自动控制原理第七章1

合集下载

(优选)自动控制原理第七章非线性系统

(优选)自动控制原理第七章非线性系统

1, x 0 signx 1, x 0
0
xa
y k( x asignx) x a
3 滞环特性
滞环特性表现为正向与反向特性不是重叠在一起,而是
在输入--输出曲线上出现闭合环路。其静特性曲线如图7-3
所示。其数学表达式为:
y
b
y
k(
x asignx) bsignx
y0 y0
-a
0a
x
(优选)自动控制原理第七章 非线性系统
7.1 典型非线性特性
在控制系统中,若控制装置或元件其输入输出间的静 特性曲线,不是一条直线,则称为非线性特性。如果这 些非线性特性不能采用线性化的方法来处理,称这类非 线性为本质非线性。为简化对问题的分析,通常将这些 本质非线性特性用简单的折线来代替,称为典型非线性 特性。 7.1.1 典型非线性特性的种类
描述函数法是非线性系统的一种近似分析方法。首先利用描 述函数将非线性元件线性化,然后利用线性系统的频率法对系统 进行分析。它是线性理论中的频率法在非线性系统中的推广,不 受系统阶次的限制。
分析内容主要是非线性系统的稳定性和自振荡稳态,一 般不给出时域响应的确切信息。 7.2.1 描述函数的定义
1.描述函数的应用条件
2.死区特性
死区又称不灵敏区,在死区内虽有输入信号,但其输
出为零,其静持性关系如图7-2所示。
y
其数学表达式为
k -a
0a
x
0,| x | a
y
k(x
a),
x
a
k( x a), x a
若引入符号函数
图7-2 死区特性
死区小时,可忽略;大 时,需考虑。工程中,为抗 干扰,有时故意引入。比如 操舵系统。

自动控制原理第七章

自动控制原理第七章
作用后,运动仍然保持原来的频率和振幅,即这种周期运动 具有稳定性,这种现象称为自持振荡,这是非线性系统独有 的现象。
2013-12-13
<<自动控制原理>>第七章
9
4、非线性系统不适用叠加原理
在线性系统中,若干个信号作用于系统上,我们可以分 别求单独信号作用的响应,然后再叠加就可以求出总的响应。
这给分析综合线性系统带来了很大方便。通常在典型输入函
<<自动控制原理>>第七章
22
2013-12-13
<<自动控制原理>>第七章
23Leabharlann 二、相平面图的分析 1.线性系统奇点的类型 假设奇点在相平面的原点上, f ( x, x) 是解析函数,可用泰勒 级数将其在原点附近展开:
f ( x, x) f ( x, x) f ( x, x) f ( x, x) x 0 x 0 x x 0 x g ( x, x ) x x x 0 x 0 x 0 其中,g ( x, x) 是包含 x, x 二次以上的项,在原点附近,x, x 都很小,g ( x, x) 可以忽略。注意到在奇点处有

dx d ( x) dx dx
表示在 ( x, x) 点和 ( x, x) 点相轨迹曲线的斜率大小相等,符 号相反,故关于 x 轴对称。
2013-12-13 <<自动控制原理>>第七章 14
若 f ( x, x)是 x 的奇函数,即 f ( x, x) f ( x, x)
2013-12-13
<<自动控制原理>>第七章
17
c.系统的状态沿相轨迹曲线转移的方向

自动控制原理第七章非线性控制系统的分析

自动控制原理第七章非线性控制系统的分析
X X
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e

自动控制原理第七章

自动控制原理第七章
2 e e 2 (III)
§7.2
相平面法(10)
区域 运动方程 奇点 特征方程 极点 奇点性质
奇 点 类 型
I e 0
e1
s2 0
s0
II e e - 2 0 e2 2 s2 1 0 s j 中心点
III e e 2 0 e3 -2 s2 1 0 s j 中心点

线性部分
C(s) U(s)

1 s2
s
c c u
1 eh (I) 非线性部分 u e e h ( II )
1 e h (III)
比较点 e r c c
1 c h ( I )
整理
c c u c c h ( II)
1 c h (III)
间隙
继电特性
§7
非线性控制系统分析(2)
§7.1.3 非线性系统运动的特殊性
不满足叠加原理 — 线性系统理论原则上不能运用
稳定性问题
— 不仅与自身结构参数,且与输入,初条件
有关,平衡点可能不惟一 nonlinear1
自振运动
— 非线性系统特有的运动形式 nonlinear6
频率响应的复杂性 — 跳频响应,倍/分频响应,组合振荡 (混沌)

xe1 xe2

0 1

x x

x x

xe1 xe 2

x x

1
线化
x x
0.5x 0.5x
x 0 (x 1)
(x
1)2

0
x 0.5x x 0 x 0.5x x 0
§7.2 相平面法

自动控制原理第7章

自动控制原理第7章

7.2采样过程和采样定理
7.2.1 信号的采样 离散控制系统与连续控制系统本质上的区别 在于信号由连续变成断续。这个过程是由离 散控制系统中的采样开关或模数转换器完成 的。对连续信号的采样过程可以由图7-3给出。

e (t) e* ( t ) e (t ) S e* ( t ) T 0 t 0
t
t
T
2T
t
(a)
图 7-3 实际采样过程
(b)
(c)

