化工原理部分知识点
化工原理基本知识点总结

化工原理基本知识点总结化工原理,是指运用基本化学原理和物理原理,研究物质的本质、结构、性质以及相互作用等方面的学科。
在化工生产过程中,化工原理是一个关键环节,因此,对于化工从业人员来说,必须熟练掌握化工原理的基本知识点。
一、化学反应化学反应是化学过程中最基本的概念之一。
化学反应指两种或两种以上物质发生作用,最终生成新的物质。
如下面这个例子:2H2 + O2 → 2H2O这是一个简单的化学反应方程式。
其中,2H2和O2是反应物,2H2O则是生成物。
化学反应的速率受很多因素的影响,如反应物浓度、温度、催化剂等。
在工业生产中,为了加快反应速率,常常使用催化剂或加热等方法。
二、物理性质物理性质是指物质固有的、不随化学变化而改变的性质。
例如,半径、密度、硬度、颜色等都是物理性质。
其中,密度是物质不变的基本性质之一,它可以帮助我们分辨不同种类的物质。
三、热力学热力学是研究物质在温度、压力、体积等方面的物理变化,以及这些变化背后的热量和功的关系。
在热力学中,有很多基本概念需要掌握,如焓、熵、自由能等。
其中,焓指的是热力学过程中,压力下单位质量物质所含的能量。
熵是衡量物质混乱程度的指标,也是一种能量形式。
自由能则是热力学过程中,可以利用的最大能量。
四、电化学电化学是研究化学反应中电子转移的现象和机理的学科。
在电化学中,有两个基本概念:氧化和还原。
氧化是指物质失去电子,还原则是指物质获得电子。
在电池中,氧化和还原同时进行,从而产生电流。
五、化工流程化工流程是工业化学工程的核心。
化工流程包括物料输入、反应和产物输出等环节。
在化工流程中,需要考虑到工艺设计、设备选型、安全防护等因素,以确保生产过程的正常进行。
六、分离技术分离技术是化工生产中常用的技术之一,包括蒸馏、萃取、结晶、膜分离等方法。
分离技术用于将反应产物中的目标物质分离出来,以便进行下一步的操作。
七、化学工艺设计化学工艺设计是指在化工生产过程中,根据物料特性和反应要求,制定出合理的工艺方案,并确定所需的设备和工艺条件。
化工原理知识点总结笔记

化工原理知识点总结笔记一、化工原理概述化工原理是化学工程学的基础和核心分支,是研究化工过程基本原理和规律的一门学科。
在化工生产中,化工原理被广泛应用于控制反应过程、设计分离装置、优化工艺条件等方面。
化工原理主要包括热力学、化学动力学、传质传热、流体力学等方面的知识。
二、化工热力学热力学是研究能量转化和宏观物质运动规律的学科,化工热力学是将热力学原理应用于化工过程的一种方法。
化工热力学主要包括热力学基本原理、热力学性质、热力学循环等内容。
在化工过程中,热力学原理被用于计算反应热、确定工艺条件、分析热平衡等方面。
1. 热力学基本原理热力学基本原理包括能量守恒、熵增原理、热力学第一定律、热力学第二定律等。
能量守恒原理指出在封闭系统中,能量的总量是不变的;熵增原理指出封闭系统中熵总是增加的;热力学第一定律指出能量既不会被创建,也不会被销毁,只会在不同形式之间转化;热力学第二定律规定了热能不可能自发地从低温物体传递给高温物体。
2. 热力学性质热力学性质包括物质的热力学性质和烃的三相平衡等内容。
物质的热力学性质是指物质在不同温度、压力下的性质表现,例如,比热容、热膨胀系数、热导率等;烃的三相平衡是指烃在气态、液态和固态之间的平衡关系,包括气液平衡、固液平衡、气固平衡等。
3. 热力学循环热力学循环是指利用热能转换成机械能的过程,如蒸汽轮机循环、汽轮机循环、空气循环等。
在化工领域,热力学循环常常用于设计和优化化工过程中的能量转化装置。
三、化学动力学化学动力学是研究化学反应速率和反应机理的学科,主要包括反应速率、反应动力学方程、反应机理等内容。
在化工生产中,化学动力学常用于优化反应条件、控制反应速率、提高产物收率等方面。
1. 反应速率反应速率是指单位时间内反应物的消耗量或产物的生成量,通常用化学反应方程式来表示,如:A + B → C + D,反应速率可表示为:-d[A]/dt = -d[B]/dt = d[C]/dt = d[D]/dt。
化工原理知识点总结复习重点(完美版)图文

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。
