣,∴h =a (a +3)2﹣(a +3)2+4﹣4+=(a +3)2(a ﹣1+),∴4ah =(2a 2+5a ﹣3)2,∵2a 2+5a ﹣3=2(a +)2﹣,,∴≤2a 2+5a ﹣3≤9,∴≤4ah ≤81.5.(雅实)若函数1y 、2y 满足12y y y =+,则称函数y 是1y 、2y 的“融合函数”.例如,一次函数121y x =+和二次函数2234y x x =+-,则1y 、2y 的“融合函数”为21253y y y x x =+=+-.(1)若反比例函数12y x=和一次函数23y kx =-,它们的“融合函数”过点()1,5,求k 的值;(2)若21y ax bx c =++为二次函数,且5a b c ++=,在x t =时取得最值,函数2y 为一次函数,且1y 、2y 的“融合函数”为224y x x =+-,当12x -≤≤时,求函数1y 的最小值(用含t 的式子表示);(3)若二次函数21y ax bx c =++与一次函数2y ax b =--,其中0a b c ++=且a b c >>,若它们的“融合函数”与x 轴交点为()1,0A x 、()2,0B x 12x -的取值范围.【解答】解:(1)由题意可得y 1、y 2的融合函数23y kx x=+-,将点()1,5代入,可得:523k =+-,解得6k =.(2)∵12y y y =+,∴()()2222124214y y y x x ax bx c a x b x c =-=+----=-+---,∵y 2为一次函数,∴20a -=,即2a =,∴212y x bx c =++在x =t 处取得最值,∴4bt =-,即4b t =-,∴5a b c ++=,即54234c t t =+-=+,∴212434y x tx t =-++,对称轴:x t =.①若1t ≤-时,即当1x =-时,min 58y t =+,②若12t -<<时,即当x t =时,2min 234y t t =-++,③若2t ≥时,即当2x =时,min 114y t =-.(3)y 1、y 2的融合函数()2y ax b a x c b =+-+-,∵与y 轴交于点()1,0A x 、()2,0B x ,∴12b a x x a -+=,12c b x x a -⋅=,∵12||x x a -==,又∵0a b c ++=,∴b a c =--,∴12x x ==,∵a b c >>∴a a c c >--<,∴122c a -<<-,当2ca=-时,12maxx x -=,当12c a =-时,12min32x x -=12x <-<.6.(立信)已知:抛物线1C :2y ax bx c =++(0a >).(1)若顶点坐标为(1,1),求b 和c 的值(用含a 的代数式表示);(2)当0c <时,求函数220221y ax bx c =-++-的最大值;(3)若不论m 为任何实数,直线()214m y m x =--与抛物线1C 有且只有一个公共点,求a ,b ,c 的值;此时,若1k x k ≤≤+时,抛物线1C 的最小值为k ,求k 的值.【解答】解:(1)∵抛物线的顶点坐标为(1,1),∴y =a (x ﹣1)2+1=ax 2﹣2ax +a +1,∴b =﹣2a ,c =a +1;(2)∵y =ax 2+bx +c ,a >0,c <0,∴Δ=b 2﹣4ac >0,∴抛物线y =ax 2+bx +c (a >0)与x 轴有两个交点,∴|ax2+bx+c|≥0,∴﹣2022|ax2+bx+c|≤0,∴﹣2022|ax2+bx+c|﹣1≤﹣1,∴函数y=﹣2022|ax2+bx+c|﹣1的最大值为﹣1;(3)∵直线与抛物线C1有且只有一个公共点,∴方程组只有一组解,∴ax2+(b﹣m)x++m+c=0有两个相等的实数根,∴Δ=0,∴(b﹣m)2﹣4a(+m+c)=0,整理得:(1﹣a)m2﹣2(2a+b)m+b2﹣4ac=0,∵不论m为任何实数,(1﹣a)m2﹣2(2a+b)m+b2﹣4ac =0恒成立,∴,∴a=1,b=﹣2,c=1.此时,抛物线解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线的对称轴为直线x=1,开口向上,∵当k≤x≤k+1时,抛物线的最小值为k,∴分三种情况:k<0或0≤k≤1或k>1,①当k<0时,k+1<1,当k≤x≤k+1时,y随着x的增大而减小,则当x=k+1时,y的最小值为k,∴(k+1﹣1)2=k,解得:k=0或1,均不符合题意,舍去;②当0≤k≤1时,当x=1时,抛物线的最小值为0,∴k=0;③当k>1时,y随着x的增大而增大,则当x=k时,y的最小值为k,∴(k﹣1)2=k,解得:k=或,∵k>1,∴k=,综上所述,若k≤x≤k+1时,抛物线的最小值为k,k的值为0或.7.(长郡)对于一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k (b﹣a),则称此函数为“k属和合函数”,例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3属和合函数”.(1)若一次函数y=kx﹣1(1≤x≤3)为“4属和合函数”,求k的值;(2)反比例函数kyx(k>0,a≤x≤b,且0<a<b)是“k属和合函数”,且a+b=3,请求出a﹣b的值;(3)已知二次函数y=﹣x2+2ax+3,当﹣1≤x≤1时,y是“k属和合函数”,求k的取值范围.【详解】解:(1)当k >0时,y 随x 的增大而增大,∵1≤x ≤3,∴k ﹣1≤y ≤3k ﹣1,∵函数y =kx ﹣1(1≤x ≤3)为“k 属和合函数”,∴(3k ﹣1)﹣(k ﹣1)=4(3﹣1),∴k =4;当k <0时,y 随x 的增大而减小,∴3k ﹣1≤y ≤k ﹣1,∴(k ﹣1)﹣(3k ﹣1)=4(3﹣1),∴k =﹣4,综上所述,k 的值为4或﹣4;(2)∵反比例函数y =kx,k >0,∴在第一象限,y 随x 的增大而减小,当a ≤x ≤b 且0<a <b 是“k 属和合函数”,∴k a ﹣kb=k (b ﹣a ),∴ab =1,∵a +b =3,∴(a ﹣b )2=(a +b )2﹣4ab =9﹣4=5,∴a ﹣b (3)∵二次函数y =﹣x 2+2ax +3的对称轴为直线x =a ,∵当﹣1≤x ≤1时,y 是“k 属和合函数”,∴当x =﹣1时,y =2﹣2a ,当x =1时,y =2+2a ,当x =a 时,y =a 2+3,①如图1,当a ≤﹣1时,当x =﹣1时,有y 最大值=2﹣2a ,当x =1时,有y 最小值=2+2a ∴(2﹣2a )﹣(2+2a )=k •[1﹣(﹣1)]=2k ,∴k =﹣2a ,而a ≤﹣1,∴k ≥2;②如图2,当﹣1<a ≤0时,当x =a 时,有y 最大值=a 2+3,当x =1时,有y 最小值=2+2a ,∴a 2+3﹣(2+2a )=2k ,∴k =2(1)2a -,∴12≤k <2;③如图3,当0<a ≤1时,当x =a 时,有y 最大值=a 2+3,当x =﹣1时,有y 最小值=2﹣2a ,∴a 2+3﹣(2﹣2a )=2k ,∴k =2(1)2a +,∴12<k ≤2;④如图4,当a >1时,当x =1时,有y 最大值=2+2a ,当x =﹣1时,有y 最小值=2﹣2a ,∴(2+2a )﹣(2﹣2a )=2k ,∴k =2a ,∴k >2.综上所述,当﹣1≤x ≤1时,y 是“k 属和合函数”,k 的取值范围为k ≥12.8.