无线通信主要包括微波通信和卫星通信
无线通信—微波和卫星通信(现代通信技术课件)

• 频分多址 • 时分多址 • 空分多址 • 码分多址
卫星通信多址方式
卫星通信系统
• 卫星通信系统的线路
– 在一个卫星通信系统中,各地球站经过通信卫星转发器可以组成多条 单跳单工或双跳单工卫星通信线路。
– 单工是指通信的双方分别被固定为发信站和收信站。 发信站发送的信 号只经一次卫星转发后就被接收站接收的卫星通信线路叫做单跳单工 卫星通信线路。
– 发信站发送的信号经过两次卫星转发后被接收站接收的卫星通信线路 叫做双跳单工卫星通信线路。
卫星通信系统
卫星通信系统的分类
– 同步卫星通信系统(GEO)
• 卫星绕地球的运行周期与地球自转同步,而对地 球应相对静止,又称为静止轨道卫星系统。
– 非同步卫星通信系统
• 中轨道卫星系统(ICO或MEO) • 高轨道卫星系统(HEO) • 低轨道卫星系统(LEO)
同步通信卫星的设置和可通信区
• 通信卫星一般是指同步卫星, 同步卫星的轨道是圆形且在赤 道平面上,同步卫星离地面 35785.6公里,飞行方向与地 球自转方向相同时,从地面上 任意一点看,卫星都是静止不 动,这种对地静止的卫星称为 通信卫星。利用三或四颗同步 卫星,就能够使信号基本覆盖 地球的表面。
5.微波设备 微波设备主要由IDU、ODU、中频电缆、天线等部分组成
IDU是室内单元,Indoor Unit。ODU是室外单元, Outdoor Unit。 中频是指发射机将信号载 波变换成发射频率,或者 将接收频率变换成基带的 一个中间频率,一般由系 统架构决定。 而射频,就是天线发射出 去的、在空中传播的电磁 波信号频率。
微波通信
5.微波设备组成
IDU负责完成业务接入、复分接 和调制解调,在室内将业务信
无线通信的名词解释

无线通信的名词解释无线通信是指通过电磁波或其他无线电频率实现信息传输的技术。
它成功地改变了人们的通信方式,使得人们可以在远距离间进行实时的声音和数据传输。
本文将从不同的角度解释无线通信的相关名词,包括无线频谱、调制解调器、Wi-Fi、蜂窝网络和卫星通信。
无线频谱指的是用于无线通信的一定范围内的频率范围。
它被划分为不同的频段,例如无线电、微波和红外线等。
不同频段的无线通信应用于不同的场景。
例如,无线电波被广泛应用于无线电和电视广播,而微波频段则被应用于卫星通信和移动通信。
无线频谱的合理管理对于确保不同无线设备之间的互相干扰至关重要。
调制解调器是无线通信中的关键设备。
调制(Modulation)是指将要传输的信息信号转换为适合在无线传输中使用的载波信号。
解调(Demodulation)则是恢复出原始信息信号。
调制解调器在无线通信中起到了信号转换和处理的作用,保证信息能够在无线媒介中传输并被接收端正确解读。
Wi-Fi是一种无线局域网技术,让设备能够通过无线方式进行互联和接入互联网。
Wi-Fi通过无线路由器和无线适配器之间的通信实现设备间的数据传输。
无线路由器充当基站的角色,将互联网信号转发到各个设备上,而无线适配器则是设备与路由器之间的桥梁。
Wi-Fi的可靠性和高速连接使得人们能够在家庭、办公室和公共场所轻松地获取互联网服务。
蜂窝网络是移动通信中最常用的网络类型。
它是基于基站的系统,将地理区域划分为许多蜂窝状的覆盖区域。
每个蜂窝覆盖区域都由一个或多个基站负责信号传输和接收。
移动终端设备通过与最近的基站建立连接,实现通信。
用户可以通过蜂窝网络进行语音通话、短信和数据传输。
卫星通信是利用卫星作为中继站点,将信号从发送端发送到接收端的通信方式。
卫星上的接收器和发射器负责接收来自发送端的信号,并将其转发到接收端。
卫星通信能够覆盖广大地域,特别适用于遥远地区或没有传统电信基础设施的地方。
它在海上、航空和灾难救援等领域发挥着重要作用。
无线通信技术在泛在电力物联网中的应用

无线通信技术在泛在电力物联网中的应用发布时间:2021-10-26T00:59:42.793Z 来源:《城镇建设》2021年第6月16期作者:李云峰[导读] 社会经济与科技水平的提升,使得无线通信技术也在这种背景下得到了发展。
李云峰江苏泽宇电力工程有限公司盐城分公司江苏盐城 224000摘要:社会经济与科技水平的提升,使得无线通信技术也在这种背景下得到了发展。
