2012-2018年高考真题汇编:圆锥曲线理科(带答案)

2012-2018年高考真题汇编:圆锥曲线理科(带答案)
2012-2018年高考真题汇编:圆锥曲线理科(带答案)

历年圆锥曲线高考题附答案

数学圆锥曲线高考题选讲 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2 =1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 2 3+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) A.2 B. 22 3 C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11, 2A ?? ??? ,则求该椭圆的标准方程为 。 11. (20XX 年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上, 离心率为 2 2 。过l 的直线 交于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

2018年高考真题汇编——理科数学(解析版)10:圆锥曲线

2018高考真题分类汇编:圆锥曲线 一、选择题 1.【2018高考真题浙江理8】如图,F 1,F 2分别是双曲线C :2 2 221x y a b -=(a,b >0)的左、 右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平 分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是 A. 23 B 6 2 D. 3【答案】B 【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组??????? =-+=0,b y a x b x c b y 得点 Q ),(a c bc a c ac --,联立方程组??????? =++=0 ,b y a x b x c b y 得点P ),(a c bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b c a x b c b c y --=-,令0=y ,得)1(22b a c x +=,所以c b a c 3)1(22=+,所以2222222a c b a -==,即2223 c a =,所以26=e 。 故选B 2.【2018高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线 x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )

()A 2 ()B 22 ()C 4 ()D 8 【答案】C 【解析】设等轴双曲线方程为)0(2 2 >=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得412162 2 =-=-=y x m ,所以双曲线方 程为42 2 =-y x ,即14 42 2=-y x ,所以2,42==a a ,所以实轴长42=a ,选C. 3.【2018高考真题新课标理4】设12F F 是椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点,P 为 直线32a x =上一点,12PF F ?是底角为30o 的等腰三角形,则E 的离心率为( ) ()A 12 ()B 23 ()C 34 ()D 45 【答案】C 【解析】因为12PF F ?是底角为30o 的等腰三角形,则有 P F F F 212=,,因为 2130=∠F PF ,所以 0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F == ,即c c c a =?=-22 1 23,所以c a 223=,即43=a c ,所以椭圆的离心率为4 3=e ,选C. 4.【2018高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。若点M 到该抛物线焦点的距离为3,则||OM =( ) A 、22 B 、23 C 、4 D 、5 【答案】B 【解析】设抛物线方程为2 2y px =,则点(2,2)M p ±Q 焦点,02p ?? ??? ,点M 到该抛物线焦点的距离为3,∴ 2 2492p P ? ?-+= ?? ?, 解得2p =,所以44223OM =+?=.

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

2018年全国卷理科数学十年真题分类汇编 圆锥曲线

圆锥曲线 一.基础题组 1. 【2014课标Ⅰ,理4】已知为双曲线:的一个焦点,则点到的一条渐近线的距离为( ) A. B. 3 C. D. 【答案】A 2. 【2013课标全国Ⅰ,理 4】已知双曲线C :(a >0,b >0), 则C 的渐近线方程为( ). A .y = B .y =C .y = D .y =±x 【答案】C 【解析】∵,∴.∴a 2=4b 2,.∴渐近线方程为. 3. 【2012全国,理4】设F 1,F 2是椭圆E :(a >b >0)的左、右焦点,P 为直线 上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A . B . C . D . 【答案】C F C )0(32 2 >=-m m my x F C 3m 3m 322 22=1x y a b -514x ± 13x ±1 2 x ±2c e a ==2222 22 54c a b e a a +===1=2b a ±1 2 b y x x a =± ±22 221x y a b +=32 a x = 12233445

【解析】设直线与x轴交于点M,则∠PF2M=60°,在Rt△PF2M中,PF2=F1F2=2c,, 故,解得,故离心率. 4. 【2011全国新课标,理7】设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为( ) A B C. 2 D.3 【答案】B 【解析】 5. 【2009全国卷Ⅰ,理4】设双曲线(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于() 3 2 a x= 2 3 2 a F M c =- 2 2 3 1 2 cos60 22 a c F M PF c - ?=== 3 4 c a = 3 4 e= 1 2 2 2 2 = - b y a x