(师大附中博才)已知a 、b 是两个不相等的实数且a b <,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],.a b 对于一个函数,如果它的自变量x 与函数值y 满足:当a x b ≤≤时,有(ta y tb t ≤≤为正数),我们就称此函数是闭区间[],a b 上的“t 倍函数”.例如:正比例函数2y x =,当13x ≤≤时,26y ≤≤,则2y x =是13x ≤≤上的“2倍函数”.(1)已知反比例函数4yx=是闭区间[],m n 上的“2倍函数”,且m n +=22m n +的值;(2)①已知正比例函数y x =是闭区间[]1,2023上的“t 倍函数”,求t ;②一次函数()0y kx b k =+≠是闭区间[],m n 上的“2倍函数”,求此函数的解析式.(3)若二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,求实数a 、b 的值.【详解】(1)已知反比例函数4y x=是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,当x m =时,4y m =;当x n =时,4y n=,又40k => ,∴当0x >时,y 随x 的增大而减小,当0x <时,y随x 的增大而减小,42n m ∴=,且42m n=,24mn ∴=,又m n += ,()22222023m n m mn n ∴+=++=,2220232202342019m n mn ∴+=-=-=.(2)①已知正比例函数y x =,y 随x 的增大而增大,且当1x =时,1y =;当2023x =时,2023y =,∴当12023x ≤≤时,12023y ≤≤,y x ∴=是闭区间[]1,2023上的“1倍函数”,即1t =.② 一次函数0y kx b k =+≠()是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,若0k >时,y 随x 的增大而增大,∴当x m =,则2y km b m =+=;当x n =,则2y kn b n =+=,()()2m n k m n ∴-=-,2k ∴=,将2k =代入2km b m +=,得22m b m +=,0b ∴=.∴若0k >时,函数解析式为2y x =.若0k <时,y 随x 的增大而减小,∴当x m =时,2y km b n =+=;当x n =时,2y kn b m =+=,2k ∴=-,22b m n =+.∴若0k <时,函数解析式为()22y x m n =-++,综合以上分析,函数的解析式为2y x =或()22y x m n =-++.(3)由二次函数269y x x =--解析式可知,抛物线开口向上,对称轴3x =,∴当3x <时,y 随x 的增大而减小;当3x >时,y 随x 的增大而增大, 二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,∴当a x b ≤≤时,()770a y b a ≤≤≠,若3b ≤时,根据增减性,当x a =时,2697y a a b =--=;当x b =时,2697y b b a =--=,两式相减得:226677a b a b b a --+=-,()()a b a b b a ∴+-=-,1b a ∴=--,将1b a =--代入2697a a b --=得:220a a +-=,2a ∴=-或1a =,当2a =-时,1b =;当1a =时,2b =-(舍去,a b <).若3a ≥时,当x a =时,2697y a a a =--=,解得a =a =x b =时,2697y b b b =--=.解得132b =或b =均不符合a b <,舍去.若3a <,3b >时,当3x =时,236397y a =-⨯-=,187a ∴=-,则x a =时,26396949y a a =--=,若639749b =,6393343b =<,(舍去),当x b =时,2697y b b b =--=,则b =b =综上分析,2a =-,1b =或者187a =-,b =9.(长郡)定义:在平面直角坐标系中,点P (x ,y )的横、纵坐标的绝对值的和叫做点P (x ,y )的勾股值,记为[]P x y =+.(1)已知点A (1,3),B (2-,4),C 22),直接写出[]A,[]B ,[]C 的值;(2)已知点D 是直线2y x =+上一点,且[]4D =,求点D 的坐标;(3)若抛物线21y ax bx =++与直线y x =只有一个交点M ,已知点M 在第一象限,且[]24M ≤≤.令2242022t b a =-+,试求t 的取值范围.【详解】(1)解:∵A (1,3),B (−2,4),C ),∴[A ]=|1|+|3|=4,[B ]=|-2|+|4|=6,[C ;(2)设D (m ,n ),∵D 是直线y =x +2上一点,且[D ]=4,∴42m n n m ⎧+⎨+⎩==,解得13m n =⎧⎨=⎩或31m n =-⎧⎨=-⎩,∴点D 的坐标(1,3)或(-3,-1);(3)由题意方程组21y x y ax bx =⎧⎨=++⎩只有一组实数解,消去y 得2(1)10ax b x +-+=,由题意224(1)40b ac b a -=--=,∴24(1)a b =-,∴方程可以化为()()2214140b x b x -+-+=,∴1221x x b ==-,∴22,11M b b ⎛⎫ ⎪--⎝⎭,∵[]24M ≤≤,∴2121b ≤≤-或2211b -≤≤--,解得10b -≤≤或23b ≤≤,∵点M 在第一象限,∴10b -≤≤,∵22222420222(1)202222021t b a b b b b =-+=--+=++=2(1)2020b ++,∵10b -≤≤,∴20202021t ≤≤.10.(雅礼)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=11b ab a≥⎧⎨-⎩,,<,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).(1)①点1)的限变点的坐标是;②在点A(-2,-1),B(-1,2)中有一个点是函数y=2x图象上某一个点的限变点,这个点是;(填“A”或“B”)(2)若点P在函数y=-x+3(-2≤x≤k,k>-2)的图象上,其限变点Q的纵坐标b′的取值范围是-5≤b′≤2,求k的取值范围;(3)若点P在关于x的二次函数y=x2-2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m-n,求s关于t的函数解析式及s的取值范围.【详解】(1)①根据限变点的定义可知点1)1);②(-1,-2)限变点为(-1,2),即这个点是点B.(2)依题意,y=-x+3(x≥-2)图象上的点P的限变点必在函数y=31321x xx x-+≥⎧⎨--≤⎩,,<的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=-2时,-2=-x+3.∴x=5.当b′=-5时,-5=x-3或-5=-x+3.∴x=-2或x=8.∵-5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.。

