半导体制程及原理介绍
半导体制程及摩尔定律

神秘的处理器制程工艺摩尔定律指导集成电路(IC,Integrated Circuit)工业飞速发展到今天已经40多年了。
在进入21世纪的第8个年头,各类45nm芯片开始批量问世,标志着集成电路工业终于迈入了低于50nm的纳米级阶段。
而为了使45nm工艺按时“顺产”,保证摩尔定律继续发挥作用,半导体工程师们做了无数艰辛的研究和改进—这也催生了很多全新的工艺特点,像大家耳熟能详的High-K、沉浸式光刻等等。
按照业界的看法,45nm工艺的特点及其工艺完全不同于以往的90nm、65nm,反而很多应用在45nm制程工艺上的新技术,在今后可能贯穿到32nm甚至22nm阶段。
今天就让我们通过一个个案例,来探索一下将伴随我们未来5年的技术吧。
你能准确说出45nm是什么宽度吗?得益于厂商与媒体的积极宣传,就算非科班出身,不是电脑爱好者的大叔们也能知道45nm比65nm更加先进。
但如果要细问45nm是什么的长度,估计很多人都难以给出一个准确的答案。
而要理解这个问题,就要从超大规模集成电路中最基本的单元—MOS(Metal Oxide Semiconductor金属氧化物半导体)晶体管说起。
我们用半导体制作MOS管就是利用其特殊的导电能力来传递0或者1的数字信号。
在栅极不通电的情况下,源区的信号很难穿过不导电的衬底到达漏区,即表示电路关闭(数字信号0);如果在栅极和衬底间加上电压,那么衬底中的电荷就会在异性相吸的作用下在绝缘氧化层下大量聚集,形成一条细窄的导电区,使得源区和漏区导通,那么电流就可以顺利从源区传递到漏区了(信号1)。
这便是MOS最基本的工作原理。
在一块高纯硅晶圆上(在工艺中称为“P型半导体衬底”)通过离子扩散的方法制作出两个N型半导体的阱——通俗地讲P型是指带正电的粒子较多,N型则是带负电的粒子比较多。
再通过沉积、光刻、氧化、抛光等工艺制造成如图中所示的MOS管,两个阱的上方分别对应源区(source)和漏区(drain),中间的栅区(gate)和下方的衬底中间用一层氧化绝缘层隔开。
半导体的生产工艺流程

半导体的生产工艺流程1.晶圆制备:晶圆制备是半导体生产的第一步,通常从硅片开始。
首先,取一块纯度高达99.9999%的单晶硅,然后经过脱氧、精炼、单晶生长和棒状晶圆切割等步骤,制备出硅片。
这些步骤的目的是获得高纯度、无杂质的单晶硅片。
2.晶圆加工:晶圆加工是将硅片加工成具有特定电子器件的过程。
首先,通过化学机械抛光(CMP)去除硅片上的表面缺陷。
然后,利用光刻技术将特定图案投射到硅片上,并使用光刻胶保护未被刻蚀的区域。
接下来,使用等离子刻蚀技术去除未被保护的硅片区域。
这些步骤的目的是在硅片上形成特定的电子器件结构。
3.器件制造:器件制造是将晶圆上的电子器件形成完整的制造流程。
首先,通过高温扩散或离子注入方法向硅片中掺杂特定的杂质,以形成PN结。