把连续信号变换为脉冲序列的装置称为采样 器,又叫采样开关。采样过程可以用一个周 期性闭合的采样开关S来表示,如图7-3所示。 假设采样开关每隔T秒闭合一次,闭合的持续 时间为τ。采样器的输入e(t)为连续信号,输 出e(t)为宽度等于τ的调幅脉冲序列,在采样 瞬间nT,n=1,2…)时出现。即在t=0时,采样 器闭合τ秒,此时e(t)=e(t)= τ , t= τ 以后,采 样器打开,输出e(t)=0。以后每隔T秒重复一 次这种过程。
7.1引言

如果控制系统中所有的信号均是时间t的连续 函数,这样的系统称为连续时间系统,简称 连续系统;如果系统中某处或数处信号是脉 冲序列或数码,则这样的系统称为离散时间 系统,简称离散系统。其中离散信号以脉冲 序列形式出现的称为采样控制系统或脉冲控 制系统;以数码形式出现的称为数字控制系 统或计算机控制系统。
T
1 T
n
e jn s t


式中 s ---采样角频率;T —采样周期 并有

s 2 / T

将(7-4)式代入(7-2)ห้องสมุดไป่ตู้,有
1 * e (t ) T
n
e(t )e jn s t

自动控制原理课件_7__线性离散系统的分析与校正_1资料

自动控制原理课件_7__线性离散系统的分析与校正_1资料
一阶保持器实际很少使用!!
第七章 线性离散系统的分析与校正-7.2信号的采样与保持 小结
离散系统:系统中有一处或几处信号是脉冲串或数码
系统类型 采样系统 — 时间离散,数值连续

数字系统 — 时间离散,数值离散
A/D
t << T
字长足够
:
等效为理想采样开关
e*(t) e(t)T (t)
D/A 用 ZOH 实现
第七章 线性离散系统的分析与校正-7.1离散系统的基本概念
A/D过程 计算过程
计算过程描述与 D/A 过程
D/A 过程
零阶保持器 (ZOH)
第七章 线性离散系统的分析与校正-7.1离散系统的基本概念
计算机控制系统的描述方法
第七章 线性离散系统的分析与校正-7.2信号的采样与保持 信号采样
理想采样序列
信号的复现:把采样信号恢复为原来的连续信号 称为信号的复现。
保持器
零阶保持器(恒值外推) 一阶保持器(线性外推)
第七章 线性离散系统的分析与校正-7.2信号的采样与保持
零阶保持器的输入输出信号 主要特点:
1、输出信号是阶梯波,含有高次谐波。 2、相位滞后。
第七章 线性离散系统的分析与校正-7.2信号的采样与保持
第七章 线性离散系统的分析与校正-7.2信号的采样与保持 一阶保持器
一阶保持器是一 种按照线性规律 外推的保持器。
e(nT) e[(n 1)T ]
eh (t) e(nT)
T
(t T )
nT t (n 1)T
第七章 线性离散系统的分析与校正-7.2信号的采样与保持
Gh ( j) T
1
(T)2
1 eTs Gh(s) L[ k(t ) ] s

自动控制原理 第七章 非线性系统


实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
1
ωt
y1 (t ) B1 sint
由式(7-15)可得饱和特性的描述函数为
B1 2k a a a 2 N ( A) arcsin 1 ( ) A A A A

M sin td ( t )
yMFra bibliotek0 π2π
ωt
所以基波分量为:
y1 ( t )
4M

sin t
故理想继电器特性的描述函数为
Y1 4M N ( A) 1 A A
2.饱和特性
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
当输入为x(t)=Asinωt,且A大于线性区宽度a 时, 饱和特性的输出波形如图7-10所示。
7.1.3
非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无
法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
r(t)=0 x
N
y
G(s)
c(t)
图7-8 非线性系统典型结构图
(2)非线性环节的输入输出静特性曲线是奇对称的,即 y(x)=-y(-x),以保证非线性元件在正弦信号作用下的输出不 包含直流分量。 (3)系统的线性部分具有良好的低通滤波特性。能较好的滤 除非线性环节在正弦输入下输出中的高次谐波,于是可以认 为在闭环通道中只有基波分量在流通,此时应用描述函数法 所得的分析结果才是比较准确的。实际系统基本都能满足。