泛在电力物联网的概念也由此被提出并得到了越发广泛的推进。
当下,电力物联网的发展趋势已经呈现出明晰的网络化以及智能性特征,并为更加方便快捷的电力生产以及经营体系的构建提供了巨大的优势。
本文将在概述无线通信及泛在电力物联网的基础上,对无线通信中的技术在泛在电力专用网应用进行分析,并探讨了无线通信技术在泛在电力物联网中的应用,以供参阅。
关键词:无线通信;泛在电力物联网;应用1无线通信及泛在电力物联网的概述1.1无线通信无线通信(Wireless communication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式。
近些年信息通信领域中,发展最快、应用最广的就是无线通信技术。
在移动中实现的无线通信又被称为移动通信,人们把二者合称为无线移动通信。
无线通信主要包括微波通信和卫星通信。
微波是一种无线电波,它传送的距离一般只有几十千米。
但微波的频带很宽,通信容量很大。
微波通信每隔几十千米要建一个微波中继站。
卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。
1.2泛在电力物联网泛在电力物联网(UEIOT;Ubiquitous Electric Internet of Things),就是围绕电力系统各环节,充分应用移动互联、人工智能等现代信息技术、先进通信技术,实现电力系统各环节万物互联、人机交互,具有状态全面感知、信息高效处理、应用便捷灵活特征的智慧服务系统,其包含感知层、网络层、平台层、应用层四层结构。
无线通信技术有哪些

无线通信技术有哪些无线通信主要包括微波通信和卫星通信,微波是一种无线电波,它传送的距离一般只有几十千米。
但微波的频带很宽,通信容量很大。
微波通信每隔几十千米要建一个微波中继站。
卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。
语言是人类最重要的交际工具,是人们进行沟通交流的主要表达方式。
在物联网的时代当机器需要交流的时候,也需要按照相互之间可以听懂的语言进行。
今天,我们就来扒一扒那些在物联网中比较常用的无线短距离通信语言及技术--华为Hilink协议、WiFi(IEEE 802.11协议)、Mesh、蓝牙、ZigBee、Thread、Z-Wave、NFC、UWB、LiFi。
TOP1 LiFi:光保真技术,是一种利用可见光波谱(如灯泡发出的光)进行数据传输的全新无线传输技术,由英国爱丁堡大学HaraldHass教授发明。
可见光通信技术,是利用荧光灯或发光二极管等发出的肉眼看不到的高速明暗闪烁信号来传输信息的,将高速因特网的电线装置连接在照明装置上,插入电源插头即可使用。
LiFi相当于Wi-Fi的可见光无线通信(VLC)技术,能利用发光二极管(LED)灯泡的光波传输数据,可同时提供照明与无线联网,且不会产生电磁干扰,有助缓解现今网络流量爆增的问题。
TOP2 Hilink协议:华为推出的自主研发的智能家居“三件套”—Hilink协议、Huawei-LiteOS系统以及IOT芯片。
HiLink协议是智能设备之间的“普通话”。
它能快速接入,简单易用,安全可靠,兼容多协议,SDK开放,是继华为海思芯片之后的又一大历史性突破。
Hilink连接协议将和华为此前推出的Liteos 物联网操作系统将成为华为与伙伴共享的两大核心能力。
TOP3 WiFi:通常WiFi技术使用2.4GHz和5GHz周围频段,通过有线网络外接一个无线路由器,就可以把有线信号转换成WiFi信号,2016年WiFi 联盟最新公布的802.11ah WiFi标准—WiFi HaLow,使得WiFi可以被运用到更多地方。
微波通信和卫星通信

– 卫星单跳最大通信距离达1800km
传输容量大 线路稳定可靠,质量高
– 畅通率在99.8%以上
通信灵活 传输延迟大
– 往返传播延迟约为s
卫星通信系统的分类
同步卫星通信系统(GEO) 非同步卫星通信系统
– 中轨道卫星系统(ICO或MEO) – 椭圆轨道卫星系统(HEO) – 低轨道卫星系统(LEO)
数字化 卫星单跳最大通信距离达1800km
中轨道卫星系统(ICO或MEO) 天线增益高、方向性强
