电力电子技术课件-PPT课件
电力电子技术概述PPT课件

电力电子技术概述PPT课件•电力电子技术基本概念•电力电子器件•电力电子变换技术•电力电子系统分析与设计•典型应用案例剖析•发展趋势与挑战01电力电子技术基本概念它涉及到电力、电子、控制等多个领域,是现代电力工业的重要组成部分。
电力电子技术的核心是对电能进行高效、可靠、可控的转换,以满足各种用电设备的需求。
电力电子技术是一门研究利用半导体器件对电能进行转换和控制的学科。
电力电子技术定义从早期的整流器、逆变器到现在的高频开关电源、智能电网等,电力电子技术经历了多个发展阶段。
发展历程目前,电力电子技术已经广泛应用于工业、交通、通信、家电等各个领域,成为现代社会不可或缺的一部分。
现状随着新能源、智能电网等技术的不断发展,电力电子技术的应用前景将更加广阔。
未来趋势发展历程及现状工业领域电机驱动、电力系统自动化、工业加热等。
电动汽车、高速铁路、航空航天等。
通信电源、数据中心、云计算等。
变频空调、LED照明、智能家居等。
随着新能源技术的不断发展,电力电子技术在太阳能、风能等领域的应用将更加广泛;同时,智能电网的建设也将为电力电子技术的发展提供新的机遇。
交通领域家电领域前景展望通信领域应用领域与前景02电力电子器件电力二极管(Power Diode)结构简单,工作可靠导通和关断不可控主要用于整流电路晶闸管(Thyristor)四层半导体结构,三个电极导通可控,关断不可控主要用于相控整流电路可关断晶闸管(GTO)通过门极负脉冲可使其关断关断时间较长,需要较大的关断电流主要用于大容量场合电力晶体管(GTR)电流驱动的双极型晶体管导通和关断可控,但驱动电路复杂主要用于中等容量场合电力场效应晶体管(Power MOSFET )电压驱动的单极型晶体管导通电阻小,开关速度快01主要用于中小容量场合02绝缘栅双极型晶体管(IGBT)03结合了MOSFET和GTR的优点01电压驱动,大电流容量,快速开关02目前应用最广泛的电力电子器件之一03电力电子变换技术整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用将交流电转换为直流电。
电力电子技术说课稿PPT课件精选全文

说课内容
1 课程性质与作用
2 课程整体设计
3
教学内容
4 教学方法与手段
2
课程性质与作用
课程性质
自动化专业基 础课
针对岗位
企业生产第一线 产品装配、调试、 检验、维修、生 产管理、产品后 服务岗位
能力培养
识别电力电子器件 能力 掌握器件使用与保 护技术 相控整流电路分析 能力 单相相控整流电路 设计安装能力 故障排除能力
24
教学内容
教材
❖ 主教材:《电力电子技术》黄家善主编
机械工业出版社, 2005年1月第二版;
❖ 教学辅助教材:《电力电子器件及其应用》,李序葆.赵永健编, 机械工业出版社,2004年6月
动化系编
《可控整流装置》北京电机修理厂、清华大学自
科学出版社, 1971年6月
25
教学方法与手段
多媒体教学
课堂板书讲解
9
课程整体设计
课程教学实施思路: ❖ 理论教学主要结合在项目实验中进行。 ❖ 课程的教学以项目作为核心实例带动知识点讲授,
每一个项目分解为若干个工作任务,通过每一个工 作任务使学生掌握必要的理论知识和技能。 ❖ 大部分内容在实验室中进行理论实践一体化教学, 可先讲再实践,或先实践再分析理论知识,或边讲 边练,讲练结合,工学交替,理论教学与实践教学 同步进行。
“设计实验”根据敖教与学的客观实际并结会现有条件设计 一实用电路,以实现简单的调压或调速。
6
课程整体设计
项目设计(课程设计)
❖ 在项目实训中鼓励学生将课外活动或生活见到的 应用纳入教学设计活动中来,课内外学习相互结 合,使学生视野开阔、能力增强。
7
课程整体设计
《电力电子技术》 ppt课件

《电力电子技术》
电力电子技术
《电力电子技术》