然后,使用化学气相沉积技术在硅片表面沉积氧化层,形成绝缘层。
接下来,使用物理气相沉积技术沉积金属薄膜,形成电压、电流等电子元件。
这些步骤的目的是在硅片上形成具有特定功能的电子器件。
4.封装测试:封装测试是将器件封装成实际可使用的电子产品。
首先,将器件倒装到封装盒中,并连接到封装基板上。
然后,通过线缆或焊接技术将封装基板连接到主板或其他电路板上。
接下来,进行电极焊接、塑料封装封装,形成具有特定外形尺寸和保护功能的半导体芯片。
最后,对封装好的半导体芯片进行功能性测试和质量检查,以确保其性能和可靠性。
总结起来,半导体的生产工艺流程包括晶圆制备、晶圆加工、器件制造和封装测试几个主要步骤。
这些步骤的有机组合使得我们能够生产出高性能、高效能的半导体器件,广泛应用于电子产品和信息技术领域。
半导体工艺流程简介

半导体工艺流程简介半导体工艺流程的基本涵义是把半导体元件从原理图到最终成品的制程过程,涉及到半导体元件的设计,制造,测试和检查等步骤,其中一些步骤包括:光刻,圆弧氧化,腐蚀,外部硅化,低温热封,抛光,定型热处理,金属集成,定化,接收,分析。
1、光刻:半导体工艺中最重要的一步,就是将设计好的电路图片放大,不管是直接放大,还是芯片上用光刻膜放大,均取决于芯片的印刷上的要求和生产的量大小,通常在芯片的制作与封装过程中都需要利用光刻作为关键步骤。
2、圆弧氧化:圆弧氧化主要通过一种名为椭圆器的特殊装置及适当的介质,以某种特定的圆弧型动态介质穿行的过程以达到厚度梯度的氧化层,用来在芯片芯片上形成可控深度的氧化层,这一步在定型层形成介质及其他接头氧化技术中占有重要地位。
3、腐蚀:通过一种特殊的物质(如氢氧化钠)在芯片上形成可控深度的磷酸盐氧化层,以减小芯片表面起源的因素对电子器件性能有不利影响,从而提高芯片的可靠性和可编程性,这一步在芯片的最终封装过程中起到了非常重要的作用。
4、外部硅化:在半导体工艺中,外部硅化就是在定型层上施加特殊物质,形成高功能硅化层,这一步可以防止微芯片表面发生机械划伤,保证微芯片可靠性,而且外部硅化能够提高微芯片的定位精度,从而提高芯片的可靠性。
5、低温热封:在半导体封装的过程中,需要进行低温热封以实现保护和定向特征,这一步可以有效防止定型层氧化度对半导体性能的负面影响,从而提高半导体的可靠性。
6、抛光:在半导体封装的过程中,抛光步骤是必不可少的,主要是为了保证芯片表面外观的一致性,以及保证芯片表面不沾附其他物质。
7、定型热处理:定型热处理是半导体封装的过程中十分重要的一步,其主要是达到稳定芯片参数,以及改善芯片的可靠性和可编程性的目的,在高浓度的热处理技术中,微芯片的特性往往可以明显提升。
8、金属集成:金属集成是基于电子封装技术的重要一步,它在硅基电子元器件工艺流程中起着关键性作用,主要包括熔接、焊接、过渡性氧化等步骤,以保证半导体元件的稳定性和可靠性。
半导体制造工艺简介.