7.1.2 数字微波通信系统的组成
终端站、 分路站、 枢纽站和
中继站
7.1.3 微波站设备
微波收、发信设备
– 工作频段:1.7GHz~12GHz – 发信:输出功率(1瓦左右)、频率稳定度(10-5) – 收信:通频带
第七章微波通信和卫星通信
1.微波通信频段划分
微波通信是把微波信号作为载波信号, 用被传输的模拟信号或数字信号来调制 它,故微波通信是模拟传输。
微波波段 300MHz~300GHz
2.微波中继通信
沿地球表面直线传播,一般只有50km左 右。但若采用100m高的天线塔,则距离 可增大到l00km。
短波电离层反射
终端站、分路站、枢纽站和中继站
沿地球表面直线传播,一般只有50km左右。
接力 1颗卫星覆盖地球表面42%
同步卫星通信系统(GEO) 当频率范围为3~30 MHz 的短波射入电离层时,由于折射现象会使电波发生反射,返回地面。
通信灵活性较大 天线增益高、方向性强
发信:输出功率(1瓦左右)、频率稳定度(10-5) 椭圆轨道卫星系统(HEO)
通信频段的频带宽,传输信息容量大 终端站、分路站、枢纽站和中继站
简述无线通信环境

无线电波时指频率低于3000GHz的电磁波,无线电电波频谱一般按波长来划分,可以分为极长波、超长波、中波、短波、超短波、微波、毫米波和亚毫米波等。其中微波是指频率为300MHz至300GHz的电磁波。下表是无线电频谱的划分。
1.1频谱的分配方式
频谱资源的分配一般都是由政府机构负责分配和控制无线频谱的使用。美国,GCC(联邦通信委员会)负责商用频谱,OSM(频谱管理局)负责军用频谱;在欧洲,ETSI(欧洲电信标准化委员会)负责商用频谱;在中国,由无线电管理委员会负责;而在国际上,则是由ITU(国际电信联盟)负责国际的频谱分配。
输入信号为频谱冲击函数,检验是恒参信道还是变参信道。其中 为多普勒展宽,其倒数 为相干时间。
1.信号带宽B> ,色散信道。
2.信号带宽B< ,非色散信道
3.码元周期T> ,变参信道
4.码元周期T< ,恒参信道
4.3
点对点信道和有线信道类似,是由两个无线用户之间的点对点通信,体现不出无线的特点。多址信道是无线传输与有线传输的最大区别之处,它体现了无线传输的突出优点。下面是两种信道的示意图:
赫段名缩写频带范围波段名波长特征极低频甚低频elfslfulfvlf30hz以下30300hz3003000hz330khz极长波超长波特长波甚长波hfkm以上10km1010mkni10100km地波低频lf30?300khz长波lwl10km表面波地中频mf300khz3mhz中波mwloolooom高频hf3mhz30mhz短波swloloom天波甚高频vhf30mhz300mhz超短波l10m空间波特高频uhf300mhz3ghz分米波10100cm超高频shf3ghz30ghz厘米波l10cm极高频极高频ehf30ghz300ghz3003000ghz毫米波丝米波毫米波011mm卫星波11频谱的分配方式频谱资源的分配一般都是由政府机构负责分配和控制无线频谱的使用
无线通信主要包括微波通信和卫星通信

无线通信(Wireless Communication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式,近些年信息通信领域中,发展最快、应用最广的就是无线通信技术。
在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。
从最初的电报开始经过150多年的现代电信的发展是来自各界的成千上万科学家、工程师和研究人员的辛勤劳动的结果。
他们当中只有少数独立负责发明的人成了名,而大多数达到顶点的发明是许多个人的成果。
这里汇集了部分对于无线电通信发展中起到重要作用的历史人物。
无线通信主要包括微波通信和卫星通信。
微波是一种无线电波,它传送的距离一般只有几十千米。
但微波的频带很宽,通信容量很大。
微波通信每隔几十千米要建一个微波中继站。
卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。
无线技术给人们带来的影响是无可争议的。
如今每一天大约有15万人成为新的无线用户,全球范围内的无线用户数量目前已经超过2亿。