高考数学圆锥曲线历年高考真题

浙江省高考数学圆锥曲线真题 22 04. 若椭圆 x 2 y 2 ab 1(a > b > 0)的左、右焦点分别为 F 1、F 2, 线段 F 1F 2被抛物线 y 2=2 bx 的焦点 分成 5∶ 3的两 段 , 则此椭圆的离心率为 16 (A) 1167 05.过双曲线 2 x 2 a 4 17 (B) 17 2 b y 2 1(a b 4 (C)45 (D) 255 5 0,b 0) 的左焦点且垂直于 x 轴的直线与双曲线相交于 M 、 N 两点 , 以 MN 为直径的圆恰好过双曲线的右顶点 则双曲线的离心率等于 07. 已知双曲线 2 x 2 a 2 y 2 1(a 0,b b 2 0) 的左、右焦点分别为 F 1,F 2, P 是准线上一点 , PF 1 PF 2,|PF 1| |PF 2| 4ab , 则双曲线的离心率是 B ) 3 (C ) 2 (D ) 3 △ ABP 的面积为定 则动点 P 的轨迹是A . 圆 B . 椭圆 C . 一条直线 D . 两条平行直线 09. 2 x 过双曲线 2 a 2 y b 2 1(a 0,b 0) 的右顶 点 条渐近线的交点分别为 B,C uuur .若 AB 1 uuur BC , 2 A . 2 B .3 C 08.如图 , AB 是平面 的斜.线.段. ) B A P 第 10 题) A 作斜率为 1的直线 , 该直线与双曲线的两 则双曲线的离心率 是 ( ) .5 D . 10 A 为斜足 , 若点 P 在平面 内运动 , 使得 点 A (0,2) 。若线段 FA 的中点 B 在抛物线上 2 10. (13)设抛物线 y 2 2px (p 0) 的焦点为 F, 则 B 到该抛物线准线的距离为 近线与以 C 1 的长轴为直径的圆相交于 A, B 两点 ( ) 13 2 B . a 2= 13 1 D . A .a 2= C .b 2= b 2=2 2 2 2 11. 设 F 1, F 2分别为椭圆 x 2 3 y 2 1的 左、 右焦点 22 x y 2 11. 已知椭圆 C 1: 2 2 =1 (a > b > 0)与双曲线 C 2: x 2 ab 则点 A 的坐标是 _______ 2 y 1有公共的焦点 , C 2 的一条渐 4 若 C 1 恰好将线段 AB 三等分 , 则 uuur uuuur 点 A, B 在椭圆上. 若 F 1A 5F 2B ,

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

2018年高考理科数学通用版三维二轮专题复习专题检测:(二十二) 第20题解答题“圆锥曲线的综合问题”专练

专题检测(二十二) 第20题解答题“圆锥曲线的综合问题”专练 1.(2018届高三·广东五校协作体诊断考试)若椭圆 x2a2+y2b2 =1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段. (1)求椭圆的离心率; (2)过点C (-1,0)的直线l 交椭圆于不同两点A ,B ,且AC ―→=2 CB ―→,当 △ AOB 的面积最大时,求直线l 的方程. 解:(1)由题意知,c +b 2=3? ???? c -b 2, 所以b =c ,a 2=2b 2, 所以e =c a = 1-? ?? ??b a 2=22. (2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =ky -1(k ≠0), 因为AC ―→=2CB ―→ ,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即y 1=-2y 2, ① 由(1)知,椭圆方程为x 2+2y 2=2b 2. 由????? x =ky -1,x2+2y2=2b2 消去x , 得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2k k2+2 , ② 由①②知,y 2=-2k k2+2,y 1=4k k2+2, 因为S △AOB =12|y 1|+1 2 |y 2|, 所以S △AOB =3·|k| k2+2=3·1 2 |k| +|k|

≤3· 12 2 |k|·|k|= 324 , 当且仅当|k |2=2,即k =±2时取等号, 此时直线l 的方程为x - 2y +1=0或x + 2y +1=0. 2.已知椭圆C :x2a2 + y2b2 =1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上任意一点,直线TA ,TB 的斜率之积为-3 4 . (1)求椭圆C 的方程; (2)设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP ―→ · OQ ―→+MP ―→·MQ ―→的取值范围. 解:(1)设T (x ,y ),由题意知A (-4,0),B (4,0), 设直线TA 的斜率为k 1,直线TB 的斜率为k 2, 则k 1=y x +4,k 2=y x -4 . 由k 1k 2=-34,得y x +4·y x -4=-3 4 , 整理得x2 16+y212 =1. 故椭圆C 的方程为x2 16+y2 12 =1. (2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2), 联立方程??? ?? x216+y2 12=1, y =kx +2 消去y , 得(4k 2+3)x 2+16kx -32=0.