材料制备
பைடு நூலகம் 制造工艺简介
(a)n型硅晶片原材料(b)氧化后的晶片
1 制造工艺简介
(c)涂敷光刻胶(d)光刻胶通过掩膜版曝
光
1 制造工艺简介
(a)显影后的晶片(b)SiO2去除后的晶片 氧化工艺
1 制造工艺简介
(c)光刻工艺处理后的晶片 (d)扩散或离子注入形成PN结 光刻和刻蚀工艺;扩散和离子注入工艺
化学气相淀积
CVD生长的二氧化硅:用作金属间的绝缘层,
用于离子注入和扩散的掩蔽层,也可用于增 加热氧化生长的场氧化层的厚度 热生长的二氧化硅:具有最佳的电学特性。 可用于金属层之间的绝缘体,又可用作器件 上面的钝化层
主要内容
3.1半导体基础知识
工艺流程 3.3 工艺集成
3.2
氮化硅的制备
主要用作:金属上下层的绝缘层、场氧的屏蔽层、 芯片表面的钝化层。
8 常用工艺之五:薄膜制备
生产SiO2
8 常用工艺之五:薄膜制备
氧化质量
物理气相淀积
(2)物理气相淀积
利用某种物理过程,例如蒸发或溅射,来实
现物质的转移,即把材料的原子由源转移到 衬底表面,从而实现淀积形成薄膜。 金属的淀积通常是物理的。 两种方法:真空蒸发;溅射
电阻值计算,xj为结深
当W=L时,G=g
1/g用R■表示,称为方块电阻,单位为欧姆,
习惯上用Ω/ ■表示。
2 无源器件
2、电容
基本上分为两种:MOS电容和P-N结电容 (1)MOS电容:重掺杂区域作为极板,氧
化物作为介质 单位面积的电容为 (2)P-N结电容:N+P结电容,通常加反向 偏置电压
半导体制程加热工艺

• 加强国际合作,引进先进技术和管理经验,提高产业水平
谢谢观看
T H A N K Y O U F O R WATC H I N G
• 使用激光、微波等局部加热技术
• 通过反馈控制系统实现精确温度控制
影响半导体制程加热工艺效果的主要因素
影响半导体制程加热工艺效果的主要因素
如何提高半导体制程加热工艺的效果
• 加热方式及参数
• 优化加热方式和参数
• 半导体材料特性
• 选择合适的半导体材料
• 设备性能及控制精度
• 提高设备性能和控制精度
半导体制程加热工艺的产业布局及政策建议
半导体制程加热工艺的产业布局
• 形成完整的产业链,包括加热设备制造、加热工艺研发、加热技术应用等
• 与半导体产业链的其他环节紧密合作,实现产业链的优化和升级
• 重视技术研发和人才培养,提高产业整体竞争力
半导体制程加热工艺的政策建议
• 制定相关政策和规划,引导和支持加热工艺产业的发展
⌛️
半导体制程加热工艺对生产成本和效率的影响
• 影响生产周期
• 影响能源消耗
• 影响设备投资和维护成本
半导体制程加热工艺的发展历程与趋势
半导体制程加热工艺的发展历程
半导体制程加热工艺的发展趋势
• 早期采用高温炉加热
• 提高加热效率和均匀性
• 随后发展为局部加热技术
• 降低能耗和环境影响
• 近年来出现基于激光和微波的加热技术
工艺目标
• 光电器件制程
• 降低生产成本和提高生产效率
• 如掺杂、退火、沉积等
• 微纳制程等
半导体制程加热工艺的重要性及影响
半导体制造工艺流程简介

半导体制造工艺流程简介导言:一、晶圆加工晶圆加工是制造集成电路的第一步。
它包括以下过程:1.晶圆生长:通过化学气相沉积或金属有机化学气相沉积等方法,在硅片基底上生长单晶硅。
这个过程需要非常高的温度和压力。
2.剥离:将生长的单晶硅从基底上剥离下来,并校正其表面的缺陷。
3.磨削和抛光:使用机械研磨和化学力学抛光等方法,使晶圆的表面非常光滑。
二、晶圆清洗晶圆清洗是为了去除晶圆表面的杂质和污染物,以保证后续工艺的顺利进行。