这些人包括大学教授、仓库管理员、护士、商店负责人、办公室经理和卡车司机。
他们使用无线技术的方式和他们自身的工作一样都在不断地更新。
从七十年代,人们就开始了无线网的研究。
在整个八十年代,伴随着以太局域网的迅猛发展,以具有不用架线、灵活性强等优点的无线网以己之长补"有线"所短,也赢得了特定市场的认可,但也正是因为当时的无线网是作为有线以太网的一种补充,遵循了IEEE802.3标准,使直接架构于802.3上的无线网产品存在着易受其他微波噪声干扰,性能不稳定,传输速率低且不易升级等弱点,不同厂商的产品相互也不兼容,这一切都限制了无线网的进一步应用。
这样,制定一个有利于无线网自身发展的标准就提上了议事日程。
到1997年6月,IEEE终于通过了802.11标准。
802.11标准是IEEE制定的无线局域网标准,主要是对网络的物理层(PH)和媒质访问控制层(MAC)进行了规定,其中对MAC层的规定是重点。
无线通信重点复习

复习
无线电广播发射与接收
无线电波波段划分
为了避免各种业务电台频率之间的相互干扰, 我国和世界各国都将无线电频谱划分为若干频段, 其中可用于广播业务的频段统称为广播波段。在 广播波段中,有一部分供广播业务专用,有一部 分则供广播与其他业务共用。 按我国现行规定,广播波段可分为长波 (150~285千赫)、中波(525~1605千赫)、短 波(2.3~26.1兆赫)、米波(48.5~223兆赫)、 分米波(470~796兆赫)等。
复习
第3章
3.1
3.2
通信系统概述
通信系统的构架
信息及其度量
3.3
3.4 3.5 3.6
调制
信道与信道容量 随参信道的衰落与噪声(了解) 编码与差错控制
复习
第4章
4.1
4.2
现代无线通信技术
数据通信网
交换技术
4.3
扩频通信技术
复习
4.1 数据通信网
4.1.2 数据通信的组成
复习
2.1 电报系统
电报(telegraph)是一种最早的、可靠的 即时远距离通信方式,它是19世纪30年代 在英国和美国发展起来的。电报信息通过 专用的交换线路以电信号的方式发送出去, 该信号用编码代替文字和数字,通常使用 的编码是莫尔斯编码。现在,随着电话、 传真等的普及应用,电报已很少被人使用 了。
计算机中心 数据终端设备(DTE) 数据链路
复习
4.1 数据通信网
4.1.3 数据通信的网络体系结构与协议
网络协议的概念
网络协议是指为网络同层实体之间数据交换而制定 的规则、约定与标准,亦称同层协议或通信协议。 网络协议的三要素:语义、语法与时序; 语义:用于解释比特流的每一部分的意义; 语法:语法是用户数据与控制信息的结构与 格式,以及数据出现的顺序的意义; 时序:事件实现顺序的详细说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线通信(Wireless Communication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式,近些年信息通信领域中,发展最快、应用最广的就是无线通信技术。
在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。
从最初的电报开始经过150多年的现代电信的发展是来自各界的成千上万科学家、工程师和研究人员的辛勤劳动的结果。
他们当中只有少数独立负责发明的人成了名,而大多数达到顶点的发明是许多个人的成果。
这里汇集了部分对于无线电通信发展中起到重要作用的历史人物。
无线通信主要包括微波通信和卫星通信。
微波是一种无线电波,它传送的距离一般只有几十千米。
但微波的频带很宽,通信容量很大。
微波通信每隔几十千米要建一个微波中继站。
卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。
无线技术给人们带来的影响是无可争议的。
如今每一天大约有15万人成为新的无线用户,全球范围内的无线用户数量目前已经超过2亿。
这些人包括大学教授、仓库管理员、护士、商店负责人、办公室经理和卡车司机。
他们使用无线技术的方式和他们自身的工作一样都在不断地更新。
从七十年代,人们就开始了无线网的研究。
