导数文科大题含详细答案

导数文科大题含详细答案
导数文科大题含详细答案

导数文科大题

1.知函数,.

(1)求函数的单调区间;

(2)若关于的方程有实数根,求实数的取值范围. 答案

解析

2.已知, (1)若,求函数在

点处的切线方程; (2)若函数在上是增函数,求实数a

的取值范围; (3)令, 是自然对数的底数);求当实

数a等于多少时,可以使函数取得最小值为3.

解:(1)时,,

′(x),

′(1)=3,,

数在点处的切线方程为,

(2)函数在上是增函数,

′(x),在上恒成立,

即,在上恒成立,

令,当且仅当时,取等号,

,

的取值范围为

(3),

′(x),

①当时,在上单调递减,,计算得出(舍去);

②当且时,即,在上单调递减,在上单调递增,

,计算得出,满足条件;

③当,且时,即,在上单调递

减,,计算得出(舍去);

综上,存在实数,使得当时,有最小值3.

解析(1)根据导数的几何意义即可求出切线方程.

(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案,

(3),求出函数的导数,讨论,,的情况,从而得出答案

3.已知函数,

(1)分别求函数与在区间上的极值;

(2)求证:对任意,

解:(1),

令,计算得出:,,计算得出:或

,

故在和上单调递减,

在上递增,

在上有极小值,无极大值;

,,则,

故在上递增,在上递减,

在上有极大值,,无极小值;

(2)由(1)知,当时,,,

故;

当时,,

令,则,

故在上递增,在上递减,

,;

综上,对任意,

解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及

单调区间及极值;

4.已知函数,其中,为自然

数的底数.(1)当时,讨论函数的单调性;

(2)当时,求证:对任意的,.

解:(1)当时,,

则,

,

故则在R上单调递减.

(2)当时,,要证明对任意的,.

则只需要证明对任意的,.

设,

看作以a为变量的一次函数,要使,

则,即,

恒成立,①恒成立,

对于②,令,则,

设时,,即.

,,

在上,,单调递增,在上,,

单调递减,

则当时,函数取得最大值

,

故④式成立,综上对任意的,.

解析:(1)求函数的导数,利用函数单调性和导数之间的关系进行讨论即可.

(2)对任意的,转化为证明对任意的

,,即可,构造函数,求函数的导数,利用导数进行研究即可.

5.已知函数

(1)当时,求函数在处的切线方程;

(2)求在区间上的最小值.

解:(1)设切线的斜率为k.

因为,所以

,

所以

,

所以所求的切线方程为,即

(2)根据题意得, 令

,可得

①若,则,

当时,

,则

在上单调递增.

所以

②若,则

, 当

时,,则在上单调递

减. 所以

③若,则

,

所以

,

随x 的变化情况如下表:

所以的单调递减区间为,单调递增区间为

所以

上的最小值为

综上所述:当时,

;

当时,

;

时,

解析(1)设切线的斜率为k.利用导数求出斜率,切点坐标,然后求出切线方程.

(2)通过,可得.通过①,②,③

,判断函数的单调性求出函数的最值.

6.已知函数。(I)求f(x)的单调区间;(II)若对任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求实数

a的取值范围;(III)设F(x)=,曲线y=F(x)上是否总存在两点P,Q,使得△POQ是以O(O为坐标原点)为钝角柄点的钝角三角开,且最长边的中点在y轴上?请说明理由。

解:(Ⅰ)∵

∴当、时,在区间、上单调递减.

当时,在区间上单调递增. ………3分

(Ⅱ)由,得.

∵,且等号不能同时取得,∴,

∵对任意,使得恒成立,

∴对恒成立,即.( )

令,求导得,,………5分

∵,

∴在上为增函数,,.………7分

(Ⅲ)由条件,,

假设曲线上总存在两点满足:是以为钝角顶点的钝角

三角形,且最长边的中点在轴上,则只能在轴两侧.