清洗过程包括以下步骤:1.热酸洗:利用强酸(如硝酸和氢氟酸)将晶圆浸泡,以去除表面的金属杂质。
2.高温氧化:在高温下将晶圆暴露在氧气中,通过热氧化去除有机杂质和表面缺陷。
3.金属清洗:使用氢氟酸和硝酸等强酸,去除金属杂质和有机污染物。
4.DI水清洗:用去离子水清洗晶圆,以去除化学清洗剂的残留。
三、晶圆制备晶圆制备是将晶圆上的材料和元件结构形成的过程。
它包括以下过程:1.掩膜制作:将光敏材料涂覆在晶圆表面,通过光刻技术进行曝光和显影,形成图案化的光刻胶掩膜。
2.沉积:通过物理气相沉积或化学气相沉积等方法,在晶圆上沉积材料层,如金属、氧化物、硅等。
3.腐蚀:采用湿法或干法腐蚀等技术,去除晶圆上不需要的材料,形成所需的结构。
4.清洗:再次进行一系列清洗步骤,以去除腐蚀产物和掩膜残留物,保证材料层的质量。
四、材料获取材料获取是指在晶圆上制造晶体管、电阻器、电容器等器件结构的过程。
它包括以下步骤:1.掺杂:通过离子注入或扩散等方法,在晶圆上引入有选择性的杂质,以改变材料的导电性或断电性能。
2.退火:通过高温热处理,消除杂质引入过程中的晶格缺陷,并使掺杂的材料达到稳定状态。
3.金属-绝缘体-金属(MIM)沉积:在晶圆上沉积金属、绝缘体和金属三层结构,用于制造电容器。
4.金属-绝缘体(MIS)沉积:在晶圆上沉积金属和绝缘体两层结构,用于制造晶体管的栅极。
五、封装和测试封装是将晶圆上制造的芯片放在封装底座上,并封装成可插入其他设备的集成电路。
半导体生产工艺
半导体生产工艺
1 半导体产业的简介
半导体技术是经过许多复杂工序所构成的一种微电子产品,被广
泛应用于电子,家用电器和工业设备等领域。
半导体技术主要利用不
导电材料制成集成电路,以存储和处理电子信号,在计算机,手机,
社交媒体,通信和医疗设备中有着重要的用途。
2 半导体生产工艺
半导体制造需要经过复杂的工艺流程,主要包括晶体制备,晶片
加工,晶片装载,晶片测试,晶片封装和外壳装配等几个阶段。
1) 晶体制备:在晶体制备阶段,一块原始晶体(一般是硅或硅锗)会被精细加工成细微的电子器件,然后被切割成各种形状和大小。
2) 晶片加工:在这一阶段,晶片会被暴露到高温高压下,并带有
金属材料,激光和化学成分,以形成晶片要求的参数,例如尺寸,导
通率和面积,以及用以连接其他元件的电路走线图。
3) 晶片装载:晶片装载是把晶片放置到电容器中的过程,电容器
由金属材料和绝缘材料构成,可以确保晶片的完整性和安全性。
4) 晶片测试:在这一步,晶片会收到一系列的压力测试,检查其
功能性和寿命。
5) 晶片封装:晶片封装是将晶片封装在一个塑料或陶瓷外壳中以防止环境因素对其施加影响的过程。
6)外壳装配:这一阶段是将所有部件组织在一起,然后使用热熔胶固定住以制造一个完整的半导体元件。
3 结论
半导体是一种复杂的微电子技术,它被广泛应用于现代计算机,手机,医疗设备等等。
制造一个完整的半导体元件需要通过多个复杂的生产工艺过程,从晶体制备到晶片测试,晶片封装,外壳装配等。
半导体产业技术的发展一定会给我们的生活带来意想不到的惊喜。
半导体封装制程及其设备介绍详解演示文稿
半导体封装制程及其设备介绍详解演示文稿尊敬的各位听众我将在接下来的时间中为您详解半导体封装的制程及其设备。
铭记电子发展的历史,即能明其过程,又能知其未来。
今天共划时代的创新,无一漏缺地离不开半导体封装。
首先,让我们理解什么是半导体封装。
半导体封装是一种将半导体芯片(例如CPU或内存)与外界物理连接的技术,它将半导体芯片从硅片(wafer)切割下来,封装到保护壳内,然后通过金线或铜线与焊带或引脚建立电连接,使之能够与电路板对接,实现电子器件的封装和连接。