2019年高考试题汇编理科数学--圆锥曲线

(2019全国1)10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =, ||||1BF AB =,则C 的方程为( ) A.1222=+y x B. 12322=+y x C.13422=+y x D.14 522=+y x 答案: B 解答: 由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又Θ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则 m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 2 1 = ,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程122 22=+b y a x ,得32=a , 22 22=-=c a b ,∴椭圆C 的方程为12 32 2=+ y x . (2019全国1)16.已知双曲线C:22 221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的 两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r ,则C 的离心率为 . 答案: 2 解答: 由112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r 知A 是1BF 的中点,12F B F B ⊥uuu r uuu r ,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1FOA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=?,221()1tan 602b e a =+=+?=.

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

2018高考题圆锥曲线

(2018 全国二卷)19.( 12 分) 设抛物线C : y 2 4x 的焦点为F,过F 且斜率为k(k 0)的直线I 与C 交于A ,B 两点,|AB| 8 . (1)求I 的方程 (2)求过点A , B 且与C 的准线相切的圆的方程. (2018全国三卷)20. (12分) (1)证明:k 1 ; 2 ⑵设F 为C 的右焦点,P 为C 上一点,且F P FA F B 0 .证明:FA , 2 已知斜率为k 的直线I 与椭圆c :- 4 2 7 1交于A , B 两点,线段AB 的中点为 ujur FP ,

FB成等差数列,并求该数列的公差.

(2018北京卷)(19)(本小题14分) 已知抛物线C: y2=2px经过点P (1, 2).过点Q (0, 1)的直线I与抛物线C有两个不同的交点A, B,且直线PA交y轴于M ,直线PB交y轴于N. (I )求直线I的斜率的取值范围; (2018天津卷)(19)(本小题满分14分) 2 2 设椭圆笃笃1 (a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为 a b —,点A的坐标为(b,0),且FB AB 6j2 . 3 (I)求椭圆的方程; (II)设直线I: y kx(k 0)与椭圆在第一象限的交点为P,且I与直线AB 交于点Q. AQ 5名sin AOQ (O为原点),求k的值. PQ (2018江苏卷)18.(本小题满分16分)

如图,在平面直角坐标系xOy 中,椭圆C过点(禺),焦点F1(加皿。), 圆O的直径为F1F2. (1)求椭圆C及圆O的方程; (2)设直线I与圆O相切于第一象限内的点P. ①若直线I与椭圆C有且只有一个公共点,求点P的坐标; ②直线I与椭圆C交于A,B两点.若△ OAB的面积为纽6, 7 求直线I的方程. (2018浙江卷)21.(本题满分15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C: y2=4x上存在不同的两点A, B满足PA PB的中点均在C

2013高考试题分类汇编(理科):圆锥曲线

2013年全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .引直线l 与曲线y =A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线l 的斜率等于( ) A . 3 B .3 - C .3 ± D .2 .双曲线2 214 x y -=的顶点到其渐近线的距离等于( ) A . 25 B . 45 C D 3 .已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程是( ) A .22 14x = B .22145x y - = C . 22 125 x y -= D .22 12x -= 4 .已知双曲线C :22221x y a b -=(0,0a b >>) ,则C 的渐近线方程为( ) A .14 y x =± B .13 y x =± C .12 y x =± D .y x =± 5 .已知04π θ<<,则双曲线22122:1cos sin x y C θθ-=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等 6 .抛物线2 4y x =的焦点到双曲线2 2 13 y x -=的渐近线的距离是( ) A .12 B C .1 D 7 .如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( ) A .2 B .3 C . 2 3 D . 2 6 8 .已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =( ) A .1 B . 3 2 C .2 D .3 9 .椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( ) A .1324 ?????? , B .3384 ?????? , C .112?? ???? , D .314?? ???? , 10.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若 0MA MB =uuu r uuu r g ,则k =( ) A . 12 B C D .2 11.若双曲线22 221x y a b -= 则其渐近线方程为( ) A .y =±2x B .y = C .12 y x =± D .2 y x =±

圆锥曲线高考真题

圆锥曲线高考真题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

(1)求M 的方程 (2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 的面积最大值. 2.设1F ,2F 分别是椭圆()222210y x a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. (1)若直线MN 的斜率为34 ,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b . 3.已知椭圆C :,直线不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1) 证明:直线OM 的斜率与的斜率的乘积为定值; (2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边行若能,求此时的斜率,若不能,说明理由. 4.已知抛物线C :22y x = 的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ; (2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 5.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段 AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;