不妨设,则.

∴,…(※),

是否存在两点满足条件就等价于不等式(※)在时是否有解.………9分

①若时,,化简得,

对此不等式恒成立,故总存在符合要求的两点P、

Q;………11分

②若时,(※)不等式化为,若,此不等式显然对恒成立,故总存在符合要求的两点P、Q;

若a>0时,有…(),

设,则,

显然,当时,,即在上为增函数,

的值域为,即,

当时,不等式()总有解.故对总存在符合要求的两点P、Q. ……13分

综上所述,曲线上总存在两点,使得是以为钝角顶

点的钝角三角形,且最长边的中点在轴上. ………14分

7.已知函数为常数).(Ⅰ)若a=-2,求函数f(x)的单调

区间;(Ⅱ)若当时,恒成立,求实数a的取值范围.

解:(Ⅰ)a=-2时,

时,

时,f'(x)>0,

函数f(x)的单调递减区间是(0,1],单调递增区间为

(Ⅱ)由已知条件得:

且等号不能同时取;

在[1,e]上为增函数;

在[1,e]上的最大值为:;

的取值范围为:

8.已知函数(1)若,试判断在定义域内的单调性;

(2)若在上恒成立,求a的取值范围.

解:(1)函数,

函数的定义域为,函数的导数,

当,,此时函数单调递增.

(2)若在上恒成立,即在上恒成立,

即,令,只要求得的最大值即可,

,,

,,

,即在上单调递减,

9. 已知函数

(1)若,试判断在定义域内的单调性;

(2)若在上恒成立,求a的取值范围.

答案详解

解:(1)函数,

函数的定义域为,

函数的导数,

当,,此时函数单调递增.

(2)若在上恒成立,

即在上恒成立,

即,

令,只要求得的最大值即可,

,,

,,

,

即在上单调递减,

10. 设函数

(Ⅰ)若函数在上单调递增,求实数a的取值范围;

(Ⅱ)当时,求函数在上的最大值.

答案

解:(Ⅰ)的导数为,

函数在上单调递增,

即有在上恒成立,

则在上恒成立.

因为,

则,计算得出;

(Ⅱ),

,

当时,,,;

,,;

,,

令,

,

,,,,

,

即,

,

单调递减,单调递增,

,

,,

当时,

,

函数在上的最大值为. 解析

(Ⅰ)求出函数的导数,根据题意可得在上恒成立,则

在上恒成立.运用指数函数的单调性,即可得到a的取值范围;

(Ⅱ)求出导函数,判断出在单调递减,单调递增,判断求出最值.

11.本小题满分12分)已知函数。

(1)当时,求曲线在点处的切线方程;

(2)当时,恒成立,求的取值范围。

答案详解(1)当时,,则,即切点为,

因为,则,故曲线在处的切线方程

为:,即。 ......4分

(2),求导得:, ......5分

令,();

①当,即时,,所以在上为增函

数,所以在上满足,故当时符合题意; ......8分

②当,即时,令,得,

当时,,即,所以在为减函

数,所以,与题意条件矛盾,故舍去。 ......11分

综上,的取值范围是。 ......12分

解析:本题主要考查导数在研究函数中的应用。

(1)将代入,求出得到切点坐标,求出得切线斜率,即可得切线方程;

(2)根据题意对的取值范围进行分讨论,利用导数来研究函数的单调性,

进而判断与的关系,便可得出的取值范围。

12.已知函数,是的导函数(为自然对数的底数)(Ⅰ)解关于的不等式:;

(Ⅱ)若有两个极值点,求实数的取值范围。

答案(Ⅰ),。

当时,无解;当时,解集为;

当时,解集为。

(Ⅱ)若有两个极值点,则是方程的两个根。

,显然,得:。

令,。若时,单调递减且;

若时,当时,,在上递减;

当时,,在上递增。

要使有两个极值点,需满足在上有两个不同解,得,即。

解析本题主要考查利用导函数求解函数问题。

(Ⅰ)原不等式等价于,分,,和讨论可得;

(Ⅱ)设,则是方程的两个根,求导数可得,若

时,不合题意,若时,求导数可得单调区间,进而可得最大值,可得关于的不等式,解之可得。

13.已知函数,.