表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。
此方程式只适用于静止的连通着的同一种连续的流体。
应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。
三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。
化工原理 知识点总结

化工原理知识点总结一、化工原理概述化工原理是研究在化工过程中物质的变化和转化规律的科学。
它涉及到化工过程的热力学、动力学、传质与相平衡、反应工程等方面的知识。
通过对化工原理的研究,人们可以了解化工过程中发生的物质变化和反应规律,从而为化工生产提供科学依据,指导化工工程的设计和操作。
化工原理的研究对象主要包括化工过程中的物质变化规律、传热传质现象、反应过程机理、工艺参数的选择与优化等内容。
在化工生产中,要对原料、中间产物和产品进行分析和控制,掌握化工原理知识至关重要。
二、化学反应动力学1. 化学反应速率化学反应速率是指单位时间内反应物的浓度变化量,它反映了反应物质转化的快慢程度。
在化学反应速率的研究中,我们需要了解反应物的浓度与时间的关系,以及影响反应速率的因素,如温度、压力和催化剂等。
2. 反应速率方程反应速率方程描述了反应速率与反应物浓度之间的关系。
它可以通过实验测定反应速率随时间的变化曲线来确定。
对于复杂的反应系统,反应速率方程往往需要通过多步反应动力学模型来描述。
3. 反应动力学模型反应动力学模型描述了反应速率与反应物浓度、温度等因素之间的关系。
常见的模型包括零阶、一阶、二阶反应动力学模型等。
这些模型可以根据实验数据拟合得到,用于预测反应过程中物质转化的规律。
4. 催化剂的作用催化剂是一种能够促进化学反应进行的物质,它可以降低反应的活化能,提高反应速率,从而节约能源、提高产率。
催化剂的设计和选择对化学反应的进行有着重要的影响。
三、化工热力学1. 热力学基本概念热力学是研究物质能量转化和传递规律的科学。
在化工过程中,热力学可以描述热力平衡、热力过程、热力循环等内容。
通常情况下,热力学律的应用可以帮助我们分析和解决化工过程的能量转化和传递问题。
2. 热力学第一定律热力学第一定律是能量守恒定律的化学表述,它说明了在闭合系统中,能量可以从一种形式转化为另一种形式,但总能量守恒。
在化工过程中,热力学第一定律的应用可以帮助我们分析热电站、锅炉、冷凝器等设备的能量平衡。
化工原理知识点总结整理

化工原理知识点总结整理化工原理是化学工程学科的基础,是化工工程师必备的知识。
以下是对化工原理的知识点进行总结整理。
1.物质的组成和结构:-原子:是化学元素的最小单位,由质子、中子和电子组成。
-分子:由两个或多个原子通过化学键连接而成。
-离子:失去或获得电子的原子,具有正负电荷。
正离子失去电子,负离子获得电子。
-化学键:是原子之间的力,将原子与原子连接起来。
-分子式:用化学符号表示分子中原子的种类和数目。
-结构式:用化学符号和线条表达分子中原子的排列方式。
2.化学反应:-化学平衡:反应物与生成物的浓度达到一定比例,反应停止。
-反应速率:反应物转变为生成物的速率。
-化学平衡常数:表示反应物与生成物在化学平衡时的浓度比例。
-反应热:反应物与生成物之间的能量差异。
3.理想气体:-理想气体状态方程:PV=nRT,其中P为气体的压力,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。
-理想气体的性质:不受物质的吸引力和斥力影响,分子间无体积。
4.流体力学:-流体:物质形状可变的物质,包括气体和液体。
-流动:流体在空间内由高压区域到低压区域的运动。
-流速:流体运动的速度。
-流量:在单位时间内通过流体的量。
-流体的黏性:流体内部摩擦阻力。
5.物质传递:-质量传递:物质从高浓度区域向低浓度区域的传递。
-热传递:热量从高温区域向低温区域的传递。
-动量传递:力从物体上的一个部分传递到另一个部分。
6.浓度与溶液:-浓度:表示溶液中溶质的量。
-溶解度:单位质量的溶剂中可以溶解的最大量溶质。