(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 6.已知斜率为k 的直线l 与椭圆22 143 x y C +=:交于A ,B 两点,线段AB 的中点为 ()()10M m m >,. (1)证明:1 2 k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA , FP ,FB 成等差数列,并求该数列的公差. 7.已知椭圆2222:1(0)x y C a b a b +=>> ,且经过点(0,1),圆 22221:C x y a b +=+。 (1)求椭圆C 的方程; (2)直线:(0)l y km m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问是否存在这样的直线l ,使得AM MB =若存在,求出l 的方程,若不存在,请说明理由。 8.已知椭圆1C 的中心和抛物线2C 的顶点都在坐标原点O ,1C 和2C 有公共焦点 F ,点F 在x 轴正半轴上,且1C 的长轴长、短轴长及点F 到1C 右准线的距离成等比数列。 (1)当2C 的准线与1C 的右准线间的距离为15时,求1C 及2C 的方程; (2)设过点F 且斜率为1的直线l 交1C 于P,Q 两点,交2C 于M,N 两点。当 36 7 PQ =时,求MN 的值。 9.如图,椭圆22 221(0)x y a b a b +=>>的一个焦点是F (1,0),O 为坐标原点. (1)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (2)设过点F 的直线l 交椭圆于A ,B 222 OA OB AB +<,求a 的取值范围. 10.设椭圆中心在坐标原点,(20)(01)A B ,,,)0(>k kx 与AB 相交于点D ,与椭圆相交于E 、F 两点.

文科高考圆锥曲线和真题

圆锥曲线方程 一、椭圆方程. 1. 椭圆方程的第一定义: ⑴①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: . ii. ii. 中心在原点,焦点在轴上: . ②一般方程:.⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长.③焦点:或 .④焦距:.⑤准线:或.⑥离心 率:. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和 二、双曲线方程. 1. 双曲线的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ)0(12 22 2φφb a b y a x =+ y ) 0(12 22 2φφb a b x a y =+ )0,0(122φφB A By Ax =+),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2 2 2 1,2b a c c F F -==c a x 2 ± =c a y 2 ± =)10(ππe a c e =),(22 2 2a b c a b d -= ),(2a b c

⑴①双曲线标准方程: . 一般方程: . ⑵①i. 焦点在x 轴上: 顶点: 焦点: 准线方程 渐近线方程: 或 ②轴为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率. ④通径 . ⑤参数关系. ⑥焦点半径公式:对于双曲线 方程 (分别为双曲线的左、右焦点或分别为双曲线的上下 焦点) ⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为, 离心率. 三、抛物线方程. 3. 设,抛物线的标准方程、类型及其几何性质: 的一个端点的一条射线 以无轨迹 方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-φπ)0,(1), 0,(12 22 22 22 2φφb a b x a y b a b y a x =- =- )0(122πAC Cy Ax =+)0,(),0,(a a -)0,(),0,(c c -c a x 2 ± =0=±b y a x 02222=-b y a x y x ,a c e =a b 2 2a c e b a c =+=,22212 22 2=- b y a x 21,F F 222a y x ±=-x y ±=2= e 0φp

2020年高考圆锥曲线部分大题解析

1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线 2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。 (1) 设AB 中点为M ,证明:PM 垂直于y 轴; (2) 若P 是半椭圆2 2 1(0)4 y x x +=<上的动点,求PAB ?面积的取值范围。 解析:(1)设2200112211(,),(,),(,)44 P x y A y y B y y AP 中点满足:2 2 102014( )4()22 y x y y ++= BP 中点满足:2 2 202024:( )4()22 y x y y BP ++= 所以12,y y 是方程2 2 0204()4()22 y x y y ++=即22000 280y y y x y -+-=的两个根,所以 12 02 y y y +=,故PM 垂直于y 轴。 (2)由(1)可知212012002,8y y y y y x y +=?=- 所以222 1200013||()384 PM y y x y x =+-= - ,12||y y -= 因此,3 2212001||||4)24 PAB S PM y y y x ?=?-=- 因为2 2 0001(0)4 y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ? 面积的取值范围是