2024年中考数学一轮复习考点精讲课件—圆的相关概念及性质

3)圆周角定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所
对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
考点二 圆的性质
题型01 由垂径定理及推论判断正误
【例1】(2023·浙江·模拟预测)如图,是⊙ 是直径,是弦且不是直径, ⊥ ,则下列结论不一定正
【详解】解:如图,连接,
∵线段是⊙ 的直径, ⊥ 于点E, = 16,
1
1
∴ = = 2 = 2 × 16 = 8,
∴在Rt △ 中,可有 = 2 + 2 = 62 + 82 = 10,
∴⊙ 半径是10.
故选:D.
考点二 圆的性质
题型03 根据垂径定理与全等三角形综合求解
直径)(4)平分弦所对的优弧(5)平分弦所对的劣弧,若已知五个条件中的两个,那么可推出其中三个,简
称“知二得三”,解题过程中应灵活运用该定理.
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;
2)有弦中点,连中点和圆心,得垂直平分.
考点二 圆的性质
3. 弧、弦、圆心角的关系
即的最小值是8.故选:C.
考点二 圆的性质
1. 圆的对称性
内容
补充
圆的轴对称 经过圆心任意画一条直线,并沿此直线圆对折,直线两旁的部分能够 ①圆的旋转不变性是其他中心对称图形所

完全重合,因此圆是轴对称图形,每一条直径所在的直线都是它的 没有的性质.
对称轴,圆有无数条对称轴.
圆的中心对 将圆绕圆心旋转180°能与自身重合,因此它是中心对称图形,它
①圆心,它确定圆的位置.
②半径,它确定圆的大小.
的点组成的图形.