(Ⅰ)如果函数在上是单调增函数,求a的取值范围;

(Ⅱ)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.

解:(Ⅰ)当时,在上是单调增函数,符合题意.

当时,的对称轴方程为,

因为在上是单调增函数,

所以,计算得出或,所以.

当时,不符合题意.综上,a的取值范围是.

(Ⅱ)把方程整理为

,即为方程.

设,

原方程在区间内有且只有两个不相等的实数根,

即为函数在区间内有且只有两个零点

令,因为,计算得出或(舍)

当时,,是减函数;

当时,,是增函数.

在内有且只有两个不相等的零点,

只需即

计算得出,

所以a的取值范围是.

解析:(1)因为函数的解析式中含有参数a,故我们要对a进行分类讨论,注意

到a出现在二次项系数的位置,故可以分,,三种情况,最后将三种情况得到的结论综合即可得到答案.

(2)方程整理为构造函数

,则原方程在区间内有且只有两个

不相等的实数根即为函数在区间内有且只有两个零点,根据函数零点存在定理,结合函数的单调性,构造不等式组,解不等式组即可得到结论.

14.设函数(1)若,求函数的单调区

间. (2)若曲线在点处与直线相切,求a,b的值.

解:(1)当时,,,

令,则或;

,则

函数的单调递增区间为和,递减区间为

(2),

曲线在点处与直线相切,

, 即解之,得,.

解析

(1)当时,求出的导函数,令,得出函数的单调增区间,反之得出单调减区间;

(2)求出函数的导函数,得出,求出a和b.

15.

16.已知函数,且.

(1)若在处取得极小值,求函数的单调区间;

(2)令,若的解集为,且满足,

求的取值范围。

答案:,F'(-1)=0 则a-2b+c=0;

(1)若F(x)在x=1处取得最小值-2,则F'(1)=0,a+2b+c=0,则b=0,c=-a。

F(1)=-2,,则a=3,c=-3。

,x∈(-∞,-1)时,F'(x)>0,函数F(x)单调递增;

x∈(-1,1)时,F'(x)<0,函数F(x)单调递减;

x∈(1,∞)时,F'(x)>0,函数F(x)单调递增。

(2)令,,

高考文科导数考点汇总完整版

高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?) -f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处 可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0 lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就 说函数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 3.几种常见函数的导数: ①0;C '= ② ()1 ; n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 4.两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)'''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个

高考文科数学专题复习导数训练题

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 在0x 处有增量x ?,称为函数)(x f y =在则称函数)(x f y =在)0或0|'x x y =,即 f . )(v u v u ±=±)(...)()()(...)()(2121x f x f x f y x f x f x f y n n +++=?+++=?''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-= ?? ? ??v v u v vu v u *复合函数的求导法则:)()())(('''x u f x f x ??= 或x u x u y y '''?= 4.几种常见的函数导数: I.0'=C (C 为常数) x x cos )(sin ' = 1')(-=n n nx x (R n ∈) x x sin )(cos '-= II. x x 1)(ln '= e x x a a log 1 )(log '= x x e e =')(a a a x x ln )('= 二、经典例题剖析 考点一:求导公式

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

导数文科大题含详细答案精编版.doc

导数文科大题 1.知函数,. ( 1)求函数的单调区间; ( 2)若关于的方程有实数根,求实数的取值范围. 答案 解析

2. 已知,(1)若,求函数在点处的切线方程 ; (2) 若函数在上是增函数,求实数 a 的取值范围 ; (3) 令,是自然对数的底数);求当实数 a 等于多少时 ,可以使函数取得最小值为 3. 解:(1)时,, ′ (x), ′ (1)=3,, 数在点处的切线方程为,

(2)函数在上是增函数, ′ (x),在上恒成立, 即,在上恒成立, 令,当且仅当时,取等号, , 的取值范围为 (3), ′ (x), ①当时 ,在上单调递减,,计算得出(舍去 ); ②当且时,即,在上单调递减,在上单调递增 , ,计算得出,满足条件 ; ③当,且时,即,在上单调递 减 ,,计算得出(舍去 ); 综上 ,存在实数,使得当时,有最小值 3.