引言 电力电子器件 电力电子电路 脉宽调制(PWM)技术和软开关技术
第2页
电力电子技术
《电力电子技术》
➢ 什么是电力电子技术? ➢ 电力电子技术的发展史 ➢ 电力电子技术的应用
第3页
电力电子技术
《电力电子技术》
➢ 电子技术: 信息电子技术 电力电子技术
电力电子技术
IGBT的结构(显示图)
– 图a—N沟道VDMOSFET与GTR组合——N沟道IGBT
(N-IGBT)。 – IGBT比VDMOSFET多一层P+注入区,形成了一个大面
积的P+N结J1。 – ——使IGBT导通时由P+注入区向N基区发射少子,从
而对漂移区电导率进行调制,使得IGBT具有很强的通流 能力。 – 简化等效电路表明,IGBT是GTR与MOSFET组成的达林 顿结构,一个由MOSFET驱动的厚基区PNP晶体管。 – RN为晶体管基区内的调制电阻。
第17页
电力电子技术
《电力电子技术》
1.不可控器件——电力二极管
2.半控型器件——晶闸管 3. 典型全控型器件
(1)门极可关断晶闸管 (2)电力晶体管 (3)电力场效应晶体管 (4)绝缘栅双极晶体管
★
第18页
电力电子技术
《电力电子技术》
1. IGBT的结构和工作原理
三端器件:栅极G、集电极C和发射极E
➢ 全控型器件(复合型器件)
80年代后期开始,以绝缘栅极双极型晶体管(IGBT)为代 表的全控型器件因驱动功率小、开关速度快、载流能力大等得 到迅猛的发展。
★
第10页
电力电子技术
电力电子技术(完整幻灯片PPT

2.1.1 电力电子器件的概念和特征
电力电子器件的损耗 通态损耗
主要损耗 断态损耗 开关损耗
开通损耗 关断损耗
通态损耗是器件功率损耗的主要成因。
器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
1-4
2.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路
恢复特性的软度:下降时间与
延复迟系时数间,用的S比r表值示tf。/td,或称恢uFFra bibliotek2V0
b) tfr
t
图2-6 电力二极管的动态过程波形
a) 正向偏置转换为反向偏置
b) 零偏置转换为正向偏置
1-17
2.2.2 电力二极管的基本特性
关断过程
IF
diF
dt
trr
须经过一段短暂的时间才能重新获 UF
td
A
G
KK
A A
G
G
P1 N1 P2 N2
J1 J2 J3
K
K G
A
a)
b)
c)
图2-7 晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
外形有螺栓型和平板型两种封装。
四层三结三极。
螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便。
平板型晶闸管可由两个散热器将其夹在中间。
电力电子技术(完整幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
(2024年)电力电子技术完整版全套PPT电子课件

实验报告撰写与答辩
讲解实验报告的撰写要求和答辩技巧 ,提高学生的综合素质和能力。
36
08
电力电子技术应用案例
2024/3/26
37
新能源发电系统中电力电子技术应用
光伏发电系统
最大功率点跟踪(MPPT )技术、逆变器并网技术 、孤岛检测与保护技术等 。
2024/3/26
风力发电系统
变桨距控制技术、变速恒 频技术、直驱式永磁风力 发电技术等。
2024/3/26
13
可控整流电路分析与应用
可控整流电路原理
可控整流电路通过控制触发角α的大小,实现对输出电压的调 节。
2024/3/26
可控整流电路应用
可控整流电路广泛应用于直流调速、电力拖动、电解、电镀 等领域。
14
滤波电路原理与设计方法
滤波电路原理