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理《二次函数》是中考数学中的重要知识点之一,也是考试中容易出错的部分。

为了帮助同学们复习和避免常见错误,下面将对《二次函数》的知识点进行梳理,详细介绍其中的易错点。

《二次函数》是形如y = ax² + bx + c的函数,其中a、b和c是常数,并且a ≠。

它的图像是一个开口向上或向下的抛物线。

下面我们来逐个讲解常见易错点。

1.函数的定义域和值域:在解析式中,x可以取任意实数值,所以函数的定义域是全体实数集R。

而在图像上,如果a>,则函数的值域是[,+∞);如果a<,则函数的值域是(-∞,]。

错误经常出在对值域的判断上,容易忽略函数的开口方向。

2.抛物线的开口和对称轴:当a>时,抛物线开口向上,对称轴是x=-b/2a;当a<时,抛物线开口向下,对称轴是x=-b/2a。

易错点在于判断抛物线的开口方向和对称轴的判断。

3.抛物线的顶点和轴对称性:顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax² + bx + c。

抛物线与对称轴关于顶点具有轴对称性,即对称轴上的点到顶点的距离与对称轴上的点到抛物线的距离相等。

4.求解方程和不等式:与二次函数相关的方程和不等式是中考数学考试中的常见题型。

对于二次方程ax² + bx + c = ,可以使用因式分解、配方法和求根公式等方法求解。

对于二次不等式ax² + bx + c > 或ax² + bx + c < ,可以通过画图法或求解方程法来确定解集。

5.函数的增减性和极值:二次函数的增减性与a的正负有关,当a>时,函数递增;当a<时,函数递减。

相应地,函数的极值与抛物线的开口方向相反,开口向上时有最小值,开口向下时有最大值。

6.函数与坐标轴的交点:函数与x轴的交点称为零点,可以通过求解方程ax² + bx + c = 来求得。

2024中考数学易错题专题易错07图形的变化(七大易错分析+举一反三+易错题通关)(原卷版)