解析 (1) 根据导数的几何意义即可求出切线方程. (2)函数在上是增函数,得到f′(x),在上恒成立 ,分离参数 ,根据基本不等式求出答案, (3),求出函数的导数 ,讨论,,的情况, 从而得出答案 3. 已知函数, (1) 分别求函数与在区间上的极值 ; (2) 求证 :对任意, 解 :(1), 令,计算得出 :,,计算得出 :或, 故在和上单调递减, 在上递增 , 在上有极小值,无极大值 ; ,,则, 故在上递增,在上递减, 在上有极大值 ,,无极小值 ; (2)由(1)知,当时,,,

故; 当时 ,, 令,则, 故在上递增,在上递减, ,; 综上 ,对任意, 解析 (1) 求导 ,利用导数与函数的单调性及极值关系,即可求得及 单调区间及极值 ; 4. 已知函数,其中,为自然数的底数 .(1) 当时,讨论函数的单调性; (2)当时,求证:对任意的,. 解:(1)当时,, 则, , 故则在R上单调递减. (2)当时,,要证明对任意的,. 则只需要证明对任意的,. 设, 看作以 a 为变量的一次函数 ,要使,

全国高考文科导数大题官方解答

-年全国高考文科导数大题官方解答

————————————————————————————————作者:————————————————————————————————日期:

2012--2017全国卷高考真题导数大题 1.(2012新课标全国卷1文21,本小题满分12分) 设函数()2x f x e ax =--. (Ⅰ)求()f x 的单调区间; (Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值. 解:(Ⅰ)()f x 定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增; 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,)0f x '>( , 所以()f x 在(,ln )a -∞,单调递减,在(ln ,)a +∞单调递增; (Ⅱ)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++, 故当0x >时,()()10x k f x x '-++>等价于1 (0)1 x x k x x e +< +>-,① 令1 ()1 x x g x x e +=+-,则22 1(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+=--, 由(Ⅰ)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x 在(0,)+∞存在唯一零点,故()g x '在(0,)+∞存在唯一零点, 设此零点为α,则(1,2)α∈, 当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,)0g x '>( , 所以()g x 在(0,)+∞的最小值是()g α, 又()0g α'=,可得2e α α=+,所以()1(2,3)g αα=+∈, 由于①等价于()k g α<,故整数k 的最大值为2. 2.(2013新课标全国卷1文21,本小题满分12分) 已知函数2 ()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为

高考文科导数考点汇总

高考导数文科考点 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0), 比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x ) 在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函 数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

导数文科大题含详细标准答案

导数文科大题含详细答案

————————————————————————————————作者:————————————————————————————————日期:

导数文科大题 1.知函数,. (1)求函数的单调区间; (2)若关于的方程有实数根,求实数的取值范围. 答案 解析

2.已知, (1)若,求函数在点处的切线方程; (2)若函数在上是增函数,求实数a 的取值范围; (3)令, 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为 3. 解:(1)时,, ′(x), ′(1)=3,, 数在点处的切线方程为,

(2)函数在上是增函数, ′(x),在上恒成立, 即,在上恒成立, 令,当且仅当时,取等号, , 的取值范围为 (3), ′(x), ①当时,在上单调递减,,计算得出(舍去); ②当且时,即,在上单调递减,在上单调递增, ,计算得出,满足条件; ③当,且时,即,在上单调递 减,,计算得出(舍去); 综上,存在实数,使得当时,有最小值3.