-饱和溶液:溶质在溶剂中达到最大溶解度所得到的溶液。
7.离子交换与配位化学:-离子交换:阳离子与阳离子、阴离子与阴离子之间的置换反应。
-配位化学:原子或离子通过化学键与金属离子形成配合物。
8.化学工程设备与仪器:-塔:用于气液或液液传质和反应的设备。
-反应器:用于进行化学反应的设备。
-分离设备:用于分离物质的设备,如蒸馏塔、萃取塔等。
(完整word版)化工原理知识点整理

相平衡方程 ()11y xα=+- 全塔物料衡算 W D F += W D F Wx Dx Fx +=塔顶产品采出率 W D W F x x x x F D --= 塔釜产品采出率 D F D Wx x W F x x -=- 易挥发组分回收率 D F Dx Fx η= 难挥发组分回收率 (1)w F Wx F x η=- 精馏段物料衡算 11D D 1+++=+=+R x x R R x V D x V L y n n n /R L D = ()1V R D=+=L+D 提馏段物料衡算 qF L L += F q V V )1(--=1(1)(1)(1)(1)n n W n W L W RD qF F D y x x x x V V R D q F R D q F++-=-=-+--+-- 进料线方程(q 线方程) 11F ---=q x x q q y 理想溶液最小回流比的计算De min min D e 1x y R R x x -=+- 对于不同的进料热状况,x q 、y q 与x F 的L 与L , V 与V 的关系为(1)冷液进料:x q >x F ,y q >x F ,q>1,L >L+F, V <V ;(2)饱和液体进料(泡点进料):x q =x F ,y q >x F ; q =1, e F x x = L =L+F, V=V ;(3)气液混合物进料:x q <x F ,y q >x F 0<q<1, L >L, V >V ;(4)饱和蒸汽进料(露点进料):x q <x F ,y q =x F ; q=0, F e y x = L =L, V=V +F ;(5)过热蒸汽进料:x q <x F ,y q <x F ; q<0, L <L, V >V +F ;绝对湿度(湿度) 0.622p H p p =-水汽水汽不饱和湿空气:()d W as t t t t >> 饱和湿空气:()d W as t t t t ==p ϕ=水汽一定温度、压力下空气中水汽分压可能达到的最大值s ()p p ≤s /p p 水汽s ()p p >/p p 水汽=湿空气的比热容(湿比热容) pH 1.01 1.88c H =+ 单位 kJ/(kg ∙℃)湿空气的焓(1.01 1.88) 2 500I H t H =++ 单位m 3/kg 干气湿空气的比体积)273)(1056.41083.2(33H +⨯+⨯=--t H v 单位m 3/kg 干气 恒速段 11()c c A C G X X A N τ-=⋅ 降速段的近似计算法c c 2X 2ln G X AK X τ= A X c()C N K X = 绝干物料量 c 1122(1)(1)G G w G w =-=- ww X -=1 蒸发水分量 c 12112212()W G X X G w G w G G =-=-=-2120()()W V H H V H H =-=- 预热器的热量衡算 1P 10p H10()()Q V I I V c t t =-=- 干燥器的热量衡算 121p,1D 2c ,2c X p X L VI G c Q VI G c Q θθ++=++c p,X ——湿物料的比热容,kJ/(kg 干物料.℃) p,X p,s p,L c c c X =+,水c p,L =4.18 kJ/(kg.℃)常用干燥器: 厢式干燥器、喷雾干燥器、流化床干燥器、气流干燥器等几种干燥器的特点:① 喷雾干燥器:干燥速率快,干燥时间短(仅5~30s),特别适用于热敏性物料的干燥;能处理低浓度溶液,且可由料液直接得到干燥产品。
化工原理知识点总结高中
化工原理知识点总结高中一、化工原理概述化工原理是指将原料经过一定的工艺、工序和条件,经过化学或物理变化,转变为有用的化工产品的理论和技术知识的总称。