易错07图形的变化易错点一:弄错平移方向和距离平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等易错提醒:平移时弄错方向和距离,注意是对应点之间的距离为平移的距离例1.如图,在ABC V 中,5,7,60AB BC B ==Ð=°,将ABC V 沿射线BC 的方向平移2个单位后,得到A B C ¢¢¢V ,连接A C ¢,则线段A C ¢的长为( )A .2B .5C .3D .7例2.如图,将周长为16cm 的三角形ABC 沿BC 方向平移,得到三角形DEF ,若四边形ABFD 的周长为22cm ,则平移距离为 .变式1.如图,平面直角坐标系中,长为2的线段CD (点D 在点C 右侧)在x 轴上移动,()()0203A B ,,,,连接AC BD ,,则AC BD +的最小值为 .变式2.如图,点I 为ABC V 的内心,6AB =,4AC =,3BC =,将ACB Ð平移使其顶点与I 重合,则图中阴影部分的周长为 .变式3.如图是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,点A ,B ,B 的坐标分别为1140A B (,),(,),请解答下列问题:(1)直接写出点C 的坐标;(2)将ABC V 先向左平移2个单位长度,再向下平移1个单位长度得到DEF V ,(点A ,B ,C 的对应点分别为D ,E ,F ),画出DEF V ;(3)直接写出(2)中四边形DBCF 的面积为 .变式4.如图,三角形ABC 三个顶点的坐标分别为()30A -,;()12B -,,()12C -,.将三角形ABC 向右平移1个单位长度,再向上平移2个单位长度,得到三角形111A B C .(1)画出三角形111A B C ,顶点1A 的坐标为 ,顶点1C 的坐标为 ;(2)求三角形111A B C 的面积;(3)已知点P 在x 轴上,以11B C P ,,为顶点的三角形的面积为6,请直接写出点P 的坐标.1.如图,将边长为5的正方形ABCD 沿BC 的方向平移至正方形DCEF ,则图中阴影部分的面积是( )A .25B .30C .35D .502.如图,在平面直角坐标系中,点A 的坐标为()0,3,OAB V 沿x 轴向右平移后得到O A B ¢¢¢△,点A 的对应点A ¢在直线34y x =上,则点B 与其对应点B ¢间的距离为 .3.如图,将直角ABC V 沿边AC 的方向平移到DEF V 的位置,连结BE ,若3,7CD AF ==,则BE 的长为 .4.在平面直角坐标系中,点()A m n ,满足n =.(1)直接写出点A 的坐标;(2)如图1,将线段OA 沿y 轴向下平移a 个单位后得到线段BC (点O 与点B 对应),过点C 作CD y ^轴于点D ,若43OD BD =,求a 的值;(3)如图2,点()05E ,在y 轴上,连接AE ,将线段OA 沿y 轴向上平移3个单位后得到线段FG (点O 与点F 对应),FG 交AE 于点P ,y 轴上是否存在点Q ,使6APQ S =△,若存在,请求Q 点的坐标;若不存在,请说明理由.5.如图,图形在方格(小正方形的边长为1个单位)上沿着网格线平移,规定:若沿水平方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿竖直方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对(),a b 叫做这一平移的“平移量”.例如:点A 按“平移量”()1,3(向右平移1个单位,向上平移3个单位)可平移到点B ;点B 按“平移量”()1,3--可平移到点A .(1)填空:点B 按“平移量”(________,________)可平移到点C ;(2)若把图中三角形M 依次按“平移量”()()3,41,1--、平移得到三角形N .①请在图中画出三角形N (在答题卡上画图并标注N );②观察三角形N 的位置,其实三角形M 也可按“平移量”(________,_______)直接平移得到三角形N .6.在正方形网格中,每个小正方形的边长均为1个单位长度,ABC V 的三个顶点的位置如图所示.现将ABC V 沿着点A 到点D 的方向平移,使点A 变换为点D ,点E 、F 分别是B 、C 的对应点.(1)画出ABC V 中AC 边上的高BH ;画出AB 边上的中线CM ;(2)请画出平移后的DEF V ;(3)若连接AD ,BE ,则这两条线段之间的关系是______.7.如图,ABC V 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请画出将ABC V 向左平移4个单位长度后得到的图形111A B C △;(2)请画出ABC V 关于原点O 成中心对称的图形222A B C △;(3)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标.易错点二:区分不了各种对称轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合的图形,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形;轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,易错提醒:轴对称和中心对称是两个图形之间的位置关系,轴对称图形和中心对称图形是一个图形的特征例3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.例4.下列每幅图形中的两个图案成轴对称的是()A.B.C.D.变式1.数学是一门美丽的学科,在平面直角坐标系内可以利用函数画出许多漂亮的曲线,下列曲线中,既是中心对称图形,也是轴对称图形的是()A.三叶玫瑰线B.四叶玫瑰线C.心形线D.笛卡尔叶形线变式2.甲骨文是汉字的早期形式,有时候也被认为是汉字的书体之一,最早出土于河南省安阳市殷墟.下列甲骨文中,可以看作中心对称图形的是()A.B.C.D.变式3.在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是.变式4.下列图形中,左边的图形与右边的图形可看成中心对称的有.1.下列图形中,是轴对称图形,不是中心对称图形的是( )A .平行四边形B .矩形C .等边三角形D .正方形2.如图,直线l 是正方形的一条对称轴,l 与AB ,CD 分别交于点M ,N .AN ,BC 的延长线相交于点P ,连接BN .下列三角形中,与NCP V 成中心对称的是( )A .NCB △B .BMN VC .AMN VD .NDA△3.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.我们学习的文言文《木兰辞》中就有“对镜贴花黄”的诗句,这个花黄就是剪纸.下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图,在正方形网格中,与ABC V 成轴对称的三角形可以画出 个.5.一个英文图象平行对着镜子,在镜子里看到的是“”,则这个英文单词的中文意思是 .6.