北大计量经济学讲义-数据的测度单位换算
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)/16=those in (2) (1)中被估参数的标准差/16= (2)中被估参数的标准差
Intermediate Econometrics,
Intermediate Econometrics,
Yan Shen
6
Y (column)
Table 6.1
(1) bwght
(2)bwghtlbs
(3) bwght
X (rows)
Cigs Packs Faminc Intercept Observations
-0.4634 (0.0916) --
以下模型反映了婴儿出生体重与孕妇吸烟量和家庭收入之间的关系: (1) bwght bˆ0 bˆ1cigs bˆ2 fa min c
Consider the following rescaling: 考虑如下单位变换:
(2) Birth weight is changed from ounces to pounds 出生体重单位由盎司变为磅 (3)Number of cigarettes is changed to packs of cigrattes 香烟的支数变为包数 The estimation results is presented in the following table. 估计结果列于下表
zeros after a decimal point in an estimated coefficient, so that the results appear prettier. 数据测度单位变换经常被用于减少被估参数小数点后的零的 个数,这样结果更好看一些。 Since this is mainly an action of decoration, we expect nothing essential should change. 既然这样做主要为了好看,我们希望本质的东西不改变。
Since 1lbs = 16 oz, the dependent variable is transformed by dividing 16.
因为1磅=16盎司,被解释变量被除以16。
bwght /16 bˆ0 /16 (bˆ1 /16)cigs (bˆ2 /16) fa min c
We compare columns (1) and (2). 比较第1列与第2列。 The estimated coefficients in (1)/16 = those in (2). (1)中被估参数/16= (2)中被估参数 The standard errors of estimated coefficients in
0.0927 (0.0292) 116.794 (1.049) 1388
-0.0289 (0.0057) --
0.0058 (0.0018) 7.3109 (0.0656) 1388
--
-9.268 (1.832) 0.0927 (0.0292) 116.974 (1.049) 1388
R-squared
பைடு நூலகம்
Intermediate Econometrics,
Yan Shen
4
Redefining Variables 重新定义变量
Why would we want to do so? 为什么我们想这样做? Often, data scaling is used to reduce the number of
Intermediate Econometrics,
Yan Shen
5
Redefining Variables: An example 重新定义变量:一个例子
Consider a model relating infant birth weight to cigarette smoking and family income:
y = b0 + b1x1 + b2x2 + . . . bkxk + u
4. Further Issues 进一步的问题
Intermediate Econometrics,
Yan Shen
2
Chapter Outline 本章大纲
Effects of Data Scaling on OLS Statistics 数据的测度单位换算对OLS统计量的影响 More on Functional Form 对函数形式的进一步讨论
Effects of Redefining variables 重新定义变量的影响
Estimated coefficients 估计系数 R squared R 平方 t statistics t 统计量
Functional form 函数形式
Logarithmic form 对数函数形式 Models with Quadratics 含二次式的模型 Models with interaction terms 含交叉项的模型
0.0298
0.0298
0.0298
SSR
557,485.51
2177.5778
557.485.51
SER
20.063
1.2539
20.063
Intermediate Econometrics,
Yan Shen
7
Impact of changing the scale of the dependent variable 改变被解释变量测度单位的影响
More on Goodness-of-Fit and Selection of Regressors
拟合优度和回归元选择的进一步探讨
Prediction and Residual Analysis 预测和残差分析
Intermediate Econometrics,
Yan Shen
3
Lecture Notes 课堂笔记
Multiple Regression Analysis
y = b0 + b1x1 + b2x2 + . . . bkxk + u
4. Further Issues
Intermediate Econometrics,
Yan Shen
1
Multiple Regression Analysis 多元回归分析
Intermediate Econometrics,
Intermediate Econometrics,
Yan Shen
6
Y (column)
Table 6.1
(1) bwght
(2)bwghtlbs
(3) bwght
X (rows)
Cigs Packs Faminc Intercept Observations
-0.4634 (0.0916) --
以下模型反映了婴儿出生体重与孕妇吸烟量和家庭收入之间的关系: (1) bwght bˆ0 bˆ1cigs bˆ2 fa min c
Consider the following rescaling: 考虑如下单位变换:
(2) Birth weight is changed from ounces to pounds 出生体重单位由盎司变为磅 (3)Number of cigarettes is changed to packs of cigrattes 香烟的支数变为包数 The estimation results is presented in the following table. 估计结果列于下表
zeros after a decimal point in an estimated coefficient, so that the results appear prettier. 数据测度单位变换经常被用于减少被估参数小数点后的零的 个数,这样结果更好看一些。 Since this is mainly an action of decoration, we expect nothing essential should change. 既然这样做主要为了好看,我们希望本质的东西不改变。
Since 1lbs = 16 oz, the dependent variable is transformed by dividing 16.
因为1磅=16盎司,被解释变量被除以16。
bwght /16 bˆ0 /16 (bˆ1 /16)cigs (bˆ2 /16) fa min c
We compare columns (1) and (2). 比较第1列与第2列。 The estimated coefficients in (1)/16 = those in (2). (1)中被估参数/16= (2)中被估参数 The standard errors of estimated coefficients in
0.0927 (0.0292) 116.794 (1.049) 1388
-0.0289 (0.0057) --
0.0058 (0.0018) 7.3109 (0.0656) 1388
--
-9.268 (1.832) 0.0927 (0.0292) 116.974 (1.049) 1388
R-squared
பைடு நூலகம்
Intermediate Econometrics,
Yan Shen
4
Redefining Variables 重新定义变量
Why would we want to do so? 为什么我们想这样做? Often, data scaling is used to reduce the number of
Intermediate Econometrics,
Yan Shen
5
Redefining Variables: An example 重新定义变量:一个例子
Consider a model relating infant birth weight to cigarette smoking and family income:
y = b0 + b1x1 + b2x2 + . . . bkxk + u
4. Further Issues 进一步的问题
Intermediate Econometrics,
Yan Shen
2
Chapter Outline 本章大纲
Effects of Data Scaling on OLS Statistics 数据的测度单位换算对OLS统计量的影响 More on Functional Form 对函数形式的进一步讨论
Effects of Redefining variables 重新定义变量的影响
Estimated coefficients 估计系数 R squared R 平方 t statistics t 统计量
Functional form 函数形式
Logarithmic form 对数函数形式 Models with Quadratics 含二次式的模型 Models with interaction terms 含交叉项的模型
0.0298
0.0298
0.0298
SSR
557,485.51
2177.5778
557.485.51
SER
20.063
1.2539
20.063
Intermediate Econometrics,
Yan Shen
7
Impact of changing the scale of the dependent variable 改变被解释变量测度单位的影响
More on Goodness-of-Fit and Selection of Regressors
拟合优度和回归元选择的进一步探讨
Prediction and Residual Analysis 预测和残差分析
Intermediate Econometrics,
Yan Shen
3
Lecture Notes 课堂笔记
Multiple Regression Analysis
y = b0 + b1x1 + b2x2 + . . . bkxk + u
4. Further Issues
Intermediate Econometrics,
Yan Shen
1
Multiple Regression Analysis 多元回归分析