化工原理是化学工程技术理论的基础和核心部分,是指导化学工程技术实践的理论方法和原则,它主要研究物质的结构、性质、组成、变化规律与化工产品的生产过程。
二、化工原理的基本概念1.化工原理的定义:指将原料经过一定的工艺、工序和条件,经过化学或物理变化,转变为有用的化工产品的理论和技术知识的总称。
2.反应工程:是利用化学变化来制造产品的过程。
反应器是进行反应工程的装置。
3.传热传质:为了促进和加快反应,通常需要在反应器内进行传热和传质过程。
4.质量平衡:是指在化学工艺反应过程中,原料、副产品和产品在重量上的平衡。
5.能量平衡:是指在反应工程中,热量在不同介质和各个反应阶段之间的平衡。
6.物料平衡:是指物料在工艺流程中的平衡问题,包括物料的投入、物料的输出和物料的转化系数。
7.反应工程的主要工艺过程有:加工、分离、纯化、反应、稀释、搅拌、传递等。
8.质量传递:物质在不同相之间的传递。
9.反应速率:反应速率是化学反应中的物质质量改变与时间改变的比例关系。
三、物质结构和性质1.物质的结构:物质的结构主要指化合物和元素的分子结构和晶体结构。
2.物质的性质:物质的性质是指物质的物理性质和化学性质。
3.常用的物质的性质有:密度、粘度、比热、导热系数、溶解度、流变性。
四、化学平衡及反应热1.化学反应平衡:在化学反应中,生成物的浓度与反应物的浓度之间的关系的平衡。
2.平衡常数:平衡常数是反应速率常数与逆反应速率常数之比。
3.反应热:反应热是指在化学反应过程中释放或吸收的热量。
五、化学工程热力学1.热力学基本概念:热力学是研究物质的能量及其转化形式、热运动规律和物质之间的相互转化规律的科学。
2.热力学基本定律:热力学的基本定律有:热力学第一定律、热力学第二定律和热力学第三定律。
化工原理知识点总结复习总结重点(完美版)
第一章、流体流动「一、流体静力学J二、流体动力学I三、流体流动现象、四、流动阻力、复杂管路、流量计一、流体静力学:•压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。
表压强(力)=绝对压强(力)-大气压强(力)真空度=大气压强-绝对压«电解大气压皎大气压力、绝对压力、表压力(或真空度)之间的关系•流体静力学方程式及应用:戈力形式P2 = pλ + pg{zλ -z2)备注:1)在静止的、连续的同一液体内,处于同一Y能量形式-^ + z l g = -^ + z2g水平面上各点压力都相等。
P P此方程式只适用于静止的连通着的同一种连续的流体。
应用:U 型压差计p1-p2 =(∕70-p)gR倾斜液柱压差计微差压差计二、流体动力学•流量质量流量ms kg/s i πis=VsP、体积流量v s m3∕sʃm s=GA= π∕4d i G质量流速G kg∕rn2s [ V s=uA= π∕4d u(平均)流速u m/s ʃ G=up•连续性方程及重要引论:•一实际流体的柏努利方程及应用(例题作业题)以单位质量流体为基准:Z i g+-u^λ +-^ + W e =z2g+-u^ +^ + ΣW f J/kg2 p 2 p以单位重量流体为基准:z1+ɪwɪ2+^ + H e =z2+ɪw/ +⅛ + ΣΛ, J∕N=m2g pg 2g - Pg输送机械的有效功率:N e = m s W eN输送机械的轴功率:N =。
(运算效率进行简单数学变换)应用解题要点:1、作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、截面的选取:两截面均应与流动方向垂直;3、基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、两截面上的压力:单位一致、表示方法一致;5、单位必须一致:有关物理量的单位必须一致相匹配。
三、流体流动现象:•流体流动类型及雷诺准数:(1)层流区Re<2000(2)过渡区200(X Re<4000(3)湍流区Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re值,更重要的是两种流型的质点运动方式有本质区别。
化工原理知识点