滤波电路是利用电容、电感等元件对交流电的频率特性进行滤波,从而得到平 滑的直流电的电路。
高性能器件选择
选用高性能的功率器件和驱动电路,提高电路的工作频率和可靠性。例如,选用低导通电阻和低栅极电荷的 MOSFET可以降低电路的导通损耗和开关损耗;选用高耐压和高电流的IGBT可以提高电路的带负载能力等 。
系统优化与热设计
对系统进行全面的优化和热设计,确保电路在高负载、高温等恶劣环境下仍能稳定可靠地工作。例如,采用 合理的散热结构和风扇控制策略可以降低电路的工作温度;采用模块化设计可以提高电路的维修性和可扩展 性等。
2024/3/26
功率场效应晶体管(Power MOSFE…
阐述Power MOSFET和IGBT的结构、特点以及在电力电子电路中的 广泛应用。
11
03
整流与滤波技术
2024/3/26
电力电子技术(第二版)课件

电力电子技术的发展趋势
总结词
未来电力电子技术的发展趋势包括更高频率的电能转换、更高效的能量管理和系统集成、 以及更智能的控制策略。
详细描述
随着电力电子技术的不断发展,未来的电能转换将向更高频率的方向发展,这将有助于减小设备体积和重量, 提高系统效率。同时,随着能源危机和环境问题的日益严重,更高效的能量管理和系统集成成为电力电子技 术的重要发展方向。此外,人工智能和自动控制技术的不断发展,也将推动电力电子技术向更智能的控制策
VS
详细描述
交流调压电路主要由自耦变压器或接触器 组成,通过控制自耦变压器或接触器的通 断状态,改变交流电的电压波形,从而实 现交流电压的调节。交流调压电路广泛应 用于灯光调节、电机调速、加热器控制等 场合。
04
电力电子技术的应用
电力系统
电力系统控制
分布式发电与微电网
利用电力电子技术实现对电力系统电 压、电流、频率等的精确控制,提高 电力系统的稳定性和可靠性。
电力电子技术(第二版)课件
• 电力电子技术概述 • 电力电子器件 • 电力电子电路 • 电力电子技术的应用 • 电力电子技术的未来展望
01
电力电子技术概述
定义与特点
总结词
电力电子技术是利用半导体电力电子器件进行电能转换和控制的学科领域。
详细描述
电力电子技术主要研究将电能从一种形式转换为另一种形式,例如从交流(AC)转换为直流(DC),或从一个 电压级别转换到另一个电压级别。它涉及的半导体电力电子器件包括晶体管、可控硅整流器(SCR)、可关断晶 闸管(GTO)等。
节能控制
通过电力电子技术实现设备的节能控制,降低能耗,提高能源利用 效率。
智能家居与楼宇自动化
利用电力电子技术实现智能家居和楼宇自动化,提高居住环境的舒 适度和节能性。
(2024年)电力电子技术第5版王兆安课件
该方式通过调制信号(如正弦波)与高频载波(如三角波)进行比较生成PWM脉冲。优 点是生成的PWM脉冲频率高、波形好且易于实现实时控制。缺点是对于非线性负载的适 应性较差。
32
07
电力电子系统的设计与应用
2024/3/26
33
电力电子系统的设计原则与方法
2024/3/26
设计原则
确保系统稳定性、高效性、可靠性和 安全性;满足特定应用需求;优化成 本和性能。
2024/3/26
6
02
电力电子器件
2024/3/26
7
不可控器件
电力二极管(Power Diode)
结构和工作原理
伏安特性
2024/3/26
8
不可控器件
主要参数
晶闸管(Thyristor)
结构和工作原理
2024/3/26
9
不可控器件
伏安特性和主要参数
派生器件
2024/3/26
10
半控型器件
2024/3/26
36
感谢您的观看
THANKS
2024/3/26
37
26
电压型和电流型逆变电路
电压型逆变电路
电压型逆变电路的输出电压波形为矩 形波或正弦波,其特点是输出电压幅 值和频率可调,适用于对输出电压要 求较高的场合。
电流型逆变电路
电流型逆变电路的输出电流波形为矩 形波或正弦波,其特点是输出电流幅 值和频率可调,适用于对输出电流要 求较高的场合。