解析(1)根据导数的几何意义即可求出切线方程. (2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案, (3),求出函数的导数,讨论,,的情况,从而得出答案 3.已知函数, (1)分别求函数与在区间上的极值; (2)求证:对任意, 解:(1), 令,计算得出:,,计算得出:或, 故在和上单调递减, 在上递增, 在上有极小值,无极大值; ,,则, 故在上递增,在上递减, 在上有极大值,,无极小值; (2)由(1)知,当时,,,

文科数学导数大题训练(有答案)

18.(14分)(2013?汕头一模)已知函数f(x) =x2﹣lnx. (1)求曲线f(x)在点(1,f(1))处的切线方程; (2)求函数f(x)的单调递减区间: (3)设函数g(x)=f(x)﹣x2+ax,a>0,若x∈(O,e]时,g(x)的最小值是3,求实数a的值.(e是为自然对数的底数) 考 点: 利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.3253948 专 题: 导数的综合应用. 分 析: (1)欲求在点(1,f(1))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. (2)求出原函数的导函数,由导函数小于0求出自变量x在定义域内的取值范围,则原函数的单调减区间可求. (3)求导函数,分类讨论,确定函数的单调性,利用函数g(x)的最小值是3,即可求出a的值. 解 答: 解:(1)∵f(x)=x2﹣lnx ∴f′(x)=2x﹣ . ∴f'(1)=1. 又∵f(1)=1, ∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣1=x﹣1.即x﹣y=0.(2)因为函数f(x)=2x2﹣lnx的定义域为(0,+∞),

由f′(x)=2x﹣ <0,得0<x< . 所以函数f(x)=x2﹣lnx的单调递减区间是(0, ). (3)∵g(x)=ax﹣lnx,∴g′(x)= ,令g′(x)=0,得x= , ①当 ≥e时,即0<a≤ 时,g′(x)= ≤0在(0,e]上恒成立, 则g(x)在(0,e]上单调递减,g(x)min=g(e)=ae﹣1=3,a= (舍去), ②当0< <e时,即a> 时,列表如下:

20122017年全国高考文科导数大题官方解答

2012--2017全国卷高考真题导数大题 1.(2012新课标全国卷1文21,本小题满分12分) 设函数()2x f x e ax =--. (Ⅰ)求()f x 的单调区间; (Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值. 解:(Ⅰ)()f x 定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增; 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,)0f x '>( , 所以()f x 在(,ln )a -∞,单调递减,在(ln ,)a +∞单调递增; (Ⅱ)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++, 故当0x >时,()()10x k f x x '-++>等价于1 (0)1 x x k x x e +< +>-,① 令1 ()1 x x g x x e +=+-,则22 1(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+=--, 由(Ⅰ)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x 在(0,)+∞存在唯一零点,故()g x '在(0,)+∞存在唯一零点, 设此零点为α,则(1,2)α∈, 当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,)0g x '>( , 所以()g x 在(0,)+∞的最小值是()g α, 又()0g α'=,可得2e α α=+,所以()1(2,3)g αα=+∈, 由于①等价于()k g α<,故整数k 的最大值为2. 2.(2013新课标全国卷1文21,本小题满分12分) 已知函数2 ()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为

导数文科大题含详细答案教学提纲

导数文科大题 1.知函数,. (1)求函数的单调区间; (2)若关于的方程有实数根,求实数的取值范围. 答案 解析

2.已知, (1)若,求函数在点处的切线方程; (2)若函数在上是增函数,求实数a 的取值范围; (3)令, 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为 3. 解:(1)时,, ′(x), ′(1)=3,, 数在点处的切线方程为,

(2)函数在上是增函数, ′(x),在上恒成立, 即,在上恒成立, 令,当且仅当时,取等号, , 的取值范围为 (3), ′(x), ①当时,在上单调递减,,计算得出(舍去); ②当且时,即,在上单调递减,在上单调递增, ,计算得出,满足条件; ③当,且时,即,在上单调递 减,,计算得出(舍去); 综上,存在实数,使得当时,有最小值3.