然后是半导体封装的流程。
典型的封装流程包括:芯片切割、引脚安装、芯片粘合、线键合、模塑、切割、测试等步骤。
每一步都需要高精度的设备保障生产效率和产品品质。
现在,我们详细讨论一下封装过程中的关键设备。
首先是切割设备,使用硅切割机将硅片切成单独的芯片。
这需要极高的精度和稳定性,以确保芯片切割在正确的位置,并且每颗芯片的尺寸一致。
其次是引脚设备,通常会使用引脚机或复合机进行安装。
引脚机会安装各种类型的引脚,包括直插式、SMT式等等。
复合机则可以一次完成多个步骤,例如引脚安装、芯片粘合和线键合。
接着是芯片粘合设备,使用芯片粘合机,将芯片粘合到基板或框架上。
粘合需要高温,通常使用电热板或光源加热。
此外,粘合需要一定的压力,通常使用空气压缩机提供。
然后是线键合设备,使用线键合机,通过金线或铜线将芯片和引脚连接起来。
这也需要高精度和稳定性,以确保线键合的位置准确,连接的可靠性。
紧接着的工艺是模塑过程,它使用模塑机将塑料封装材料注入至芯片上,形成一层保护壳,保护芯片不被外界环境侵蚀。
最后的设备是测试设备,通过测试机对每一颗半导体进行电气性能和可靠性测试,确保每一颗产品都符合规格要求。
这既包括初级的模拟测试,也包括复杂的数字和混合信号测试。
半导体封装领域的设备技术不断进步,智能制造技术、精密测量技术、自动化技术等不断引入,提升了封装品质和效率,降低了成本,为推动半导体科技的发展,帮助创造出越来越多的高效实用的电子产品,充满了无尽的可能。
半导体制造工艺流程解读
半导体制造工艺流程解读第一章半导体制造概述 (2)1.1 半导体材料简介 (2)1.2 半导体器件分类 (2)第二章晶圆制备 (3)2.1 晶圆生长 (3)2.2 晶圆切割与抛光 (4)第三章光刻工艺 (4)3.1 光刻原理 (4)3.2 光刻胶与光刻技术 (5)3.2.1 光刻胶 (5)3.2.2 光刻技术 (5)3.3 光刻后处理 (5)第四章离子注入 (5)4.1 离子注入原理 (6)4.2 离子注入工艺流程 (6)第五章化学气相沉积 (6)5.1 化学气相沉积原理 (6)5.2 化学气相沉积工艺 (7)第六章物理气相沉积 (8)6.1 物理气相沉积原理 (8)6.2 物理气相沉积工艺 (8)6.2.1 真空蒸发沉积 (8)6.2.2 电子束蒸发沉积 (8)6.2.3 磁控溅射沉积 (9)6.2.4 分子束外延沉积 (9)第七章湿法刻蚀 (9)7.1 湿法刻蚀原理 (9)7.2 湿法刻蚀工艺 (10)第八章等离子体刻蚀 (11)8.1 等离子体刻蚀原理 (11)8.2 等离子体刻蚀工艺 (11)第九章掺杂与扩散 (12)9.1 掺杂原理 (12)9.1.1 掺杂剂的选择 (12)9.1.2 掺杂方法 (12)9.2 扩散工艺 (12)9.2.1 扩散原理 (13)9.2.2 扩散工艺流程 (13)9.2.3 扩散工艺参数 (13)第十章封装与测试 (13)10.1 封装工艺 (13)10.1.1 封装概述 (13)10.1.2 芯片贴装 (14)10.1.3 塑封 (14)10.1.4 引线键合 (14)10.1.5 打标 (14)10.2 测试方法与标准 (14)10.2.1 测试方法 (14)10.2.2 测试标准 (14)10.2.3 测试流程 (14)第一章半导体制造概述1.1 半导体材料简介半导体材料是现代电子技术的基础,其导电功能介于导体和绝缘体之间。
半导体材料的导电功能可以通过掺杂、温度、光照等外界条件进行调控。
半导体工艺流程简介
半导体工艺流程简介