1. 距离型问题 2.【2018全国3 理20】已知斜率为k 的直线l 与椭圆22 :143 x y C +=交于,A B 两点,线段AB 的中点为(1,)(0)M m m > (1)证明:1 2 k <- ; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=,证明:,,FP FA FB 为等差数列,并求出该数列的公差。 解析:(1)由中点弦公式22OM b k k a ?=-,解得34k m =- 又因为点M 在椭圆内,故302m << ,故1 2 k <- (2)由题意知2,2FA FB FM FP FM +==-,故(1,2)P m - 因为点P 在椭圆上,代入可得3,14m k = =-,即3||2 FP = 根据第二定义可知,1211||2,||222 FA x FB x =- =- 联立22 212121114371402,4287 4 x y x x x x x x y x ?+=???-+=?+==? ?=-+?? 即121 ||||4()32 FA FB x x +=- += 故满足2||||||FP FA FB =+,所以,,FP FA FB 为等差数列 设其公差为d ,因为,A B 的位置不确定,则有

(完整版)圆锥曲线高考真题

(1)求M 的方程 (2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 的面积最大值. 2.设1F ,2F 分别是椭圆()222210y x a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. (1)若直线MN 的斜率为34 ,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b . 3.已知椭圆C :,直线不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1) 证明:直线OM 的斜率与的斜率的乘积为定值; (2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边行?若能,求此时的斜率,若不能,说明理由. 4.已知抛物线C :22y x = 的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ; (2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 5.已知抛物线C :y 2 =2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上; (2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 6.已知斜率为k 的直线l 与椭圆22 143 x y C +=:交于A ,B 两点,线段AB 的中点为 ()()10M m m >,. (1)证明:1 2 k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r ,FP u u u r ,FB u u u r 成 等差数列,并求该数列的公差.

高考数学真题分类汇编专题圆锥曲线理科及答案

专题九 圆锥曲线 1.【2015高考福建,理3】若双曲线22 :1916 x y E -= 的左、右焦点分别为12,F F ,点P 在双 曲线E 上,且13PF =,则2PF 等于( ) A .11 B .9 C .5 D .3 【答案】B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B . 【考点定位】双曲线的标准方程和定义. 【名师点睛】本题考查了双曲线的定义和标准方程,利用双曲线的定义列方程求解,属于基础题,注意运算的准确性. 2.【2015高考四川,理5】过双曲线22 13 y x -=的右焦点且与x 轴垂直的直线,交该双曲线 的两条渐近线于A ,B 两点,则AB =( ) (C)6 (D )【答案】D 【解析】 双曲线的右焦点为(2,0)F ,过F 与x 轴垂直的直线为2x =,渐近线方程为2 2 03 y x -=,将 2x =代入2 2 03 y x -=得:212,||y y AB ==±∴=.选D. 【考点定位】双曲线. 【名师点睛】双曲线22221x y a b -=的渐近线方程为22 220x y a b -=,将直线2x =代入这个渐近线 方程,便可得交点A 、B 的纵坐标,从而快速得出||AB 的值. 3.【2015高考广东,理7】已知双曲线C :12222=-b y a x 的离心率5 4 e =,且其右焦点()25,0F , 则双曲线C 的方程为( ) A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14 32 2=-y x

【答案】B . 【解析】因为所求双曲线的右焦点为()25,0F 且离心率为5 4 c e a = =,所以5c =,4a =,2 2 2 9b c a =-=所以所求双曲线方程为22 1169 x y - =,故选B . 【考点定位】双曲线的标准方程及其简单几何性质. 【名师点睛】本题主要考查学生利用双曲线的简单几何性质求双曲线的标准方程和运算求解能力,由离心率和其右焦点易得a ,c 值,再结合双曲线222b c a =-可求,此题学生易忽略右焦点信息而做错,属于容易题. 4.【2015高考新课标1,理5】已知M (00,x y )是双曲线C :2 212 x y -=上的一点,12,F F 是 C 上的两个焦点,若120MF MF ?<,则0y 的取值范围是( ) (A )(- 33,3 3 ) (B )(- 36,3 6 ) (C )(223-,223) (D )(233-,23 3 ) 【答案】A 【考点定位】双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 【名师点睛】本题考查利用向量数量积的坐标形式将12MF MF ?表示为关于点M 坐标的函数,利用点M 在双曲线上,消去x 0,根据题意化为关于0y 的不等式,即可解出0y 的范围,是基础题,将12MF MF ?表示为0y 的函数是解本题的关键. 5.【2015高考湖北,理8】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e < D .当a b >时,12e e <;当a b <时,12e e > 【答案】D 【解析】依题意,2 221)(1a b a b a e +=+=,2222)(1)()(m a m b m a m b m a e +++=++++=,

相关文档
最新文档