2024/3/26
工业自动化
应用于电机驱动、电源供 应、过程控制等领域,提 高生产效率和能源利用率 。
35
电力电子系统的发展趋势与挑战
发展趋势
《电力电子技术》PPT课件
可控硅时代
通过控制电流导通角,实现电 压和功率的调节。
现代电力电子时代
以IGBT、MOSFET等为代表 ,实现高效、快速的电能转换
。
电力电子技术的应用领域
电力系统
用于高压直流输电、无 功补偿、有源滤波等, 提高电力系统的稳定性
和效率。
电机驱动
用于电动汽车、电动自 行车、电梯等电机驱动 系统,实现高效、节能
照明控制
通过电力电子技术可实现 对照明设备的调光和调色 ,提高照明质量和节能效 果。
加热与焊接
电力电子技术可用于控制 加热设备的功率和温度, 实现精确控温和高效能焊 接。
交通运输应用
电动汽车驱动
电力电子技术是电动汽车 驱动系统的核心,可实现 高效能、低排放的驱动控 制。
轨道交通牵引
通过电力电子技术可实现 轨道交通车辆的牵引控制 和制动能量回收。
交流-交流变流电路的工作原理
通过电力电子器件的开关作用,改变输入交流电 的电压和频率,得到所需的输出交流电。Fra bibliotekABCD
交流-交流变流电路的分类
变频电路、变压电路等。
交流-交流变流电路的应用
电机调速、风力发电、太阳能发电并网等。
一般工业应用
01
02
03
电机驱动
电力电子技术可用于控制 电机的速度和转矩,提高 电机的效率和性能。
通过求解系统微分方程或差分方程,得到系统输 出与输入之间的关系,进而分析系统性能。
频域分析法
利用傅里叶变换将时域信号转换为频域信号,通 过分析系统频率响应特性来评估系统性能。
3
状态空间分析法
通过建立系统状态空间模型,分析系统状态变量 的变化规律,从而研究系统的稳定性和动态性能 。
《电力电子》课件
智能控制是一种基于人工智能的控制 方法,其工作原理是通过人工智能算 法实现电力电子设备的智能控制。
数字控制
数字控制是一种现代的控制方法,其 工作原理是通过数字电路和微控制器 实现电力电子设备的控制。
03
电力电子系统设计
系统设计方法
确定系统目标
明确电力电子系统的功能要求,如电压转换、功 率控制等。
电力电子的发展历程
1940年代
1950年代
1960年代
1970年代
1980年代至今
开关管和硅整流器的出 现,开始应用于信号放 大和处理。
晶体管的发明,开始应 用于信号放大和处理以 及无线通信等领域。
可控硅整流器(SCR) 的出现,开始应用于电 机控制和电力系统等领 域。
出现了可关断晶闸管( GTO)等更加高效的电 力电子器件。
• 高效性:电力电子技术可以实现高效地转换和控制电能,从而提高能源利用效率。 • 灵活性:电力电子器件具有较小的体积和重量,可以方便地集成到各种系统中,实现灵活的电能转换和控制。 • 应用广泛:电力电子技术在能源转换、电机控制、电网管理和可再生能源系统中有着广泛的应用。
电力电子的应用领域
电机控制
电网管理
05
电力电子技术技术
随着电力电子器件性能的不断提 升,电力电子系统的频率逐渐提 高,实现了更高的转换效率和更 小的体积。
高效化技术
为了降低能源消耗和减少环境污 染,电力电子系统正在不断追求 更高的效率。高效化技术包括拓 扑结构优化、控制策略改进等。
电力电子在智能电网中的应用前景
THANK YOU
感谢观看
IGBT是一种广泛应用于电力电子领域的半导体器 件,其工作原理是通过控制栅极电压来调节漏极 和源极之间的电流。
电力电子技术第五版(王兆安)课件
VS
漏抗对整流器换相的影响
漏抗的存在使得换相过程变得复杂,可能 导致换相失败或产生过大的换相过电压。
整流电路的谐波和功率因数
谐波
整流电路输出的非正弦波形含有丰富的谐波 成分,对电网和负载造成不良影响。
功率因数