《半导体工艺流程简介》
半导体工艺流程是指在半导体器件制造过程中所采用的一系列工艺步骤。
它包括了晶圆加工、器件制造和封装测试三个主要环节,每个环节又包含了不同的工艺步骤。
首先是晶圆加工。
这个过程包括了晶圆的清洁、去除氧化层、光刻、蚀刻、离子注入、扩散和沉积等步骤。
光刻是把芯片上的线路图案印制到光敏胶上,蚀刻是把芯片上不需要的部分去除,离子注入是通过向晶圆注入掺杂物改变材料的电子性质,扩散是在晶圆中扩散掺杂物,沉积则是在晶圆上沉积导体或绝缘体材料。
接下来是器件制造。
这个过程包括了制造晶体管、电容器、电阻器等器件,并将它们连接成一个完整的电路。
这个过程需要通过光刻、蚀刻、金属沉积、刻蚀、退火、金属化、绝缘层沉积等一系列工艺步骤完成。
最后是封装测试。
在这一步骤中,芯片被封装成一个完整的器件,并通过测试来检测器件的性能和质量。
封装是将芯片封装在塑料或陶瓷封装体内,并连接上引脚;测试则是通过测试设备对器件进行功能、可靠性和一致性等方面的测试。
总的来说,半导体工艺流程包含了各种化学、物理和电子工艺步骤,它是半导体器件制造的基础,对器件的性能和可靠性有
着重要的影响。
随着半导体技术的不断发展,工艺流程也在不断地更新和改进,以适应新的器件制造需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制程及原理概述 半导体工业的制造方法是在硅半导体上制造电子元件(产品包括:动态存储器、静态记亿体、微虚理器…等),而电子元件之完成则由精密复杂的集成电路(Integrated Circuit,简称IC)所组成;IC之制作过程是应用芯片氧化层成长、微影技术、蚀刻、清洗、杂质扩散、离子植入及薄膜沉积等技术,所须制程多达二百至三百个步骤。随着电子信息产品朝轻薄短小化的方向发展,半导体制造方法亦朝着高密度及自动
化生产的方向前进;而IC制造技术的发展趋势,大致仍朝向克服晶圆直径变大,元件线幅缩小,制造步骤增加,制程步骤特殊化以提供更好的产品特性等课题下所造成的良率控制因难方向上前进。
半导体业主要区分为材料(硅品棒)制造、集成电路晶圆制造及集成电路构装等三大类,范围甚广.目前国内半导体业则包括了后二项,
至于硅晶棒材料仍仰赖外国进口.国内集成电路晶圆制造业共有11家,其中联华、台积及华邦各有2个工厂,总共14个工厂,目前仍有业者继纸扩厂中,主要分布在新竹科学园区,年产量逾400万片。而集成电路构装业共有20家工厂,遍布于台北县、新竹县、台中县及高雄市,尤以加工出口区为早期半导体于台湾设厂开发时之主要据点。年产量逾20亿个.
原理简介 一般固体材料依导电情形可分为导体、半导体及绝缘体。材料元件内自由电子浓度(n值)与其传导率成正比。良好导体之自由电子浓度相当大(约1028个e-/m3),绝缘体n值则非常小(107个e-/m3左右),至于半导体n值则介乎此二值之间。 半导体通常采用硅当导体,乃因硅晶体内每个原子贡献四个价电子,而硅原子内部原子核带有四个正电荷。相邻原子间的电子对,构成
了原子间的束缚力,因此电子被紧紧地束缚在原子核附近,而传导率相
对降低.当温度升高时,晶体的热能使某些共价键斯键,而造成传导。这种不完全的共价键称为电洞,它亦成为电荷的载子.如图1.l(a),(b) 于纯半导体中,电洞数目等于自由电子数,当将少量的三价或五价原子加入纯硅中,乃形成有外质的(extrinsic)或掺有杂质的(doped)半导体。并可分为施体与受体,分述如下: 1.施体(N型) 当掺入的杂质为五价电子原子(如砷),所添入原子取代硅原子,且第五个价电子成为不受束缚电子,即成为电流载子.因贡献一个额外的电子载子,称为施体(donor),如图1。l(C)。 2。 受体(P型) 当将三价的杂质(如硼)加入纯硅中,仅可填满三个共价键,第四个空缺形成一个电洞。因而称这类杂质为受体(acceptor),如图1。l(d)。