自动控制原理 第七章 非线性


x x x 0 , x(t0 ) x0 , x (t0 ) x0
将它写成微分方程组:
dx
.
x
dt.
dx
x
.
x
dt
容易求出奇点为(0,0)。
图 例7-2的根轨迹
ABCDO对应.初始条件为
x(0) 2, x(0) 7
EFO对应初.始条件为:
x(0) 0, x(0) 10
从相轨迹图可以直观地看到: 所有的相轨迹都最终收敛到 奇点(0,0),这说明系统 是渐近稳定的;可以证明, 每一条相轨迹都是向心螺旋 线,这说明系统的运动过程 是衰减振荡的。
3)相轨迹图形特征
如果微分方程满足解的存在性和唯一性条件, 那么,相轨迹(场)图一定有如下基本特征:
1)任一普通点有且只有一条相轨迹通过(解 的存在性和唯一性);
2)相轨迹必垂直通过轴; 3)轴上方的相轨迹从左向右运动,轴下方的 相轨迹从右向左运动。
Байду номын сангаас
例7-2 作出下列二阶系统的相轨迹
.. .
..
线性系统如果某系统在某初始条件下的响应 过程为衰减振荡,则其在任何输入信号及初始条 件下该系统的暂态响应均为衰减振荡形式。例:
x& x x2 x(0) x0
(1)当初始条件xo <1时,1-xo>0,上式 x(t) 具有负的特征根,其暂 态过程按指数规律衰 减,该系统稳定。
( 2 ) 当 xo=1 时 ,1xo=0,上式的特征根为 o 零,其暂态过程为一常 量。
x a xa x a
此处: x 输入 y 输出 k 比例系数
y
ym
a
k
x
0a
ym
饱和非线性对系统的影响:

自动控制原理第七章


解:1.将继电特性的参数代入相应公式得到:
4B 12 a 1 N ( A) 1 1 A A A A
2 2
1 πA N(A) 12 1 - 1 2 A
根据
( N (1A) ) ( )
a A
0,求得

1 π 的极值为 6 N ( A)
7.4.2 非线性系统结构的简化
非线性环节串联 若两个非线性环节串联,可将两个环节 的特性归化为一个特性,即以第一个非线性 环节的输入和第二个非线性环节的输出分别 作为归化后非线性特性的输入和输出,从而 作出等效非线性特性。注意,若两个非线性 特性的描述函数分别为 N1 ( A)和 N 2 ( A,等效非 ) 线性的描述函数为 N ( A)绝不等于 N1 ( A和 的 ) ) N2 (A 乘积,并且串联非线性环节的次序不可交换。 对于多个非线性环节串联,其处理方法可以 按照串联的次序,先归化前两个非线性环节, 等效后的非线性特性再与第三个环节进行归 化变换。 非线性环节并联 若两个并联的非线性环节其描述 函数分别为 和 N ( A) ,则并联后的 N 2 ( A) 1 等效非线性环节的描述函 数 。
7.2 典型非线性特性及其对系统的影响
间隙特性
也称回环,机械传动中为保证齿轮转动灵活不卡齿,主动轮、从动 轮齿轮之间必须有适当的间隙存在,使得两者不能同步运转,即从 动轮滞后主动轮。含有间隙特性的系统,其输出相位滞后于输入相 位,从而减小了系统的相稳定裕度,使系统的稳定性变坏,同时增 大了系统的稳差。
7.3 描述函数法
7.3.2 非线性特性的描述函数
非线性特性 描 述 函 数
7.3 描述函数法 描 述 函 数
非线性特性
7.4 用描述函数法分析非线性控制系统

自动控制原理与应用第7章自动控制系统的校正


03
非线性系统校正方法
非线性特性分析
描述函数法
通过描述函数将非线性环节近似为线性环节, 从而简化系统分析。
相平面法
在相平面上绘制系统状态轨迹,直观展示非线 性系统的动态特性。
谐波平衡法
通过谐波平衡方程求解非线性系统的稳态响应。
非线性校正策略
反馈线性化
通过引入适当的反馈,将非线性 系统转化为线性系统,从而应用 线性控制理论进行设计。
继电反馈
采用继电反馈方式,将非线性环节的输出作为反馈信 号,通过调整继电器参数实现对系统的校正。
04
数字控制系统校正技术
数字控制系统概述
数字控制系统的定义
通过数字计算机实现的控制系统,具有高精度、高灵活性和 易于实现复杂控制算法等优点。
数字控制系统的组成
包括被控对象、测量元件、数字控制器和执行机构等部分。
06
自动控制系统校正实验与仿真
实验目的与要求
01 掌握自动控制系统校正的基本原理和方法;
02 熟悉自动控制系统的性能指标及其评价方法 ;
03
学会利用仿真软件对自动控制系统进行建模 和仿真分析;
04
培养解决实际工程问题的能力。
实验内容与步骤
设计一个典型的自动控制系统 ,并对其进行数学建模;
对未校正的系统进行仿真分析 ,记录其性能指标;
校正方法
针对电机速度控制系统的非线性、参 数时变和负载扰动等特点,可采用自 适应控制算法进行校正。通过实时辨 识系统参数并调整控制器参数,实现 对电机速度的精确跟踪和控制。
校正效果
经过自适应控制校正后,电机速度控 制系统的动态响应性能和抗干扰能力 得到提高。系统能够快速适应电机参 数变化和负载扰动,保持稳定的转速 输出,提高控制精度和鲁棒性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档