整流电路的功率因数通常较低,因为谐波和 无功功率的存在使得视在功率大于有功功率 。提高功率因数的方法包括采用功率因数校 正电路和采用高功率因数的整流器等。
用效率。
交通运输
电动汽车、高铁、航空器等交 通工具的电力驱动系统大量采
用电力电子技术。
工业自动化
电机驱动、电源供应、自动化 控制等方面广泛应用电力电子
技术,提高生产效率。
信息技术
数据中心、云计算等领域需要 高效、可靠的电源供应,电力 电子技术发挥着重要作用。
课程目标与学习方法
课程目标
掌握电力电子技术的基本原理、分析方法、设计方法和实验 技能,具备从事电力电子技术应用和研究的初步能力。
电压型和电流型逆变电路
电压型逆变电路
电压型逆变电路以电压源作为输入,通过控制开关元 件的通断,得到所需的交流输出电压。其特点是输出 电压波形质量高,但需要较大的滤波电感。
电流型逆变电路
电流型逆变电路以电流源作为输入,通过控制开关元 件的通断,得到所需的交流输出电流。其特点是输出 电流波形质量高,但需要较大的滤波电容。
BIG DATA EMPOWERS TO CREATE A NEW ERA
电力电子技术第五版(王兆
安)课件
• 电力电子技术概述 • 电力电子器件 • 整录
CONTENTS
01
电力电子技术概述
BIG DATA EMPOWERS TO CREATE A NEW
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1.1 什么是电力电子技术
◆具体地说,电力电子技术就是使用电力电子器件 对电能进行变换和控制的技术。 ☞电力电子器件的制造技术是电力电子技术的基 础。 ☞变流技术则是电力电子技术的核心。输出
交流(AC)
整流
交流电力控制 变频、变相
直流(DC)
直流斩波 逆变
3
直流(DC) 交流(AC)
10
1.2 电力电子技术的发展史
◆全控型器件和电力电子集成电路(PIC) ☞70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管 (BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器 件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控 制既可使其开通又可使其关断。
12
1.3 电力电子技术的应用
■电力电子技术的应用范围十分广泛。它不仅用于 一般工业,也广泛用于交通运输、电力系统、通信 系统、计算机系统、新能源系统等,在照明、空调 等家用电器及其他领域中也有着广泛的应用。 ◆一般工业 ☞工业中大量应用各种交直流电动机,都是用 电力电子装置进行调速的。 ☞一些对调速性能要求不高的大型鼓风机等近 年来也采用了变频装置,以达到节能的目的。
5
1.1 什么是电力电子技术
各种电力电子装置广泛 应用于高压直流输电、静止 无功补偿、电力机车牵引、 交直流电力传动、电解、励 磁、电加热、高性能交直流 电源等之中,因此,无论是 国内国外,通常都把电力电 图1-2 电气工程的双三角形描述 子技术归属于电气工程学科。在我国,电力电子与电力传 动是电气工程的一个二级学科。图1-2用两个三角形对电 气工程进行了描述。其中大三角形描述了电气工程一级学 科和其他学科的关系,小三角形则描述了电气工程一级学 科内各二级学科的关系。
第1章 绪论
1.1 什么是电力电子技术
1.2 电力电子技术的发展史
1.3 电力电子技术的应用 1.4 本教材的内容简介
1.1 什么是电力电子技术
■电力电子技术的概念 ◆可以认为,所谓电力电子技术就是应用于电 力领域的电子技术。 ☞电力电子技术中所变换的“电力” 有区别 于“电力系统”所指的“电力” ,后者特指电 力网的“电力” ,前者则更一般些。 ☞电子技术包括信息电子技术和电力电子技 术两大分支。通常所说的模拟电子技术和数字电 子技术都属于信息电子技术。
11
1.2 电力电子技术的发展史