解析(1)根据导数的几何意义即可求出切线方程. (2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案, (3),求出函数的导数,讨论,,的情况,从而得出答案 3.已知函数, (1)分别求函数与在区间上的极值; (2)求证:对任意, 解:(1), 令,计算得出:,,计算得出:或, 故在和上单调递减, 在上递增, 在上有极小值,无极大值; ,,则, 故在上递增,在上递减, 在上有极大值,,无极小值; (2)由(1)知,当时,,,

故; 当时,, 令,则, 故在上递增,在上递减, ,; 综上,对任意, 解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及 单调区间及极值; 4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性; (2)当时,求证:对任意的,. 解:(1)当时,, 则, , 故则在R上单调递减. (2)当时,,要证明对任意的,. 则只需要证明对任意的,. 设, 看作以a为变量的一次函数,要使,

导数文科大题含详细答案

导数文科大题 1.知函数,.(1)求函数的单调区间; (2)若关于的方程有实数根,求实数的取值范围. 答案 解析

2.已知,(1)若,求函数在

点处的切线方程;(2)若函数在上是增函数,求实数a 的取值范围;(3)令,是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3. 解:(1)时,, ′(x),′(1)=3,,数在点处的切线方程为, (2)函数在上是增函数,′(x),在上恒成立, 即,在上恒成立, 令,当且仅当时,取等 号,,的取值范围为 (3), ′(x),①当时,在上单调递减,,计算得出(舍去);②当且时,即,在上单调递减,在上单调递 增,,计算得出,满足条件;③当,且时,即,在上单调递

减,,计算得出(舍去); 综上,存在实数,使得当时,有最小值3. 解析(1)根据导数的几何意义即可求出切线方程. (2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案, (3),求出函数的导数,讨论,,的情况,从而得出答案 3.已知函数, (1)分别求函数与在区间上的极值; (2)求证:对任意, 解:(1), 令,计算得出:,,计算得出:或, 故在和上单调递减, 在上递增,在上有极小值,无极大 值;,,则, 故在上递增,在上递减,在上有极大值,,无极小值;

(2)由(1)知,当时,,, 故; 当时,, 令,则, 故在上递增,在上递 减,,; 综上,对任意, 解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及 单调区间及极值; 4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性; (2)当时,求证:对任意的,. 解:(1)当时,, 则, , 故则在R上单调递减. (2)当时,,要证明对任意的,. 则只需要证明对任意的,. 设,

《导数及其应用》文科测试题(详细答案)

《导数及其应用》单元测试题(文科) 一、选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 2 8)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则( ) (A ) 10<b (D ) 2 1 ,对于任意实数x 都有 ()0f x ≥,则 (1) '(0) f f 的最小值为( ) A .3 B . 52 C .2 D .32 9.设2 :()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥, 则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 10. 函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0/ / f f f f -<<< y (B ) )2()2()3()3(0/ / f f f f <-<< (C ))2()3()2()3(0/ / f f f f -<<< (D ))3()2()2()3(0/ / f f f f <<-< O 1 2 3 4 x 二.填空题(本大题共4小题,共20分) 11.函数()ln (0)f x x x x =>的单调递增区间是____. 12.已知函数3 ()128f x x x =-+在区间[3,3]-上最大值、最小值分别为,M m ,则M m -=_.