第一章 知识点一、 流体静力学基本方程式或注意:1、应用条件:静止的连通着的同一种连续的流体。
2、压强的表示方法:绝压—大气压=表压 表压常由压强表来测量; 大气压—绝压=真空度 真空度常由真空表来测量。
3、压强单位的换算:1atm=760mmHg=10.33mH 2O=101.33kPa=1.033kgf/cm2=1.033at4、应用:水平管路上两点间压强差与U 型管压差计读数R 的关系:处于同一水平面的液体,维持等压面的条件必须时静止、连续和同一种液体二、定态流动系统的连续性方程式––––物料衡算式三、定态流动的柏努利方程式––––能量衡算式1kg 流体:讨论点:1、流体的流动满足连续性假设。
2、理想流体,无外功输入时,机械能守恒式:3、可压缩流体,当Δp/p 1<20%,仍可用上式,且ρ=ρm 。
4、注意运用柏努利方程式解题时的一般步骤,截面与基准面选取的原则。
5、流体密度ρ的计算:理想气体ρ=P M /R T混合气体 混合液体 上式中:x wi ––––体积分率;x wi ––––质量分率。
6、gz,u 2/2,p/ρ三项表示流体本身具有的能量,即位能、动能和静压能。
∑hf 为)(2112z z g p p -+=ρghp p ρ+=0gR p p A )(21ρρ-=-常数常数=====≠ρρρρuA A u A u w s A 222111,常数常数======uA A u A u V s A 2211,ρ21221221///,d d A A u u A ===圆形管中流动常数ρf h u P gZ We u P gZ ∑+++=+++22222111ρρ2222222111u P gZ u P gZ ++=++ρρvn n v v m x x x ρρρρ+++= 2211n wn w m w m x x x ρρρρ+++= 2211流经系统的能量损失。
We 为流体在两截面间所获得的有效功,是决定流体输送设备重要参数。
化工原理基本知识点(整理版)_10472
流体流动知识点一、 流体静力学基本方程式或 注意:1、应用条件:静止的连通着的同一种连续的流体。
2、压强的表示方法: 绝压—大气压=表压 表压常由压强表来测量;大气压—绝压=真空度 真空度常由真空表来测量。
3、压强单位的换算:1atm=760mmHg=10.33mH 2O=101.33kPa=1.033kgf/cm2=1.033at4、应用:水平管路上两点间压强差与U 型管压差计读数R 的关系:处于同一水平面的液体,维持等压面的条件必须时静止、连续和同一种液体 二、定态流动系统的连续性方程式––––物料衡算式二、 定态流动的柏努利方程式––––能量衡算式以单位质量流体(1kg 流体)为基准的伯努利方程:讨论点:1、流体的流动满足连续性假设。
)(2112z z g p p -+=ρgh p p ρ+=0gRp p A )(21ρρ-=-常数常数=====≠ρρρρuA A u A u w s A 222111,常数常数======uA A u A u V s A 2211,ρ21221221///圆形管中流动,常数d d A A u u A ===ρf h u P gZ We u P gZ ∑+++=+++2222222111ρρ2、理想流体,无外功输入时,机械能守恒式:3、可压缩流体,当Δp/p 1<20%,仍可用上式,且ρ=ρm 。
4、注意运用柏努利方程式解题时的一般步骤,截面与基准面选取的原则。
5、流体密度ρ的计算:理想气体 ρ=PM/RT混合气体混合液体上式中:x vi ––––体积分率;x wi ––––质量分率。
6、gz 、u 2/2、p/ρ三项表示流体本身具有的能量,即位能、动能和静压能。
∑h f 为流经系统的能量损失。
We 为流体在两截面间所获得的有效功,是决定流体输送设备重要参数。