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC V 的顶点均在格点上.(1)画出ABC V 关于原点O 的中心对称图形111A B C △;(2)将DEF V 绕点E 顺时针旋转90°得到11D EF △,画出11D EF △;(3)若DEF V 由ABC V 绕着某点旋转得到的,则这点的坐标为 .7.如图,在76´的正方形网格中,点A ,B ,C ,D 都在格点上,请你按要求画出图形.(1)在图甲中作出111A B C △,使111A B C △和ABC V 关于点D 成中心对称;(2)在图乙中分别找两个格点2C 、2D ,使得以A 、B 、2C 、2D 为顶点的四边形为平行四边形,并且平行四边形的面积为ABC V 面积的4倍.易错点三:对位似的定义不理解,已识别错误位似:一般的,如果两个相似多边形任意一组对应顶点P ,'P 所在的直线都经过同一点O ,且有'OP =()0k OP k ×¹,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心易错提醒:注意位似多边形对应顶点都会经过同一个点,切不可通过主观感觉进行判断例5.如图,在直角坐标系中,点P 的坐标是()1,0,点A 的坐标是()0,1,线段CD 是由线段AB 以点P 为位似中心放大3倍得到的,则点C 的坐标是( )A .()2,3-B .()2,4-C .()3,3-D .()3,4-例6.如图,在菱形ABCD 中,对角线AC BD ,相交于点O M N ,,分别是边AB AD ,的中点,连接OM ON MN ,,,则下列叙述不正确的是( )A .AMO V 与ABC V 位似B .AMN V 与BCD △位似C .ABO V 与CDO V 位似D .AMN V 与ABD △位似变式1.由12个有公共顶点O 的直角三角形拼成如图所示的图形,AOB BOC COD LOM Ð=Ð=Ð=×××=Ð30=°.若1AOB S =V ,则图中与BOA △位似的三角形的面积为( )A .343æöç÷èøB .743æöç÷èøC .643æöç÷èøD .634æöç÷èø变式2.如图,ABC V 和A B C ¢¢△是以点C 为位似中心的位似图形,且A B C ¢¢△和ABC V 的面积之比为1:4,点C 的坐标为()1,0,若点A 的对应点A ¢的横坐标为2-,则点A 的横坐标为 .变式3.在如图所示的平面直角坐标系中,每个小正方形的边长均为1,已知点()2,1A --,点()3,3B --,点()1,2C --.(1)画出ABC V ;(2)画出ABC V 关于x 轴对称的111A B C △;(3)请以原点O 为位似中心在第一象限内画出222A B C △,使它与ABC V 位似,且相似比是2:1,并写出222A B C △三个顶点的坐标.变式4.(1)如图,AD BE CF ∥∥,直线1l ,2l 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .若2,6, 1.5AB AC DE ===,求EF 的长.(2)如图,在平面直角坐标系中,ABC V 的三个顶点的坐标分别为(4,1)A ,()2,3B ,(1,2)C .①画出ABC V 绕原点O 逆时针旋转90°得到111A B C △;②以原点O 为位似中心,在第三象限内画一个222A B C △,使它与ABC V 的相似比为2:1,并写出点2B 的坐标.1.如图,在平面直角坐标系中,已知点()4,2A ,()3,0B ,以坐标原点O 为位似中心作一条线段,使该线段与线段AB 的相似比为1:2,正确的画法是( )A .B .C .D .2.如图,在ABC V 外任取一点O ,连接AO 、BO 、CO ,并取它们的中点D 、E 、F ,连接DE 、EF 、DF 得到DEF V ,则下列说法错误的是( )A .ABC V 与DEF V 是位似图形B .ABC V 与DEF V 是相似图形C .ABC V 与DEF V 的周长比是2:1D .ABC V 与DEF V 的面积比是1:43.下面四个图中,ABC V 均与A B C ¢¢¢V 相似,且对应点交于一点;则ABC V 与A B C ¢¢¢V 成位似图形有( )A .1个B .2个C .3个D .4个4.如图,在正方形网格中,以点O 为位似中心,ABC V 的位似图形是 (用图中字母表示),ABC V 与该三角形的位似比为 .5.如图,已知O 是坐标原点,B C ,两点的坐标分别为(3,1)(2,1)-,.(1)以O 点为位似中心在y 的左侧将OBC △放大到两倍(即新图与原图的相似比为2),画出图形;并分别写出B C ,的对应点B C ¢¢,的坐标;(2)若OBC △内部有一点(),M m n ,则其对应点M ¢的坐标是____________.6.如图所示,在边长为1个单位长度的小正方形组成的网格中,按要求画出111A B C △和222A B C △.(1)先作ABC V 关于直线l 成轴对称的图形,再向上平移1个单位,得到111A B C △;(2)以图中的点O 为位似中心,将111A B C △作位似变换且放大到原来的两倍,得到222A B C △.7.如图,A ,B ,O 三点都在方格纸的格点上,请按要求在方格纸内作图.(1)在图1中以点O 为位似中心,作线段AB 的位似图形CD ,使其长度为AB 的2倍.(2)已知OPQ △的三边比为1:2,在图2中画格点ABD △,使ABD △与OPQ △相似.易错点四:混淆平行投影和中心投影平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.易错提醒:根据不同点区分平行投影和中心投影:平行投影中,物体上的每个点与其影子上的对应点的连线互相平行(或在同一直线上);中心投影中,物体上的每个点与其影子上的对应点的连线所在的直线交于一点,且交点时光源所在的位置例7.在一间黑屋子里用一盏白炽灯照如图所示的球,球在地面上的影子是圆形,当把球竖直向上靠近白炽灯时,影子的大小会怎样变化( )A .越来越小B .越来越大C .大小不变D .不能确定例8.如图,小明家的客厅有一张高0.75米的圆桌,直径BC 为1米,在距地面2米的A 处有一盏灯,圆桌的影子最外侧两点分别为D ,E ,依据题意建立平面直角坐标系,其中点D 的坐标为(2,0),则点E 的坐标是( )A .(4,0)B .(3.6,0)C .()2.75,0D .(3,0)变式1.太阳光线与地面成60°的角,当太阳光线照射在地面上的一只皮球上时,皮球在地面上的投影长是20cm ,则皮球的直径为( )A .10cmB .12cmC .15cmD .变式2.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影可能是 (填序号).变式3.如图,一墙墩(用线段AB 表示)的影子是BC ,小明(用线段DE 表示)的影子是EF ,在M 处有一棵大树,它的影子是MN .(1)试判断图中的影子是路灯照射形成还是太阳光照射形成的,如果是路灯照射形成的,请确定路灯的位置(用点P 表示);如果是太阳光照射形成的,请画出太阳光线;(2)在图中画出表示大树高的线段;(3)若小明的身高是1.8m ,他的影长18m EF =..