在整个八十年代,伴随着以太局域网的迅猛发展,以具有不用架线、灵活性强等优点的无线网以己之长补"有线"所短,也赢得了特定市场的认可,但也正是因为当时的无线网是作为有线以太网的一种补充,遵循了IEEE802.3标准,使直接架构于802.3上的无线网产品存在着易受其他微波噪声干扰,性能不稳定,传输速率低且不易升级等弱点,不同厂商的产品相互也不兼容,这一切都限制了无线网的进一步应用。
这样,制定一个有利于无线网自身发展的标准就提上了议事日程。
到1997年6月,IEEE终于通过了802.11标准。
802.11标准是IEEE制定的无线局域网标准,主要是对网络的物理层(PH)和媒质访问控制层(MAC)进行了规定,其中对MAC层的规定是重点。
各厂商的产品在同一物理层上可以互操作,逻辑链路控制层(LLC)是一致的,即MAC层以下对网络应用是透明的(如图一所示)。
这样就使得无线网的两种主要用途----"(同网段内)多点接入"和"多网段互连",易于质优价廉地实现。
对应用来说,更重要的是,某种程度上的"兼容"就意味着竞争开始出现;而在IT这个行业,"兼容",就意味着"十倍速时代"降临了。
在MAC层以下,802.11规定了三种发送及接收技术:扩频(SpreadSpectrum)技术;红外(Infared)技术;窄带(NarrowBand)技术。
而扩频又分为直接序列(DirectSequence,DS)扩频技术(简称直扩),和跳频(FrequencyHopping,FH)扩频技术。
直序扩频技术,通常又会结合码分多址CDMA技术。
根据预测,今后几年,无线网在全世界将有较大的发展,单只美国无线局域网销售额就将从1997年的2.1亿美元增加到2001年的8亿美元。
这一应用已深入到人们生活和工作的各个方面,包括日常使用的手机、无线电话等,其中3G、WLAN、UWB、蓝牙、宽带卫星系统、数字电视都是21世纪最热门的无线通信技术的应用。
信源编码是一种以提高通信有效性为目的而对信源符号进行的变换;为了减少或消除信源剩余度而进行的信源符号变换。
为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。
具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。
信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩:作用之二是将信源的模拟信号转化成数字信号,以实现模拟信号的数字化传输。
最原始的信源编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。
但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。
信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。
另外,在数字电视领域,信源编码包括通用的MPEG—2编码和H.264(MPEG—Part10 AVC)编码等相应地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。
为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对所施行的变换。
具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。
既然信源编码的基本目的是提高码字序列中码元的平均信息量,那么,一切旨在减少剩余度而对信源输出符号序列所施行的变换或处理,都可以在这种意义下归入信源编码的范畴,例如过滤、预测、域变换和数据压缩等。
当然,这些都是广义的信源编码。
一般来说,减少信源输出符号序列中的剩余度、提高符号平均信息量的基本途径有两个:①使序列中的各个符号尽可能地互相独立;②使序列中各个符号的出现概率尽可能地相等。
前者称为解除相关性,后者称为概率均匀化。
信源编码的一般问题可以表述如下:信源编码若某信源的输出为长度等于M的符号序列集合式中符号A为信源符号表,它包含着K个不同的符号,A={ɑk|k=1,…,K},这个信源至多可以输出K M个不同的符号序列。
记‖U‖=KM。
所谓对这个信源的输出信源编码进行编码,就是用一个新的符号表B的符号序列集合V来表示信源输出的符号序列集合U。