输送设备有效功率Ne=We·w s ,轴功率N=Ne/η(W )7、以单位重量流体为基准的伯努利方程, 各项的单位为m : [m] 22112212g 22f P u P u Z He Z H g g gρρ+++=+++ 以单位体积流体为基准的伯努利方程,各项的单位为Pa : []22e f a f f u W gh p h p p h ρρρρρ∆=+∆++∑∆=∑而2222222111u P gZ u P gZ ++=++ρρvn n v v m x x x ρρρρ+++= 2211f e H gu g p Z H +∆+∆+∆=22ρnwn w m w m x x x ρρρρ+++= 22112212112222f u u gZ P We gZ P h ρρρρρρ+++=+++∑3、流型的比较:①质点的运动方式;②速度分布,层流:抛物线型,平均速度为最大速度的0.5倍;湍流:碰撞和混和使速度平均化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理部分知识点
层流与湍流的本质区别:就层流而言,流体质点很有秩序地分层顺着轴线平行流动,流速层
间没有质点扩散现象,流体内部没有漩涡;就湍流而言,流体在流动过程中流体质点有不规
则的脉动,并产生大大小小的旋涡。二者本质区别是:层流无径向脉动,而湍流有径向脉动。
雷诺数的物理意义:是流体的所受惯性力与粘性力之比,用以表征流体的运动状态。
雷诺数较小时,粘滞力对流场的影响大于惯性力,流场中流速的扰动会因粘滞力而衰减,流
体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于粘滞力,流体流动
较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的紊流流场。
气缚:因泵内流体密度小而产生的压强小,无法吸上液体的现象。原因是离心泵产生的压差
与密度成正比,密度小,压差小,吸不上液体。措施:离心泵启动前要用外来的液体将泵壳
内空间灌满。这一步操作称为灌泵。为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸
入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵。
汽蚀:液体在泵的最低压强处(叶轮入口)汽化形成气泡,又因在在叶轮中因压强升高而溃
灭,造成液体对泵的冲击,引起振动和腐蚀的现象。措施:泵的安装位置不能太高,以保证
叶轮中的各处压强高于液体饱和蒸气压。
离心泵的工作点确定:
当泵安装在一定管路系统中时,泵的特性曲线与管路与曲线的交点即为泵的工作点。工作点
由管路特异性方程和泵特异性方程共同决定。离心泵只有在工作点工作,管中流量才能稳定。
泵的工作点以在泵的效率最高区域内为宜。
影响泵特异性曲线因素:有液体密度,粘度,转速,叶轮形状及直径大小。
调节流量方法:1.改变泵的特性曲线法a.改变泵的转速。b.切割叶轮外圆;改变叶轮直径。
2.改变管路特性曲线;最常用的方法是调节离心泵出口阀开度。关小阀门,管路局部阻力增
大,管路特性曲线变陡,工作点向左移动,流量减小。
离心泵的选择:(1)确定被输送液体的物理和化学性质(2)确定泵的流量(3)计算泵的扬
程(4)粘性液体的修正(5)求泵的工作点(6)确定泵的安装高度(7)确定泵的备用率。
吸收:目的是分离气体混合物;依据是气体混合物中各组分在溶剂中的溶解度不同;操作费
用主要花费在溶剂再生,溶剂损失。
在极限的情况下,操作线和平衡线相交(有特殊平衡线时为相切),此点传质推动力为零,
所需的填料层为无限高,对应的吸收剂用量为最小用量,该操作线的斜率为最小液气比
min(L/V)。
当1/ky >>m/kx时,此时传质阻力主要集中于气相,称为气相阻力控制过程; 当
1/(mky) << 1/kx时,此时传质阻力主要集中于液相,称为液相阻力控制过程
蒸馏:目的分离液体混合物;依据是分离液体混合物液体中各组分挥发度不同。主要费用是
加热和冷却。
q值的含义:一摩尔加料加热至饱和气体所需热量与摩尔汽化潜热之比。表明加料热状态。
q=0 饱和蒸汽进料0~1 气液混合进料q=1 泡点加料>1 冷液加料<0 过热蒸汽加料。
萃取:分离液液混合物。依据各组分溶解度不同。
萃取与吸收的差别:1、萃取中稀释剂B组分往往部分互溶,平衡线为曲线,过程更复杂。2、
萃取△ρ,σ较小,使不易分相,设备更复杂。
选择性系数:β=(yA/yB)/(xA/xB),β=1,不可用萃取方法分离,β=∞为B,S完全不
互溶物质。