大树的高度为7.2m ,它的影长7.2m MN =.且大树与小明之间的距离16.2m ME =,求路灯的高度.变式4.如下图,路灯下,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)试确定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段.1.如图,小明夜晚从路灯下的甲处走到乙处的过程中,他在地面上的影子()A.逐浙变长B.逐渐变短C.先变长后变短D.先变短后变长2.下列四幅图,表示两棵树在同一时刻阳光下的影子是()A.B.C.D.3.在同一直线上直立着三根高度相同的木杆,它们在同一路灯下的影子如图所示.若光源与三根木杆在同一平面上,则光源所在位置是()A.A的左侧B.A、B之间C.C的右侧D.B,C之间.4.甲、乙两人沿着如图所示的平行四边形空地边缘进行跑步比赛,二人同时从点B出发,沿着平行四边形边缘顺时针跑步,且甲的速度是乙的速度的2倍.当甲到达点E,乙到达点F时,甲、乙的影子(太阳光照射)刚好在同一条直线上,此时,点B处一根杆子的影子(太阳光照射)刚好在对角线BD上,则CE的长为()A.4m B.8m C.12m D.16m5.如图,文文应用所学的三角形相关知识测量河南广播电视塔的高度,她站在距离塔底A点120m处的D 点,测得自己的影长DE为0.4m,此时该塔的影子为AC,她测得点D与点C的距离为23m,已知文文的身高DF为1.6m,求河南广播电视塔AB的高.(图中各点都在同一平面内,点A,C,D,E在同一直线上)6.如图,正方形纸板ABCD 在投影面α上的正投影为1111D C B A ,其中边AB CD ,与投影面平行,AD BC ,与投影面不平行,若正方形ABCD 的边长为4厘米,145BCC Ð=°,求投影1111D C B A 的面积.7.树甲在阳光下的影子如图所示.(1)请在图中分别画出此时树乙和树丙的影子(用线段表示并说明);(2)如果想让此时树乙的影子落在树甲的影子里,那么树甲至少要多高?请画图表示并说明.易错点五:画视图时易出错几何体的三视图:画三视图时注意“长对正,宽相等,高平齐”,被其他部分遮挡而看不见的部分的轮廓线化成虚线.易错提醒:画物体的三视图时,一是要正对物体,而不能斜看向物体;二是看得见部分的轮廓线要画成实线,看不到部分的轮廓线要画成虚线;三是要把看得见的边缘、棱、顶点等等都要画出来,否则会产生错误视图,从而导致解题出错例9.如图是某几何体的三视图,该几何体是()A.五棱柱B.圆柱C.长方体D.五棱锥例10.如图是由一个圆柱体和一个正方体组成的立体图形,则它的主视图是()A.B.C.D.变式1.如图,是有一块马蹄形磁铁和一块条形磁铁构成的几何体,该几何体的左视图是()A.B.C.D.变式2.请画出如图所示的正三棱柱的三种视图.V),请解答下列问题:变式3.一个几何体的三视图如图(其俯视图是等边ABC(1)这个几何体的名称是 ;(2)根据图中标注的尺寸,求这个几何体的体积.变式4.(1)解方程:2(23)160x +-=;(2)已知一个几何体的三视图如图所示,求该几何体的体积.1.如图所示,左边立体图形的俯视图为( ).A .B .C .D .2.如图的几何体是一个工件的立体图,从上面看这个几何体,所看到的平面图形是( )A.B.C.D.3.一个如图所示的几何体,已知它的左视图,则其俯视图是下面的()A.B.C.D.4.在如图的方格图中画出如图所示(图中单位:cm)的几何体的主视图、左视图和俯视图,每个小方格的边长代表1cm.5.画出如图所示组合体的三视图6.如图是一个三棱柱的三视图,其俯视图为等边三角形,则其侧面积为.7.某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视图,如图(1)由三视图可知,密封纸盒的形状是___________.(2)请你根据图中的数据,计算这个密封纸盒的表面积.(结果保留根号)易错点六:立体感不强,数的过程易出错易错提醒:解答此类由视图还原几何体的问题,一般情况下都是由俯视图确定几何体的位置(有几行几列),再由另外两个视图确定几第几行第几列处有多少个小正方体,简便的方法是在原俯视图上用标注数字的方法来解答例11.在一张桌子上摆放着一些形状、大小都相同的碟子,从3个方向看到的图形如图所示,则这个桌子上的碟子总个数是( )A.11B.12C.13D.14例12.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数是.变式1.由大小相同的小正方体搭成一个几何体,若搭成的几何体的左视图和俯视图如图所示,则所需小正方体的最少个数为.变式2.一个几何体由一些大小相同的小立方块搭成,从正面,左面,上面看到的这个几何体的形状图如图所示,则这个几何体一共有个小立方块.变式3.由m个相同的正方体组成一个立体图形,如图的图形分别是从正面和上面看它得到的平面图形,设m能取到的最大值是a,则多项式2--的值是a a252变式4.如图,在平整的地面上,将若干个边长均为1cm的小正方体堆成一个几何体,并放置在墙角.(1)请画出这个几何体的主视图和俯视图;(2)若将其露在外面的面涂上一层漆(不包括与墙和地面接触的部分),则其涂漆面积为2cm;(3)添加若干个上述小正方体后,所成几何体的左视图和俯视图不变,则有 种添加方式.1.一个几何体由几个大小相同的小立方块搭成,从正面看和从上面看得到的图形如图所示,则搭成这个几何体的小立方块最多有个.2.如图是由一些相同的小正方体构成的几何体的三视图,在这个几何体中,小正方体的个数是.3.一个几何体由若干大小相同的小立方块搭成,下图分别是从正面、上面看到的形状图,则搭成这个几何体的小立方块最多有个.4.已知由多个小立方体搭一个几何体,从正面看和从上面看到的图形如图所示,则要组成这样的几何体所需的小立方体的块数最少块.5.如图是由一些大小相同的小正方体组合成的简单几何体.(1)图中有______块小正方体;(2)该几何体从正面看到的形状图已画出,请在方格纸中分别画出从左面和从上面看到的该几何体的形状图.6.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,依次完成下列问题.(1)请画出从正面和左面看到的这个几何体的形状图;(2)继续添加相同的小立方块与原几何体搭成一个新的几何体,使新几何体从正面、左面看到的形状图与原几何体从正面、左面看到的形状图相同,则最多可以添加________个.7.如图,在平整的地面上,用若干个完全相同的棱长为10cm的小正方体堆成了一个几何体.(1)分别在方格纸中画出这个几何体的主视图和左视图;(2)若在原几何体上再添加一些小正方体,且得到的新几何体与原几何体的主视图和俯视图不变,则最多可以添加__________个小正方体;(3)若在原几何体上再添加一些小正方体,且得到的新几何体与原几何体的左视图和俯视图不变,则最多可以添加__________个小正方体.易错点七:把握不准图形变换前后的性质旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。