若V的各个序列的长度等于N,即式中新的符号表B共含L个符号,B={b l|l=1,…,L}。
它总共可以编出L N个不同的码字。
类似地,记‖V‖=LN。
为了使信源的每个输出符号序列都能分配到一个独特的码字与之对应,至少应满足关系‖V‖=L N≥‖U‖=KM或者N/M≥log K/log L假若编码符号表B的符号数L与信源符号表A的符号数K相等,则编码后的码字序列的长度N必须大于或等于信源输出符号序列的长度M;反之,若有N=M,则必须有L≥K。
只有满足这些条件,才能保证无差错地还原出原来的信源输出符号序列(称为码字的唯一可译性)。
可是,在这些条件下,码字序列的每个码元所载荷的平均信息量不但不能高于,反而会低于信源输出序列的每个符号所载荷的平均信息量。
这与编码的基本目标是直接相矛盾的。
下面的几个编码定理,提供了解决这个矛盾的方法。
它们既能改善信息载荷效率,又能保证码字唯一可译。
离散无记忆信源的定长编码定理对于任意给定的ε>0,只要满足条件N/M≥(H(U)+ε)/log L那么,当M足够大时,上述编码几乎没有失真;反之,若这个条件不满足,就不可能实现无失真的编码。
式中H(U)是信源输出序列的符号熵。
信源编码通常,信源的符号熵H(U)<log K,因此,上述条件还可以表示为【H(U)+ε】/log L≤N/M≤log K/log L特别,若有K=L,那么,只要H(U)<log K,就可能有N<M,从而提高信息载荷的效率。
由上面这个条件可以看出,H(U)离log K越远,通过编码所能获得的效率改善就越显著。
实质上,定长编码方法提高信息载荷能力的关键是利用了渐近等分性,通过选择足够大的M,把本来各个符号概率不等[因而H(U)<log K]的信源输出符号序列变换为概率均匀的典型序列,而码字的唯一可译性则由码字的定长性来解决。
离散无记忆信源的变长编码定理变长编码是指V的各个码字的长度不相等。
只要V中各个码字的长度Ni(i=1,…,‖V‖)满足克拉夫特不等式这‖V‖个码字就能唯一地正确划分和译码。
离散无记忆信源的变长编码定理指出:若离散无记忆信源的输出符号序列为,式中A={ɑk|k=1,…,K},符号熵为H(U),对U进行唯一可译的变长编码,编码字母表B的符号数为L,即B={b l|l=1,…,L},那么必定存在一种编码方法,使编出的码字Vi=(v i1,…,v iNi),(i=1,…,‖V‖),具有平均长度嚻:M H(U)/log L≤嚻<M H(U)/log L+1若L=K,则当H(U)<log K=log L时,必有嚻<M;H(U)离log K越远,则嚻越小于M。
具体实现唯一可译变长编码的方法很多,但比较经典的方法还是仙农编码法、费诺编码法和霍夫曼编码法。
其他方法都是这些经典方法的变形和发展。
所有这些经典编码方法,都是通过以短码来表示常出现的符号这个原则来实现概率的均匀化,从而得到高的信息载荷效率;同时,通过遵守克拉夫特不等式关系来实现码字的唯一可译。
霍夫曼编码方法的具体过程是:首先把信源的各个输出符号序列按概率递降的顺序排列起来,求其中概率最小的两个序列的概率之和,并把这个概率之和看作是一个符号序列的概率,再与其他序列依概率递降顺序排列(参与求概率之和的这两个序列不再出现在新的排列之中),然后,对参与概率求和的两个符号序列分别赋予二进制数字0和1。
继续这样的操作,直到剩下一个以1为概率的符号序列。
最后,按照与编码过程相反的顺序读出各个符号序列所对应的二进制数字组,就可分别得到各该符号序列的码字。
例如,某个离散无记忆信源的输出符号序列及其对应的概率分布为信源编码对这些输出符号序列进行霍夫曼编码的具体步骤和结果如表。
信源编码由表中可以看出,在码字序列中码元0和1的概率分别为10/21和11/21,二者近乎相等,实现了概率的均匀化。
同时,由于码字序列长度满足克拉夫特不等式2×2-2+3×2-3+2×2-4=1因而码字是唯一可译的,不会在长的码字序列中出现划错码字的情况。
以上几个编码定理,在有记忆信源或连续信源的情形也有相应的类似结果。
在实际工程应用中,往往并不追求无差错的信源编码和译码,而是事先规定一个译码差错率的容许值,只要实际的译码差错率不超过这个容许值即认为满意(见信息率-失真理论和多用户信源编码)。