☞把驱动、控制、保护电路和电力电子器件集成在 一起,构成电力电子集成电路(PIC),这代表了 电力电子技术发展的一个重要方向。电力电子集成 技术包括以PIC为代表的单片集成技术、混合集成 技术以及系统集成技术。 ☞随着全控型电力电子器件的不断进步,电力电子 电路的工作频率也不断提高。与此同时,软开关技 术的应用在理论上可以使电力电子器件的开关损耗 降为零,从而提高了电力电子装置的功率密度。
1.1 什么是电力电子技术
■电力电子学 ◆美国学者W. Newell认为电力电子学是由电力 学、电子学和控制理论三个学科交叉而形成的。
图1-1 描述电力电子学的倒三角形
4
1.1 什么是电力电子技术
☞电力电子技术和电子学 电力电子器件的制造技术和用于信息变换的电子 器件制造技术的理论基础(都是基于半导体理论) 是一样的,其大多数工艺也是相同的。 电力电子电路和信息电子电路的许多分析方法也 是一致的。 ☞电力电子技术和电力学 电力电子技术广泛用于电气工程中,这是电力电 子学和电力学的主要关系。
7
1.2 电力电子技术的发展史
■电力电子技术的发展史
图1-3 电力电子技术的发展史
◆一般认为,电力电子技术的诞生是以1957年美国通用 电气公司研制出第一个晶闸管为标志的。
8
1.2 电力电子技术的发展史
◆晶闸管出现前的时期可称为电力电子技术的史前期或黎 明期。 ☞1904年出现了电子管,它能在真空中对电子流进行控 制,并应用于通信和无线电,从而开启了电子技术用于电 力领域的先河。 ☞20世纪30年代到50年代,水银整流器广泛用于电化学 工业、电气铁道直流变电所以及轧钢用直流电动机的传 动,甚至用于直流输电。这一时期,各种整流电路、逆变 电路、周波变流电路的理论已经发展成熟并广为应用。在 这一时期,也应用直流发电机组来变流。 ☞1947年美国著名的贝尔实验室发明了晶体管,引发了 电子技术的一场革命。
9
1.2 电力电子技术的发展史
◆晶闸管时代 ☞晶闸管由于其优越的电气性能和控制性能,使 之很快就取代了水银整流器和旋转变流机组,并且 其应用范围也迅速扩大。电力电子技术的概念和基 础就是由于晶闸管及晶闸管变流技术的发展而确立 的。 ☞晶闸管是通过对门极的控制能够使其导通而不 能使其关断的器件,属于半控型器件。对晶闸管电 路的控制方式主要是相位控制方式,简称相控方式。 晶闸管的关断通常依靠电网电压等外部条件来实 现。这就使得晶闸管的应用受到了很大的局限。
☞采用全控型器件的电路的主要控制方式为脉冲宽度调制(PWM) 方式。相对于相位控制方式,可称之为斩波控制方式,简称斩控方式。
☞在80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合 型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。 与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT) 复合了MOSFET和GTO。
13
1.3 电力电子技术的应用
☞有些并不特别要求调速的电机为 了避免起动时的电流冲击而采用了 软起动装置,这种软起动装置也是 电力电子装置。 ☞电化学工业大量使用直流电源, 电解铝、电解食盐水等都需要大容 量整流电源。电镀装置也需要整流 电源。 ☞电力电子技术还大量用于冶金工 业中的高频或中频感应加热电源、 淬火电源及直流电弧炉电源等场合。
6
1.1 什么是电力电子技术
☞电力电子技术和控制理论 控制理论广泛用于电力电子技术中,它使电力电 子装置和系统的性能不断满足人们日益增长的各种 需求。电力电子技术可以看成是弱电控制强电的技 术,是弱电和强电之间的接口。而控制理论则是实 现这种接口的一条强有力的纽带。 另外,控制理论是自动化技术的理论基础,二 者密不可分,而电力电子装置则是自动化技术的基 础元件和重要支撑技术。