中考数学知识点

中考数学知识点中考数学知识点中考数学知识点1三角形的重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。

求证:F为AB中点。

证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

重心的几条性质:1.重心和三角形3个顶点组成的3个三角形面积相等。

2.重心到三角形3个顶点距离的平方和最小。

3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/34.重心到顶点的距离与重心到对边中点的距离之比为2:1。

5.重心是三角形内到三边距离之积最大的点。

如果用塞瓦定理证,则极易证三条中线交于一点。

中考数学知识点2对某些知识点概念理解不清,很容易造成做题时拿不定主意,模棱两可而造成错误。

在中考数学的复习中怎么有效改善这种问题呢?自己应该先分析自己。

自己对自己最了解,知道自己的中哪个环节最薄弱最需要帮助,只要把这个环节打通了剩下的工作就可事半功倍了。

其次,制定学习计划。

包括时间计划、学习内容和形式等等。

因为中学生已经经过了多年的学习过程,有些问题累积的过多,需要系统的来解决,不能只是头疼医头脚疼医脚,只是解决了表面问题,真到综合训练和考试的时候,问题依然会存在。

最后,要从思想上下定决心,努力实施。

解决自己沉积的问题,不是一朝一夕的事情,需要有恒心、耐心,切忌耍小聪明,敷衍了事。

无论采取方案,都要扎扎实实的去做。

中考数学知识点3第1课实数的有关概念考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a2、|a|、a (a≥0)之和为零作为条件,解决有关问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学常考知识点_2024中考数学命题常考考点及易
错点
一、常考知识点
1.几何图形的性质:
-直线、射线、线段的定义和表示方法;
-角的定义和表示方法,以及角的分类;
-三角形的分类、性质和判定方法,如等腰三角形、等边三角形、直
角三角形的判定;
-三角形内角和为180°的性质;
-正方形、矩形、平行四边形、菱形、梯形等四边形的性质和判定方法;
-圆的定义和表示方法,以及圆的性质和判定方法,如圆心角、弧、
弦的定义和性质等。

2.几何计算:
-直角三角形的计算,包括勾股定理的应用;
-任意三角形的面积计算,包括海伦公式的应用;
-等腰三角形、等边三角形、直角三角形的性质和计算;
-四边形的面积计算,包括矩形、正方形、平行四边形、梯形的计算;
-圆的周长和面积计算,包括圆的切线和切线长的计算。

3.图形的相似性:
-两个图形相似的定义和条件,如相等比、对应边成比例、对应角相
等等;
-图形相似的判定方法,如AAA相似、AA相似等;
-图形相似比的计算,如对应边的长度比等于相似比。

4.等比数列和等差数列:
-等比数列和等差数列的概念和表示方法;
-等比数列和等差数列的性质和通项公式;
-等比数列和等差数列的求和公式;
-等比数列和等差数列的应用,如计算数列中其中一项的值、求和等。

5.数据统计:
-统计图表的读取和分析,如直方图、折线图、饼图等;
-数据的描述统计量,如中位数、众数、平均数等;
-数据的位置分布,如四分位数、分位数等。

6.概率与统计:
-事件的概念和表示方式;
-事件的基本运算,如事件的并、交、逆等;
-概率的定义和计算,如事件的概率等于有利结果的个数除以可能结
果的个数;
-独立事件和互斥事件的概念和计算。

二、常见易错点
1.计算错误:在几何计算和数列计算中,常出现计算错误,如运算符号写错、计算公式应用错误等。

因此,需要注意计算过程的准确性,并多进行自查。

2.角的概念混淆:在角的分类和角的性质中,容易混淆角的概念,如混淆角的顶点、边和两个角度。

因此,要仔细理解角的定义和表示方法,并举一反三,避免混淆。

3.图形相似和相等的判定:在图形相似和相等的判定中,容易将相等的条件误认为是相似的条件,或者将相似的条件误认为是相等的条件。

因此,要清楚相似和相等的区别,并分析给定的条件,准确判定图形是否相似或相等。

4.数列项数的误解:在等比数列和等差数列的计算中,容易将题目中给出的项数误认为是最后一项的值,或者未将项数等于1时的情况考虑在内。

因此,要注意题目对数列项数的要求,并注意项数的范围。

总结起来,中考数学常考的知识点包括几何图形的性质、几何计算、图形的相似性、等比数列和等差数列、数据统计、概率与统计等。

而在这些知识点中,容易出现的易错点包括计算错误、角的概念混淆、图形相似和相等的判定、数列项数的误解、统计图表的读取错误等。

因此,在备考过程中,要特别注意这些易错点,并进行针对性的练习和复习。

相关文档
最新文档