半导体各种产品即依上述基本原理,就不同工业需求使用硅晶圆、光阻剂、显影液、酸蚀刻液及多种特殊气体为制程申的原料或添加物等,以完成复杂的集成电路制作。
图1.1半导体构造组成 制造流程 半导体工业所使用之材料包含单一组成的半导体元素,如硅(Si)、锗(Ge)(属化学周期表上第四族元素)及多成分组成的半导体含二至三种元素,如镓砷(GaAs)半导体是由第三族的镓与第五族的砷所组成。在1950年代早期,锗为主要半导体材料,但锗制品在不甚高温情况下,有高漏失电流现象.因此,1960年代起硅晶制品取代锗成为半导体制造主要材料。半导体产业结构可区分为材料加工制造、晶圆之集成电路制造(wafer fabrication)(中游)及晶圆切割、构装(wafer package)等
三大类完整制造流程,如图1。2所示。其中材料加工制造,是指从硅晶石原料提炼硅多晶体(polycrystalline silicon)直到晶圆(wafer)产出,此为半导体之上游工业。此类硅芯片再经过研磨加工及多次磊晶炉(Epitaxial reactor)则可制成研磨晶圆成长成为磊晶晶圆,其用
途更为特殊,且附加价值极高。其次晶圆之体积电路制造,则由上述各种规格晶圆,经由电路设计、光罩设计、蚀刻、扩散等制程,生产各种用途之晶圆,此为中游工业。而晶圆切割、构装业系将制造完成的晶圆,切割成片状的晶粒(dice),再经焊接、电镀、包装及测试后即为半导体成品。
图1。2 半导体产业结构上、中、下游完整制造流程 制程单元 集成电路的制造过程主要以晶圆为基本材料,经过表面氧化膜的形成和感光剂的涂布后,结合光罩进行曝光、显像,使晶圆上形成各类型的电路,再经蚀刻、光阻液的去除及不纯物的添加后,进行金属蒸发,使
各元件的线路及电极得以形成,最后进行晶圆探针检测;然后切割成芯片,再经粘着、连线及包装等组配工程而成电子产品。各主要制程单元概述如下:
氧化与模附着 原料晶圆在投入制程前,本身表面涂有2μm厚的AI2O3,与甘油混合溶液保护之,晶圆的表面及角落的污损区域则藉化学蚀刻去除。 为制成不同的元件及集成电路,在芯片长上不同的薄层,这些薄层可分为四类:热氧化物,介质层,硅晶聚合物及金属层。热氧化物中重要的薄层有闸极氧化层(gate oxide;与场氧化层(field oxide),此二层均由热氧化程序制造。以下二化学反应式描述硅在氧或水蒸气中的热氧化:
Si(固体) + O2(气体) →SiO2(固体)
Si(固体) + 2H2O(气体) →SiO2(固体) + 2H2(气体) 现代集成电路程序中,以氯介入氧化剂来改善氧化层的质量及Si—SiO2,接合面的性质。氯包含在氯气、氯化氢HCl或二氯乙烷中,其将Si-SiO2,接合面的杂质反应成挥发性氯化物,多余的氯会增加介质的崩溃强度,减低接合面缺陷密度。介电质附着层主要用来隔离及保护不同种类元件及集成电路.三种常用的附着方法是:大气压下化学蒸气附着
(CVD),低压化学蒸气附着(LPCVD)及电浆化学蒸气附着(PCVD,或电浆附着).化学蒸气附着生成约二氧化硅并不取代热生长的氧化层,因为后者具有较佳的电子性质。二氧化硅层可使用不同的附着方法,其中低温附着(300~500℃)之氧化层由硅烷、杂质及氧气形成。植入磷之二氧化硅的化学反应为
SiH4+O2→SiO2+2H2