20122017年高考文科数学真题汇编导数及应用老师版

学科教师辅导教案 学员姓名年级高三辅导科目数学 授课老师课时数2h 第次课授课日期及时段 2018年月日:—: 1.(2014大纲理)曲线1x y xe- =在点(1,1)处切线的斜率等于( C ) A.2e B.e C.2 D.1 2.(2014新标2理) 设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( D ) A. 0 B. 1 C. 2 D. 3 3.(2013浙江文) 已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示, 则该函数的图象是(B) 4.(2012陕西文)设函数f(x)= 2 x +lnx 则( D ) A.x= 1 2 为f(x)的极大值点B.x= 1 2 为f(x)的极小值点 C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点 5.(2014新标2文) 函数() f x在 x x =处导数存在,若 :()0 p f x=: :q x x =是() f x的极值点,则A.p是q的充分必要条件 B. p是q的充分条件,但不是q的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是q的充分条件,也不是q的必要条件 【答案】C 6.(2012广东理)曲线33 y x x =-+在点() 1,3处的切线方程为___________________. 【答案】2x-y+1=0 7.(2013广东理)若曲线ln y kx x =+在点(1,)k处的切线平行于x轴,则k= 【答案】-1 8.(2013广东文)若曲线2ln y ax x =-在点(1,)a处的切线平行于x轴,则a=.历年高考试题汇编(文)——导数及应用

2020届二轮(文科数学) 主观题专练 函数与导数(11) 专题卷(全国通用)

函数与导数(11) 1.[2018·北京卷]设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解析:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1. (2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x . 若a >12,则当x ∈? ?? ??1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值. 若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0. 所以2不是f (x )的极小值点. 综上可知,a 的取值范围是? ?? ??12,+∞. 2.[2019·安徽省安庆市高三模拟]已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性; (2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 解析:解法一 (1)f ′(x )=e x -a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增.

高中文科经典导数练习题及答案

高二数学导数单元练习 一、选择题 1. 一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( ) A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3 y x x =+的递增区间是( ) A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( ) A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数3 13y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9 对于R 上可导的任意函数()f x ,若满足' (1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 二、填空题 11 . 函 数 32y x x x =--的单调区间为

最新高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅰ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数. (I )当时,求曲线在处的切线方程; ()(1)ln (1)f x x x a x =+--4a =()y f x =()1,(1)f

(II)若当时,,求的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数 . ⑴讨论的单调性; ⑵若存在两个极值点,,证明:. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x , ()1,x ∈+∞()0f x >a

导数文科大题含详细答案讲解学习

导数文科大题含详细 答案

导数文科大题 1.知函数,. (1)求函数的单调区间; (2)若关于的方程有实数根,求实数的取值范围. 答案 解析

2.已知, (1)若,求函数在 点处的切线方程; (2)若函数在上是增函数,求实数a 的取值范围; (3)令, 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3. 解:(1)时,, ′(x), ′(1)=3,, 数在点处的切线方程为,

(2)函数在上是增函数, ′(x),在上恒成立, 即,在上恒成立, 令,当且仅当时,取等号, , 的取值范围为 (3), ′(x), ①当时,在上单调递减,,计算得出(舍去); ②当且时,即,在上单调递减,在上单调递增, ,计算得出,满足条件; ③当,且时,即,在上单调递 减,,计算得出(舍去); 综上,存在实数,使得当时,有最小值3. 解析(1)根据导数的几何意义即可求出切线方程.

(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案, (3),求出函数的导数,讨论,,的情况,从而得出答案 3.已知函数, (1)分别求函数与在区间上的极值; (2)求证:对任意, 解:(1), 令,计算得出:,,计算得出:或, 故在和上单调递减, 在上递增, 在上有极小值,无极大值; ,,则, 故在上递增,在上递减, 在上有极大值,,无极小值; (2)由(1)知,当时,,, 故;

当时,, 令,则, 故在上递增,在上递减, ,; 综上,对任意, 解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及 单调区间及极值; 4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性; (2)当时,求证:对任意的,. 解:(1)当时,, 则, , 故则在R上单调递减. (2)当时,,要证明对任意的,. 则只需要证明对任意的,. 设, 看作以a为变量的一次函数,要使, 则,即,

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为 b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程 为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C: x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 ()00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

相关文档
最新文档