4PH3+5O2→2P2O5+6H2 于中等温度(500~800℃)的附着,二氧化硅由四乙经基硅,Si(OC2H5)4,在LPCVD反应器中分解形成。其分解反应为:
Si(OC2H5)4→SiO2+副产物 高温附着(900℃),二氧化硅由二氯硅烷(SiCl2H2)与笑气(N2O)在低压下形成:
SiCl2H2+2N2O→SiO+2N2+2HCI 氮化硅层可用作保护元件,方可作为硅氧化作用时的遮蔽层,覆盖不欲氧化的硅晶部分,氮化硅的附着是在中等温度(750℃)LPCVD程序或低温(300℃)电浆CVD程序中形成.LPCVD程序中,二氯硅烷与氨在减压下,700~800℃间,反应生成氮化硅附着,反应式为: SiCl2H2+4NH3 →Si3N4+6HCl+6H2 电浆PCVD程序中,氮化硅由硅烷与氨在氢电桨中反应或是硅烷在放电氮气中生成,反应式如下: SiH4+NH3→SiNH+3H2
2SiH4+H2→2SiNH十3H2 硅晶聚合物,或称聚合硅,在Metal Oxide Semiconductor(MOS)元件中用作闸极接线材料;多层金属处理中当作导电材料;低能阶接面元件中为接触材料。方可作为扩散来源,生成低能阶接面及硅晶体的欧姆接触。其他用途包括电容及高电阻的制作。低压反应器在600~650℃间操作,将硅烷热解生成硅聚合体,反应式如下:
SiH4→Si+2H2
金属层如铝及硅化物用来形成低电阻连接N+、P+及硅聚合物层的金属接触,及整流作用的金属一半导体能障。金属处理包含内部联线、欧姆接触及整流金属二半导体接触等金属层的形成。金属层可用不同方法镀
上,最重要的方法为物理蒸气附着及化学蒸气附着,铝与其合金以及硅
化金属为两种最重要的金属.在金属处理中,化学蒸气附着(CVD)提供相当优良的同型阶梯涵盖层,且一次可制成大量晶圆。最新的集成电路cVD金属附着是应用于难熔金属的附着。以钨为例其热解及还原的化学
反应式:
WF6→W+3F2 WF6+3H2→W+6HF 其他金属如钼(MO),钽(Ta),及钛(Ti)都可应用于集成电路。这些金属的附着皆是在LPCVD反应器中进行下列氢还原反应:
2MCl5+5H2→2M+10HCl M代表金属Mo,Ta,Ti。铝附着亦可使用有机金属,如三异丁烷铝: 2{(CH3)2CHCH2}3Al→2Al+3H2+副产物 集成电路金属处理量最大的是铝及其合金,因为两者具备低电阻系数(Al为2.7μΩ-cm,合金为3.5μΩ—cm),符合低电阻的要求。硅化
物如TiSi2及TaSi2,,其低电阻系数(≦50μΩ—cm),且在整个集成电路程序中不失原有性质,表列出不同硅化物的电阻系数.
表1.1 硅化物电阻系数(300°K) 硅化物 来源 烧结温度(。c) 电阻系数(μΩ-cm) CoSil2 硅聚合体金属附着
共溅射合金 900
900 18—20
25
HfSi2 硅聚合体金属附着 900
45~50
MoSi2 共溅射合金 I000 100
NiSi2 硅聚合体金属附着
共浅射合金 900
900 50
50~60
Pd2Si 硅聚合体金属附着 400
30~50
PtSi 硅聚合体金属附着
600~800
28~35
TaSi2 硅聚合体金属附着
共溅射合金 1000
1000 35~45
50~55
TiSi2 硅聚合体金屏附着
共溅射合金 900
900 13~16
25
Wsi2 共溅射合金
I000 70
ZrSi2 硅聚合体金属附着 900
35~40
扩散与离子植入 扩散及离子植入是用来控制半导体中杂质量的关键程序.扩散方法是使用植入杂质或杂质的氧化物作气相附着,将杂质原子植入半导体晶